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ABSTRACT 
Direct numerical simulation of the weakly turbulent flow 
of non-Newtonian fluids is undertaken for two different 
generalised Newtonian rheology models using a spectral 
element--Fourier method.  Results for a power law (shear-
thinning) rheology agree well with experimentally 
determined logarithmic layer correlations and with other 
previously published experimental work.  As the flow 
index becomes smaller for the same Reynolds number, the 
flow deviates further from the Newtonian profile and the 
results suggest that transition is delayed.  Predicted 
friction factors fall above those in the literature, but below 
the Newtonian values indicating that shear thinning 
behaviour alone can result in drag reduction.  Results for a 
Herschel-Bulkley model (yield stress + shear-thinning) are 
compared to corresponding experimental measurements 
and found to be in good agreement.  Use of this DNS 
technique shows great promise in understanding transition 
and turbulence in non-Newtonian fluids. 

NOMENCLATURE 
D Pipe diameter 
f Fanning friction factor 
K Fluid consistency 
n Flow index 
r radius 
Prz Turbulence production 
Reg Generalised Reynolds number (Eqn 4) 
ReMR Metzner-Read Reynolds number (Eqn 5) 
Rww Two-point velocity correlation 
UC Centreline axial velocity 
U+ Scaled velocity (usual log scaling) 
Û  Scaled velocity (see Eqn 7) 
Uτ Friction velocity 
Ur Radial velocity 
Vθ Azimuthal velocity 
Wz Axial velocity 
y+  Scaled distance from pipe wall (usual log scaling) 
ŷ  Scaled distance from pipe wall (see Eqn 7) 
γ&  Shear rate 
η Dynamic viscosity 
ηW Mean pipe wall viscosity 
τW Mean pipe wall shear stress 
τY Fluid yield stress 

INTRODUCTION 
The flow of non-Newtonian fluids and slurries in pipes 
occurs in a wide range of practical applications in the 
process industries.  If the fluid has a significant yield 
stress, or if its effective viscosity is high, industrially 
relevant flow rates may occur in the laminar flow regime 
(e.g. thickened slurry discharge in the minerals industry). 
However in some cases the flow can be turbulent and 
there are advantages in operating pipe flows in a 

transitional flow regime because the specific energy 
consumption is lowest there.  In the case of solids 
transport, the flow structures associated with intermittency 
may be used to keep particles in suspension without the 
much higher pressure losses of the fully turbulent regime.  
Although some experimental work has appeared on the 
transitional and turbulent flow of non-Newtonian fluids 
([8], [9], [13]), little fundamental understanding exists.  
General theories of turbulence are lacking for non-
Newtonian fluids, and the development of mathematical 
and computational models is not well advanced. 
Computational modelling of non-Newtonian flows, 
especially using direct numerical simulation (DNS), 
shows promise in helping to understand transition and 
turbulence in these fluids.  There have been some DNS of 
the turbulent flow of polymer solutions with the aim of 
understanding the causes of drag reduction (e.g. [1], [4], 
[19]).  In those studies, dilute polymer solutions were 
considered in which shear thinning behaviour was 
negligible and elongational (visco-elastic) effects were 
taken into account using various methods for the extra 
elastic stresses. However, for a wide range of important 
materials, the non-Newtonian rheology is primarily of a 
shear-thinning nature.  Malin [12] considered turbulent 
pipe flow of power law fluids using a Reynolds-averaged 
approach and a modified k-ε model. Reasonable 
agreement with experimental data was obtained after 
modifying the wall damping functions, however this 
approach is at least in part empirical, and does not shed 
light on the fundamental flow effects arising from shear 
thinning behaviour.  Apart from some recent work ([14], 
[15]) there have been few published CFD investigations of 
turbulent flows of shear-thinning non-Newtonian fluids 
without visco-elasticity. 
Experimental results show that compared to Newtonian 
fluids, the transition to turbulence may be delayed in shear 
thinning fluids, ([13], [15]) (i.e.  it occurs at a higher 
generalised Reynolds number). There is also evidence that 
the radial and azimuthal turbulence intensities are lower 
by 20–40% for a power law fluid compared to a 
Newtonian fluid, whereas the axial intensities may be 
marginally higher ([8], [9], [13]). The aim of the present 
study is to investigate the effect of rheological parameters 
and to consider the modification to the flow that arises in 
the presence of a fluid yield stress. 

