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ABSTRACT 
 
Gas jets impinging onto a gas-liquid interface of a liquid 
pool are studied using Computational Fluid Dynamics 
modelling, which aims to obtain a better understanding of 
the behaviour of the gas jets used metallurgical 
engineering industry. The gas and liquid flows are 
modelled using the Volume of Fluid technique. The 
governing equations are formulated using the density and 
viscosity of the “gas-liquid mixture”, which are described 
in terms of the phase volume fraction. Reynolds averaging 
is applied to yield a set of Reynolds-averaged conservation 
equations for the mass and momentum, and the k-ε 
turbulence model. The deformation of the gas-liquid 
interface is modelled by the pressure jump across the 
interface via the Laplace equation. The governing 
equations in the axisymmetric cylindrical coordinates are 
solved using the commercial CFD code, FLUENT. The 
computed results are compared with experimental and 
theoretical data reported in the literature. The CFD 
modelling allows the simultaneous evaluation of the gas 
flow field, the free liquid surface and the bulk liquid flow, 
and provides useful insight to the highly complex, and 
industrially significant flows in the jetting system. 
 
NOMENCLATURE 
 
C vertical height from nozzle tip to 

undisturbed pool free surface (m) 
DC  vessel diameter  (m) 
DN nozzle diameter  (m) 
dC diameter of cavity (see Figure 1)  (m) 
g  acceleration due to gravity  (m/s2) 
H  vertical height from vessel bottom 

to undisturbed pool free surface  (m) 
hC depth of cavity measured from free 

surface (see Figure 1) (m) 
hT height of dimple measured from free 

surface (see Figure 1) (m) 
I  turbulence intensity  (-) 
K coefficient used in Eq. (14) 
k kinetic energy of turbulence  (m2/s2) 
l turbulence length scale  (m) 
M jet momentum ( )2 2 / 4= πρG N inletD U  (kgm/s2) 

n
r
r

 surface normal at the interface  (-) 
wn  unit vector normal to the wall  (-) 

p  fluid pressure  (kg/ms2) 
Re  flow Reynolds number based on the  

nozzle aperture and inlet velocity  (-) 
Sφ source term given in Table 1 
 t time  (s) 
r
wt  unit vector tangential to the wall (-) 

u velocity (m/s) 
u axial velocity component  (m/s) 
UCL centreline axial velocity  (m/s) 

Uinlet jet inlet velocity  (m/s) 
V radial velocity component  (m/s) 
z axial coordinate  (m) 
α parameter used in Eq. (15) 
ε energy dissipation rate  (m2/s3) 
φ “scalar” variable (-) 
ϕ liquid phase volume fraction  (-) 
ϕg  gas phase volume fraction (-) 
Γφ diffusion coefficient given in Table 1  
µ  viscosity  (kg/ms) 
µeff  effective viscosity  (kg/ms) 
µt turbulent viscosity  (kg/ms) 
θ  contact angle (radians) 
ρ  density (kg/m3) 
σ  interfacial tension (kgm2/s2) 
 
INTRODUCTION 
 
Gas jets impinging onto a gas-liquid interface of a liquid 
pool are commonly encountered in the metallurgical 
industry as a method of agitating a molten liquid phase 
(e.g. oxygen steel making, vacuum degassing, argon-
agitated ladles and top-blown copper converting), and as a 
method of contacting gas and liquid phases. The gas jet 
causes a depression to be formed on the liquid surface, and 
following impingement the gas travels radially outwards 
from the impact point along the liquid surface thereby 
dragging the liquid into motion and setting up a 
recirculation flow within the bulk liquid (see Figure 1). 
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Figure 1: Gas Jet Impinging onto a Liquid Pool 
 
Three different modes of the free surface deformation due 
to the impinging gas jet have been identified: dimpling, 
splashing and penetrating, dependent on the jet momentum 
and the liquid properties (Molloy, 1970). These modes are 
illustrated in Figure 2. Splashing from the depression, the 
propagation of surface ripples, oscillation of the depression 
base and sides, and gas entrainment into the liquid, have 
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also been observed under certain conditions (Ito et al., 
1981).  All of these phenomena are of great importance in 
determining the operating characteristics of an impinging 
gas jet unit. 
 