Rheology Models 
This paper describes a study undertaken of shear-thinning 
non-Newtonian fluids whose rheology is described by a 
generalised Newtonian model, i.e. one in which an 
isotropic viscosity dependant on flow properties is 
applicable.  In the present work, particular fluids are 
considered in which the viscosity η can be described using 
either the power law (Ostwald–de Waele) model  

1−= nKγη &           (1) 
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 or the Herschel–Bulkley model 
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where γ& is the shear rate, K is the consistency, n is the 
flow index, and (in the case of the Herschel–Bulkley 
model) τy is the yield stress.  In the case of the power-law 
model, n<1 for shear-thinning, n=1 for Newtonian, and 
n>1 for shear-thickening fluids.  The shear rate is 
estimated as the second invariant of the rate of strain 
tensor, S. 

Generalised Reynolds number 
When the viscosity varies in space and time, the 
appropriate viscosity scale to use in order to define a 
Reynolds number is not obvious. There are a number of 
possible choices and that used here is the mean wall 
viscosity, ηW, that can be determined a priori from the 
mean wall shear stress, τW, that in turn is equal to D/4 
times the pressure gradient. 
Assuming a Herschel-Bulkley model it is easy to show 
that the mean wall viscosity is given by 

)(

/1

YW

W
n

W
K

ττ
τη
−

=     (3) 

For the power law model, τy is set to zero in Eqn. . The 
resulting generalised Reynolds number  
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The generalised Reynolds number used here is different to 
the more traditional Metzner-Reed Reynolds number that, 
for a power law fluid, can be written in closed form as  
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(For fluids other than power law fluids, a Metzner–Reed 
Reynolds number can also be calculated, see [7].)  
The generalised Reynolds number, Reg, reflects flow 
behaviour in the near wall region that plays a fundamental 
role in transition and the development of turbulence in 
wall bounded flows of Newtonian fluids.  As such, it is 
believed that this is a suitable basis on which to compare 
and order simulation results.   

NUMERICAL METHOD 
The spatial discretisation employs a spectral element–
Fourier formulation, which allows arbitrary geometry in 
the (x, y) plane, but assumes periodicity in the z (axial, or 
out-of-plane) direction.  Details of the numerical method 
may be found in [2], [10], [11]and are not repeated here in 
the interests of space. 
Because both the power law and Herschel–Bulkley 
rheology models have a singular viscosity at zero shear 
rate, a ‘cut-off’ value is used, below which the shear rate 
is assumed to be constant when computing the viscosity. 
The cut-off value is chosen to be 10-5 times the mean 
shear rate and is not observed to cause any stability 
problems or significant errors.  The cut-off is almost never 
invoked in practice for either the power law or Herschel-
Bulkley simulations because the calculated shear rates 
throughout the flow (even in the less active core regions) 
are nearly always several orders of magnitude above the 
cut-off value. 
The computations reported here were carried out using 16, 
32 or 64 processors on the Australian Partnership for 
Advanced Computing (APAC) cluster.  Run times were 

typically in the order of 1000 CPU hours to reach a 
statistically steady state, with an additional 500–1000 
CPU hours used to obtain statistics.  These latter times 
corresponded to 30–60 fluid transit times over the length 
of the computational domain. 

Validation and grid refinement 
The underlying numerical code has been validated for 
both DNS and LES of pipe and channel flow ([2], [16], 
[17]). The implementation of the power-law non-
Newtonian viscosity was validated against laminar pipe 
flow and axisymmetric Taylor–Couette flow of power-law 
fluids, both of which have analytic solutions.  For the 
Herschel–Bulkley model, validation was against laminar 
pipe flow only.  In all cases, numerical and theoretical 
velocity profiles agreed to within 0.01% and the code is 
believed to be accurately predicting the flow of non-
Newtonian fluids with generalised Newtonian rheologies. 
To check the grid convergence of the solutions, one 
simulation (with n=0.69) was run at three different 
resolutions.  A coarse resolution given by 80 Fourier 
modes (i.e. 160 z-planes) and 105 6×6 elements, a medium 
resolution (at which the simulations reported here are 
undertaken) of 108 Fourier modes and 105 8×8 elements 
and a fine mesh with 192 Fourier modes and 189 8×8 
elements. The mean velocity profiles were almost 
indistinguishable from each other.  The turbulence 
intensities and Reynolds stresses are shown in Figure 1. 
Clearly, the results for the coarse mesh lie approximately 
5% below the other results for the turbulence intensities, 
although agree well for Reynolds stress.  The difference 
between the medium and fine mesh results are 
insignificant, justifying the use of the medium size mesh 
for the simulations reported here. 

 
Figure 1: Turbulence intensities and Reynolds stresses 
for simulations undertaken at fine, medium and coarse 
resolutions.  The difference between the medium and fine 
results is insignificant. 

Computational Parameters 
The computational domain consists of 105 8th-order 
elements in the pipe cross section (see [14]) and 80–128 
Fourier modes (i.e. 160–256 data planes) in the axial 
direction, with domain lengths of 4–5 π D depending on 
Reynolds number and flow index.   
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Wall units are introduced in a similar manner to the 
Newtonian anlysis with the wall viscosity taking the place 
of the Newtonian viscosity.  Hence the friction velocity is 
defined as ρττ /= W

U W )/( ηρ τ=+

U , the non-dimensional velocity is 

 and the non-dimensional distance from the wall 
is written . In terms of these wall units, the 

near-wall mesh spacing is r+≈0.5, Rθ+≈8 and z+≈35. This 
resolution is perhaps marginal in the streamwise direction, 
although a grid convergence study discussed above 
suggests that significantly increasing the streamwise 
resolution had little effect on the turbulence statistics, and 
is therefore sufficient for this investigation.   

τUUU /=+

y y

In order to maintain a uniform generalised Reynolds 
number in the power law simulations, as n was changed 
both the consistency, K, and the driving pressure gradient 
were altered to maintain the same wall viscosity and 
superficial velocity.  A similar process was used in the 
Herschel-Bulkley simulations while the yield stress was 
kept constant. 

RESULTS 

Mean Flow Profiles for Power Law Fluids 
The mean axial velocity for the three simulations at 
Reg=5500 for n=0.5, 0.69 and 0.75 are shown in Figure 2 
and Figure 3 and compared to a Newtonian profile at the 
same Reynolds number.  As the flow index n increases, 
the profiles for the power law fluids approach the 
Newtonian profile, as expected.  The results for n=0.5 fall 
sufficiently above the Netwonian profile suggesting that 
this flow is transitional – this point will be discussed in 
more detail below. 

 
Figure 2: Velocity profiles for the turbulent flow of 
three power law fluids at Reg=5500 (n=0.5, 0.69 and 0.75) 
non-dimensionalised using the conventional non-
dimensionalisation with the wall viscosity taking the place 
of the Newtonian viscosity.  Shown for comparison is a 
correlation for low Reynolds number turbulent pipe flow 
(dashed line) and DNS results at Re=5500 (solid line), 
both for a Newtonian fluid. 