 
 (a) dimpling (b) splashing (c) penetrating 

 
Figure 2: Modes of Surface Deformation by the Impinging 
Gas Jet (Molloy, 1970) 
 
The aim of this study is to model a gas jet impinging 
perpendicularly onto a liquid bath, using CFD, which 
enables the depression shape, gas and liquid flow 
characteristics to be determined simultaneously. In 
particular, the formation of depressions in confined liquid 
baths is reported and compared to the available 
experimental and theoretical results from the literature. 
 
COMPUTATIONAL MODEL 
 
The jetting system is governed by the gas and liquid flows 
and can be modelled using the volume of fluid (VOF) 
technique (Hirt and Nichols, 1981), which is a fixed grid 
technique designed for two or more immiscible fluids 
where the position of the interface is of interest. 
 
Mass Conservation, Volume Fraction and Physical 
Property Equations 
 
In the VOF model the volume fraction of each of the fluids 
in each computational cell is tracked throughout the 
computational domain. In addition to the velocity and 
pressure, the volume fraction is also a variable of the flow 
field in the VOF technique, and hence is contained in both 
the mass and momentum equations. For example, the 
continuity equation for the liquid phase with a volume 
fraction, ϕ, has the following form: 

 div 0
t

∂
+ ⋅ =

∂
ϕ ϕu  (1) 

where t and u are velocity and time, respectively. A similar 
expression is used for the gas phase, where the gas volume 
fraction, ϕg, is given by: 
 1g = −ϕ ϕ  (2) 
Clearly, in each control volume the volume fractions of all 
phases must sum to unity. Therefore, if the control volume 
is full of liquid then ϕ = 1. Similarly, if there is no liquid in 
the volume, i.e. it is full of gas, then ϕ = 0. The volume 
fraction for each of the phases is used to determine 
volume-averaged values for variables and fluid physical 
properties. For example, the density ρ and viscosity µ of 
each control volume within the domain are determined by 
the composite expressions as follows: 
 ( )1g l= − +ρ ρ ϕ ρ ϕ  (3) 
 ( )1g l= − +µ µ ϕ µ ϕ  (4) 
 
Momentum Conservation Equation 
 
The momentum equation for the computational domain in 
its generalised form can be written as: 

 ( ) ( ) ( )

( )

div grad

                                    div grad

p
t

ρ ρ

µ ρ

∂
+ = − +

∂
  + 

u u

u g
 (5) 

where g is the acceleration due to gravity, p is the fluid 
pressure, and ρ and µ are density and viscosity, based on  
Eqs. (3) and (4), respectively. 
 
Turbulent Flow Equations 
 
Since the liquid and the gas velocities exiting the nozzles 
are relatively high, it is appropriate to simulate the flow in 
the jetting system using a turbulent flow model. To do this, 
the flow variables, such as φ, are decomposed into mean, 
φ , and fluctuating, φ′ , components in the standard way, 

such that: φφφ += ′ . Inserting the decomposed variables 
into instantaneous equations given in the previous 
equations, and applying Reynolds averaging, yield a set of 
Reynolds-averaged conservation equations for the mass 
and momentum, as well as the kinetic energy, k, of 
turbulence, and its dissipation rate, ε. For later convenience 
and dropping the overbar on the mean variables the 
Reynolds-averaged equation can be written in the 
following generic transport equation form: 

 ( ) ( )( ) div div grad S
t

+ = +φ φ
∂ ρφ ρ φ Γ φ

∂
u  (6) 

or in axisymmetric cylindrical coordinates this can be 
written as 

 