In [3], Clapp reports the results of experimental 
measurements of the turbulent pipe flow of power law 
fluids with flow indices in the range 0.698–0.813. Based 
on these measurements, dimensional arguments, and early 
measurements of turbulent Newtonian pipe flow reported 
in [5], Clapp determines that the logarithmic velocity 
profile for the turbulent flow of power law fluids is a 
function of the flow index, n, and satisfies  
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and . The values of the parameters in Eqn. (6) 
given by Clapp are A=3.8 and B=2.78, and were chosen to 
give collapse to the experimental measurements of 
turbulent pipe flow of a Newtonian fluid (n=1) reported 
in [5]. The values of these coefficients for well developed 
turbulent flow of Newtonian fluids are now generally 
accepted to be A=5.0, B=2.5 (while for low Reynolds 
number flow, A=5.5 gives a closer fit to the data) [6]. 
Thus it may be expected that A=5.5, B=2.5 should be 
used. 

+=UÛ

 

 
Figure 3: As in Figure 2, but plotted using Clapp’s 
non-dimensionalisation.  The dotted line is Clapp’s 
correlation using his coefficients (3.8, 2.78) and the 
dashed line is using the generally accepted values of (5.5, 
2.5) for low Reynolds number Newtonian flow.   
 
In Figure 3 the mean axial velocity (multiplied by n) is 
compared to Clapp’s correlation. The dotted line is the 
logarithmic profile using the coefficients A=3.8, B=2.78 
and the dashed line uses A=5.5, B=2.5. Clearly seen in this 
figure is that the CFD results for all three flow indices 
collapse to a similar profile and agree quite well with the 
general form of Clapp’s correlation – they fall between the 
dotted and dashed lines for >10. Although Clapp’s 
correlation has drawbacks (in particular the velocity 
gradient predicted at the pipe centre is non-zero) and other 
correlations exist that include better approximations for 
the turbulent core [18], it is only strictly applicable in the 
logarithmic region and has the benefit that it is easy to 
calculate.  The results here suggest that it is applicable, 
and perhaps for a wider range of flow indices than Clapp’s 
experiments, although Clapp’s original coefficients 
probably need to be modified in light of more recent 
turbulence measurements in Newtonian fluids. 

ŷ

Turbulence intensities, turbulence production, Reynolds 
shear stresses and r.m.s. streamwise vorticity fluctuations 
are plotted in Figure 4.  For both the axial turbulence 
intensities and the Reynolds stresses, the results for the 
power law fluids are close to the Newtonian results (DNS 
at Re=5500 ). However for both radial and azimuthal 
velocity fluctuations, the values for the power law fluids 
are significantly lower than the Newtonian case.  This 
behaviour has been observed experimentally ([9], [13]) in 
turbulent flow of non-Newtonian fluids, although 
currently there is no clear understanding of why this is the 
case.   
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Figure 4: Turbulence intensities as a function of r/D 
(a) radial, (b) azimuthal and (c) axial, (d) turbulence 
production, (e) Reynolds shear stress, and (f) r.m.s. axial 
vorticity fluctuation. (Solid line for Newtonian DNS, 
power law fluids are n=0.5 (∆), n=0.69 (○) and n=0.75 
(■))  
 
Similar behaviour is also found in measurements of low 
Reynolds number Newtonian turbulence.  Low and high 
Reynolds number flows produce almost identical (non-
dimensionalised) axial velocity fluctuations, whereas the 
transverse components are weaker for low Reynolds 
number and have their peak somewhat closer to the pipe 
wall [6]. Thus these phenomena in the shear thinning 
results here are possibly features of flows that are not fully 
developed and in which a self-similar velocity profile is 
not yet established in the pipe. 
Because the viscosity is higher in the core region (in the 
shear thinning case), the turbulence is not as fully 
developed there, especially for the fairly low generalised 
Reynolds number of 5500 used in the simulations here.  
Consequently, lower transverse fluctuations might be 
expected in shear thining fluids in the core region simply 
because of this.  The results in [15] suggest that as Reg 
increases, the transverse velocity fluctuations do increase, 
although it is not clear if the gap between them and the 
Newtonian curve will be breached or not.  It appears 
possible that the increased viscosity in the core regions of 
the flow in shear thinning fluids may always result in 
lower fluctuations than in a Newtonian fluid, although 
conclusive evidence must await further work.  As n 
approaches unity in Figure 4, the non-Newtonian results 
all approach the Newtonian correlations, as expected. 
The distance from the wall of the peak velocity 
fluctuations and Reynolds stress generally increases as the 
flow index decreases, indicating an thicker buffer region 
for more shear thinning fluids. The exception is for the 
case of n=0.5 that is related to the transitional nature of 
this flow as discussed in more detail in a later section.  
The production of turbulence is given by  

r
WWUP zrrz ∂
∂′′=      (8) 

and is plotted in Figure 4e.  As seen, the maximum 
production occurs at a value of y+=10 for the Newtonian 
fluid.  For the power law fluids this distance increases 
slightly for n=0.75 and 0.69, decreasing slightly for n=0.5. 
The r.m.s fluctuation of the streamwise vorticity is plotted 
in Figure 4f and shows slightly lower peak values as n 

decreases, with the peak occurring slightly closer to the 
wall than in the Newtonian case.   
The mean wall streak spacing for the simulations was 
determined from the azimuthal two-point correlation of 
the fluctuating axial velocity and is shown in Figure 5 
(the correlation is defined as )()( δθθθ +′′= WWWWR ). 

 

 
Figure 5: Azimuthal two-point correlation of the 
fluctuation velocity) at y+=20. The mean streak spacing is 
estimated as twice the value of separation at the minimum 
value of Rww. 
As seen, the streak spacing for the Newtonian simulation 
is approximately 125 wall units, for n=0.75 it is 155 wall 
units and for n=0.69 it is 180 wall units.  This is consistent 
with the observation that the maximum radial and 
azimuthal velocity fluctuations occur slightly further from 
the wall.  It was not possible to estimate a meaningful 
streak spacing for n=0.5. 
It is interesting to compare the shear thinning results here 
to those for viscoelastic fluids presented in [1], [4], [19]. 
In those studies, the conclusion was drawn that polymer 
additives modify the turbulent structure in the buffer layer 
(10<y+<30) to increase the stream-wise vortex size, lessen 
the stream-wise vortex strength, and consequently supply 
less energy to the log layer.  The reduction in advective 
transport of high-momentum fluid from the core toward 
the wall ultimately leads to the prediction of drag 
reduction.  Correlated to the weaker vortices were reduced 
wall normal and span-wise velocity fluctuations compared 
to the Newtonian case (these correspond to radial and 
azimuthal fluctuations here). It was also observed that 
stream-wise (axial) fluctuations were slightly higher than 
the Newtonian case.  As the degree of visco-elasticity 
increased, these trends increased and it was seen that the 
mean velocity log layer slope increased also.   
The majority of these phenomena are similar in character 
to those observed here when “degree of viscoelasticity” is 
replaced by “degree of shear thinning”. Recall that these 
results are for a fluid that is purely shear thinning.  A final 
comment regarding Figure 4 is that the similarity in shape 
and the location of maxima between the shear thinning 
fluids and the Newtonian case provide evidence that non-
dimensionalisation based on the mean wall viscosity, ηW, 
and hence use of Reg, is a reasonable basis on which to 
compare results. 

Friction factors 
The Fanning friction factor, f, is defined as the non-
dimensional wall shear stress and is defined as  

2Uf W ρτ=      (9) 
For shear thinning fluids, the friction factor is traditionally 
plotted against the Metzner-Reed Reynolds number 
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(Eqn. (5)). The results obtained numerically here are 
compared to the friction factors determined by Dodge and 
Metzner [7] in Figure 6. 
 

 
Figure 6: Fanning friction factors determined for the 
CFD simulations as a function of the Metzner-Reed 
Reynolds number.  The Herschel-Bulkey results are 
denoted with a star and the cross is from DNS results of a 
Newtonian fluid at Re=5500. 