( ) ( ) ( )1

1                 

r U r V
t r z r

r r
r z z r r

 
+ + = 

  
    + +    

    
Sφ φ φ

∂ ρφ ∂ ρ φ ∂ ρ φ
∂ ∂ ∂

∂ ∂φ ∂ ∂φΓ Γ
∂ ∂ ∂ ∂

 (7) 

where the “scalar” variable φ, the diffusion coefficient Γφ 
and source term Sφ in the respective governing equation are 
given in Table 1. 
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ε–eq. 
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r r
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     + +        

∂ ∂ ∂
∂ ∂ ∂ε ε

µ ρ
∂
∂

 

2 /C kt =µ ρµ

eff t= +

ε  (= turbulent viscosity); 

µ µ µ

0.09C =µ 1C =

(= effective viscosity), and 

; ; ; ;  1.44 1.922C = 1.0k =σ 1.3=σε

Table 1: Diffusion Coefficients and Source Terms in the 
Generic Transport Eq. (7)  
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In the case of turbulence quantities, a single set of 
transport equations is solved, and the variables k and ε or 
the Reynolds stresses are shared by the phases throughout 
the field. In the governing equations in Table 1, the effect 
of turbulence is incorporated through the “Reynolds 
stresses”, which are related to the mean flow variables via 
the standard k-ε model of turbulence (Launder and 
Spalding, 1972). The k-ε model belongs to the class of the 
two-equation turbulence models and is widely used for 
practical engineering flow calculations. The model is semi-
empirical and is appropriate for high Reynolds number 
flows, such as those for the jetting system.  
 
COMPUTATIONAL MODEL PARAMETERS 
 
The computational modelling was carried out using the 
FLUENT CFD code based on the volume of fluid (VOF) 
technique, and applying the k–ε two-equation, with the 
standard wall function, to describe the turbulence. 
 
Geometry and Grid Arrangement 
 
The geometry and computational domain used to model 
the jetting system are shown in Figure 3(a). Only a 2D 
axisymmetric computational domain was considered, and 
meshed non-uniformly by the rectangular scheme (Figure 
3(b)). Strong grid clustering was used along the centreline 
of the gas jet direction. Grid contraction toward the free 
surface (described by line BE in Figure 3(b)) was required 
for capturing the gas and liquid flows, and the deformation 
of the gas-liquid interface. 
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 (a) (b) 
Figure 3: Computational Domain and Grid Arrangement 
for Axisymmetric Impinging Gas Jet. 
 
Boundary Conditions 
 
Five types of boundary conditions were used to describe 
the flow field within the computational domain: 
 
Gas Jet Inlet: The condition in the nozzle (boundary AG 
in Figure 3(b)) is important in predicting the centreline 
velocity and shear stress. The velocity profile at the nozzle 
exit is affected by the nozzle design such as the length-to-
diameter ratio and nozzle shape. In this paper, a uniform 
nozzle velocity profile was considered. The VELOCITY-
INLET boundary conditions imposed at the nozzle are 
described by 
 
  (8)  and  0inletU U V=

   (9) ( )21.5inlet inletk k U I= =

  (10) ( ) ( )3/ 4 3/ 2 /inlet inletC kµε ε= =

where the turbulence length scale, l, at the inlet is assumed 
to be the nozzle aperture. Turbulence intensity, I, at the 
inlet is estimated using the turbulent fluctuating to mean 
velocity at inlet by I = u’/Uinlet ≅ 0.16 (Re)-1/8, where Re is 
the flow Reynolds number based on the nozzle aperture 
and inlet velocity.  
 
Solid Boundaries (the wall surface): The wall boundary 
conditions CD, DE and EF (Figure 3(b)) were used at the 
solid wall of the liquid pool where the no-slip boundary 
conditions were imposed. For large (unconfined) pools, the 
deformation of the free surface is not significantly affected 
by the pool dimensions, the precise location of point F is 
not important. In this case, the length of section EF was 
chosen as being two-thirds of AB. In the simulations with 
confined pools, point F was located at the top right hand 
corner of the computational domain. 
 
For the evaluation of the wall effect on turbulence, the 
wall-function and near-wall-modelling (Launder and 
Spalding, 1974) approaches have been used to model the 
wall-bounded turbulent flows. In the former, semi-
empirical formulas are used to bridge the viscosity-
affected region (viscous sublayer and buffer layer) between 
the wall and the fully turbulent region. The mesh is not 
resolved. In the second approach, the turbulence models 
are modified to enable the viscosity-affected region to be 
resolved with a mesh all the way to the wall. No wall 
function is used. However, a large number of cells are 
required in the near-wall-modelling approach.  
 
Both approaches were initially tested in our transient 
simulations which showed no significant difference in the 
flow patterns. Therefore, the wall-function approach which 
is computationally economical, robust was used in our 
calculation. In this model the turbulent kinetic energy 
varies in a parabolic shape within the viscous sublayer, 
which corresponds to the linear variation of a fluctuating 
velocity with distance from the wall, and then linearly over 
the remainder of the cell. Unlike the turbulent kinetic 
energy, the shear stress is zero within the viscous sublayer, 
but undergoes an abrupt increase at the boundary, before 
varying linearly toward the outer region of the cell. The 
treatment of evaluating mean generation and destruction 
rates is also incorporated in the ε-equation. 
 
Gas Exit Boundary: The boundary FG in Figure 3(b) is 
the gas exit boundary. The OUTFLOW (fully developed) 
boundary conditions were first used at this boundary. 
Under the OUTFLOW boundary conditions the velocity 
gradients across the boundary are set to zero. However, it 
was found that reversed flows occurred at these 
boundaries, indicating that the fluid motion was not fully 
developed. Consequently, the PRESSURE outlet boundary 
condition was used. The PRESSURE outlet conditions 
require a numerical value for the relative static (gauge) 
pressure at the outlet boundary. This value was set to zero, 
i.e. assumed to be at atmospheric pressure. All other 
conditions associated with velocities at the PRESSURE 
outlet boundaries were extrapolated from the interior of the 
computational domain. 
 
Axis of Symmetry: The axis boundary was used along 
centrelines AB and BC. The radial velocity component V 
and the gradients of the other dependent variables were 
equal to zero. 
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Gas-Liquid Interface: The deformation of the gas-liquid 
interface (described by line EB in Figure 3(b)) was 
coupled by the pressure jump across the interface via the 
Laplace equation, i.e. 
 ( ) div n/ nl gp p σ− =

r r
  (11) 

where pl and pg are the pressures in the two fluids on either 
side of the interface, and σ is the interfacial tension. The 
bracketed term on the right hand side describes the local 
interface curvature, which is defined in terms of the 
divergence of the unit normal n/ n

r r
, where n

r
 is the 

surface normal at the interface and is related to the volume 
fraction of the liquid phase by: 

r
 ( )n grad ϕ=  (12) 
At the wall, the surface normal at the live cell next to the 
wall is defined in terms of the contact angle, θ, between 
the interface and the wall by: 
 w wn n cos t sinθ θ= +

r r

r r

r
 (13) 

where  and  are the unit vectors normal and 
tangential to the wall, respectively.  The combination of 
the contact angle with the normally-calculated surface 
normal one cell away from the wall determines the local 
curvature of the surface. All the results reported in this 
paper were obtained with the contact angle of 90 degrees. 

wn wt

 
Modelling Parameters 
 
Numerical values for the major parameters used in a 
number of the numerical computational simulations are 
given in Table 2. 
 