The numerical results predict friction factors that are 
lower than the corresponding values for a Newtonian 
fluid.  Qualitatively they agree with experimental 
observations [7] in which shear thinning behaviour was 
seen to lead to a reduction in friction factor for a 
fixedReMR. Quantitatively, it is clear that the predicted 
values from simulation are higher than those measured 
in [7] by approximately 10-15% – the reason for this 
difference is unclear. It is possible that insufficient domain 
length in the simulation might be affecting the results.  It 
may also be possible that the model fluids in [7] were not 
sufficiently well characterised as a power law fluid over 
the range of shear rates that occurred in the experiments, 
however it is difficult to know if this is the case. 

Intermittency and Transition for Power Law Fluids 
Time traces of velocity and pressure signals for n=0.5 and 
0.75 are shown in Figure 7 (traces at the centreline 
(dashed line) and near wall (solid line) are shown, 
although are difficult to distinguish except for the case of 
the axial velocity component, W). There is a clear 
distinction between the results for the two different flow 
indices.  The signals for n=0.75 (lower three graphs) 
appear as a fairly random perturbation around a mean 
value, whereas the signals for n=0.5 (upper three graphs) 
are clearly showing large scale coherent excursions with a 
random signal superimposed on top.  The period of these 
large deviations is found to be approximately equal to the 
length of the computational domain (5πD) divided by the 
centreline velocity – hence the results are a computational 
artefact and cannot be relied on as an accurate 
representation of the real flow for the case of n=0.5. The 
axial extent of these structures is significantly less than the 
domain length (approximately half, see contours of the 
axial velocity near the pipe wall in Figure 8) yet they are 
self-sustaining over many transit times of the domain.  
This result suggests that the flow is likely to be 
transitional and in reality will contain intermittent 
phenomena.   

 

 
Figure 7: CFD predicted wall-normal velocity, axial 
velocity and pressure signals near the wall (solid line) and 
near pipe centre (dashed line) for n=0.5 (top three graphs) 
and n=0.75 (bottom three graphs). (All units are non-
dimensionalised.)  

Figure 8 shows that for the case of n=0.5 (top panel), a 
large region of turbulent activity exists toward the left of 
the domain whereas the region near the centre of the flow 
is fairly devoid of unsteady structure.   

 
Figure 8: Predicted axial velocity close to the pipe wall 
for power law fluids, Reg=5500, n=0.5 (top), 0.69, 0.75 
and Newtonian fluid (Re=5500) (bottom). (The pipe 
surface has been rolled flat and the flow is from left to 
right.  White represents high velocity and black low.)  
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re 9: Instantaneous contours of axial velocity, in-plane velocity vectors, and viscosity for power law fluids, 
5500 and n=0.5 (left), 0.69, 0.75 and Newtonian fluid (Re=5500) (right). (For axial velocity, white contours are

 and black low.  For viscosity, white is low viscosity and black high.)
pe of flow shows typical transitional behaviour and 
ilar to the turbulent puffs observed in Newtonian 
in the transitional regime, although it occurs here at 
eralised Reynolds number that is quite high 
red to Newtonian transition.  In the simulation, the 
region of the flow continually moves along the pipe 
pears to preferentially occur on one side so that the 
e velocity profile over approximately ten domain 
 times (100 pipe diameters) shows some asymmetry. 
uggests that permanent asymmetry might be able to 
tained in the transitional regime for power law 
if a preferential mechanism exists for triggering the 
for example an upstream pipe bend), and may may 
 the asymmetry observed in experiments in [9]. 

se of the short domain, this possibility is purely 
ative although it warrants a more detailed study.  
=0.5 is being re-run with a domain length that is 
as long, although results are not currently available 
omparison. As the flow index increases, the 
ution of wall streaks becomes more homogeneous in 
 8, although there are still local structures for both 
 and n=0.75.  In each case, the wall streaks are 

long, further evidence that the flow is not fully 
ped for any of the three power law fluids at this 
owever the time series for n=0.69 and 0.75 do not 
large scale time coherence, indicating that these 
are of a fundamentally different character to the 
f n=0.5 which can be categorised as transitional.  
e case of n=1 (a Newtonian fluid) the structure is 
andom and the streaks shorter, indicative of more 

 
 
 
developed turbulence.  These results taken together are 
evidence that transition is delayed for more shear thinning 
fluids using the assumption that Reg is a valid basis for 
comparing them. 
Instantaneous snapshots of cross-sectional velocities, 
contours of axial velocity and contours of viscosity for 
Reg=5500 are shown in Figure 9. These cross sections are 
taken at an axial location that is just upstream (to the left) 
of the intense turbulent structure for n=0.5 in Figure 8 and 
highlight the most unsteady regions in the pipe.  The 
contour scales are identical for each flow index and the 
magnitude of the cross sectional velocity scales are also 
equal.  They show the degree of unsteadiness in the flow 
as well as the degree to which the major unsteady 
structures are confined to regions close to the pipe wall for 
the power law fluids, whereas there is a significantly 
increased degree of structure in the core region of the 
Newtonian fluid. 
Clearly seen are the lower viscosities (indicative of higher 
shear rates) in the wall regions in the power law plots of 
viscosity.  A plot of the mean viscosity as a function of 
radius for the three power law simulations is given in 
Figure 10. Of note is the range of viscosities, with a 
relatively small difference in mean viscosity between wall 
and centreline for n=0.75 (a factor of approximately 2), 
whereas a factor of approximately 5.4 applies for n=0.5. 
This difference is also seen in the instantaneous viscosity 
plots in Figure 9 where the higher viscosities (seen as 
dark contours) are quite prominent.   
This behaviour is expected because for more shear 
thinning fluids, with the same value of mean wall-
viscosity, higher core viscosities are inevitable.  The mean 
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viscosity averaged over the domain for the three power 
law cases is 1.49, 1.86 and 3.35 times the wall viscosity 
for n=0.75, 0.69 and 0.5 respectively. 
 

 
Figure 10: Mean normalised viscosity as a function of 
radius for power law fluids at Reg=5500. 

Results for the Herschel–Bulkley Fluid 
Results for the Herschel–Bulkley fluid are preliminary and 
two simulations have been run for one fluid rheology 
(0.05 wt% Ultrez 10 solution) with a yield stress of 
τY=1.35 Pa, a consistency K=1.203 and a flow index 
n=0.52. The experimental measurements indicated that a 
pressure gradient of 1.42 kPa/m resulted in a superficial 
velocity of 3.36 m/s in the line (I.D. of 105 mm) and a 
generalised Reynolds number of Reg=7027. 
When the same values as the experiment are used in the 
simulation, the superficial velocity predicted by the 
simulation is 11% lower than the measured value and the 
predicted Reg is 5 662 (the discrepancy is larger than 11% 
because the mean wall viscosity is also different).  A 
second simulation was run at a higher pressure gradient 
(1.75 kPa/m) and resulted in a superficial velocity of 
3.5 m/s andReg=8130.  The two simulations bracketed the 
Reg of the experimental measurements.  The discrepancy 
between CFD and measurement is significantly less than 
that observed for the power law experiments reported 
in [14], [15] and suggests that the Herschel–Bulkley 
model is a reasonable approximation for the experimental 
fluid. 
The computationally predicted profiles (in conventional 
wall units based on the mean wall viscosity) are presented 
in Figure 11. This shows good general agreement in terms 
of shape and magnitude when compared to the 
experimentally measured profile.  All profiles lie slightly 
above the low Reynolds number Newtonian profile, 
indicating that the flow is less well developed than that of 
a Newtonian fluid at similar Reynolds numbers or that 
there is a fundamentally different turbulent structure in the 
case of a yield stress fluid.  Note that the CFD profiles do 
not bracket the experimental profile, despite bracketting 
the Reg of the experiment.  Both lie slightly above, 
suggesting that there may also be a difference between the 
flow of a ‘pure’ Herschel–Bulkley fluid (as approximated 
in the simulations) and the flow of the model fluid used in 
the experiments.  This is not surprising given that the 
rheology is a curve fit obtained over a limited range of 
shear rates. Nevertheless, these results are encouraging 
and suggest that DNS is able to provide reliable 
predictions of the turbulent flow of shear thinning fluids 
provided an appropriate choice of rheological model is 
made. 

 
Figure 11: Mean velocity profile in conventional 
(Newtonian) wall units for a Herschel–Bulkley fluid:  
comparison of CFD results at Reg=5800 (∆), 
Reg=8130 (■) and experimental results at Reg=7027 (×). 
 
The CFD results predict that this flow is also transitional, 
with slug/puff type behaviour predicted for both Reynolds 
numbers (not shown). Turbulence intensities and 
Reynolds stresses follow the same trend as the results for 
the power law fluids. 
The structures and general appearance of the near wall 
structures are similar to power law fluids and suggest that 
a small yield stress does not modify the flow significantly.  
Additional simulations for different flow indices and for a 
wider range of yield stresses need to be undertaken to 
more fully explore this issue. 

SUMMARY OF RESULTS 
The applicability of Clapp’s scaling and log law for power 
law fluids is backed up by the CFD results for power law 
fluids.  The parameters used by Clapp (A=3.8, B=2.78) 
possibly need to be modified to collapse to the generally 
accepted values for Newtonian turbulence.  The results 
also suggest that as the power law index (n) is decreased, 
and the deviation from Newtonian rheology increases, the 
value of Reg at which transition occurs will also increase.  
The friction factors predicted by the simulations are 10-
15% higher than the Dodge and Metzner [7] correlations 
obtained from experiment. However, it is not clear if 
elastic or elongational effects are influencing the results 
of [7], and thus if the reduction in friction factor there is 
due purely to shear thinnning behaviour or other effects.  
The simulation results here conclusively show that a 
reduction in the friction factor results for shear thinning, 
power law fluids, and thus suggests that at least some of 
the reduction observed in [7] is due to this alone. 
It appears that pipe flow of power law fluids make the 
transition to turbulence via intermittency and turbulent 
events like the slugs and puffs observed in Newtonian 
flow.  Although the results are not conclusive because of 
the insufficient domain length of the simulations, they are 
believed to be qualitatively correct.  These unsteady 
structures may potentially be able to resuspend small 
settling particles in particle-laden flows, allowing the 
transitional regime to be possible for suspension transport 
in power-law carrier fluids. 
Simulations of a Herschel–Bulkley fluid were in 
reasonable agreement between with Ultrez 10 
experimental results.  They showed similar behaviour to 
the power law results, with log-law profiles that lay above 
the Newtonian profile (suggesting undeveloped flow) and 
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velocity fluctuations with similar behaviour.  Like the 
power law results, the flow had some suggestion of being 
transitional, even at a generalised Reynolds number of 
8130. 
Difficulties encountered in experimentation as a result of 
using polymer solutions to approximate idealised 
rheologies can lead to problems of interpretation and 
understanding.  The application of DNS to flows of non-
Newtonian fluids with certainty of the rheology being 
studied has the potential to enable the effect of different 
rheological parameters to be correctly quantified and 
understood.  This is possibly the greatest contribution that 
DNS can bring to the study of flows of non-Newtonian 
fluids.  However, given the difficulty in approximating a 
measured rheology over a very wide range of shear rates 
using any of the simple generalised Newtonian rheology 
models, it appears likely that obtaining accurate results of 
turbulent flow of real non-Newtonian fluids using DNS 
will remain a difficult task. 
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