Run DN 
(mm) 

DC 
(mm) 

C 
(mm) 

H 
(mm) 

Uinlet 
(m/s) 

1 6 290 154 111 56.2 
2 11 300 220 1500 100 
3 11 200 220 1000 100 
4 11 100 220 500 100 

 
Table 2: Summary of the Simulation Conditions 
 
Parameters of Run 1 were selected according to a similar 
experimental system (Zhang et al., 1985). Runs 2-4 were 
used to investigate the influence of the diameter of the 
confined liquid pools on the deformation of the gas-liquid 
interface. All the numerical simulations were carried out 
for air-water systems at ambient pressure and temperature. 
 
Numerical Procedure and Computational Methodology 
 
The governing differential transport equations were 
converted to algebraic equations before being solved 
numerically. The finite volume scheme (Fletcher, 1998), 
which involves integrating the governing equations about 
each control volume, yielding discrete equations that 
conserve each quantity on a control-volume basis, was 
applied to Eq. (7). The governing equations were 
discretised using the second-order upwind scheme to 
achieve the best accuracy. The interpolation of the pressure 
values at the cell faces, using the momentum equation, was 
carried out using the PRESTO (PREssure STaggering 
Option) scheme, which improved the convergence rate and 
the stability of the computation. This interpolation scheme 
uses the discrete continuity balance for a “staggered” 
control volume about the face to compute the “staggered” 
(face) pressure and is similar in spirit to the staggered-grid 

schemes used with structured meshes (Patankar, 1980). 
Pressure-velocity coupling was achieved by using the 
PISO (Pressure-Implicit with Splitting of Operators) 
algorithm (Versteeg and Malalasekera, 1995) with 
neighbour correction, which is highly recommended for 
both steady state and transient calculations on meshes with 
a degree of distortion. The governing equations were 
solved sequentially using the commercial FLUENT code. 
 
RESULTS AND DISCUSSION 
 
In general, the transient solutions reach steady state 
relatively fast, within 10 seconds. In particular, the 
deformed shape of the gas-liquid is stable within the first 
second. The circulation of the liquid in the pool usually 
takes some time to reach the steady state condition. In the 
following, steady state solutions are reported.    
 

  
 (a) (b) 
Figure 4: Stream Function (a) and Velocity (b) for Run 1  
 
Figure 4(a) shows the stream function contours for Run 1. 
The computed field is similar to the experimental 
streamline pattern available in the literature (Zhang et al., 
1985) when the system is agitated by an impinging jet and 
by a submerged gas stream. Since the submerged gas 
stream is not considered here, the centre of the circulating 
flow in the liquid phase is close to the centreline. The 
directional1 field for the velocity of both the gas and liquid 
flows is shown in Figure 4(b). Again, the computed 
velocity field qualitatively agrees with the experimental 
measurements available in the literature (Zhang et al., 
1985) in that liquid in the pool moves towards the 
centreline and upwards to the gas-liquid interface, leading 
to the mixing in the pool. 

 
Figure 5: Gas-Liquid Interface Profile for Run 1 
                                                 
1   Magnitude of the arrows is fixed and show direction of the 

flow only. 
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The shape of the gas-liquid interface for Run 1 is shown in 
Figure 5, and corresponds to the dimpling mode illustrated 
in Figure 1. The profile is also consistent with the gas flow 
velocity field shown in Figure 4(b). It is further evident 
from the figure that part of the gas-liquid interface close to 
the centreline is not smooth, probably due to strong 
turbulence of the gas phase flow in this region. 
 

  
 (a) (b) 
Figure 6: Turbulent Energy (a) and Turbulent Energy 
Dissipation Rate (b) for Run 1  
 
The distribution of the turbulent energy and its dissipation 
rate are shown in Figures 6(a) and 6(b), respectively. As 
expected, high values of both these quantities can be seen 
in the region close to the gas-liquid interface where 
intensive mixing and mass transfer can occur. 
 
Quantitative examination of the computed gas-liquid 
interface profile given in Figure 5 found that the depth, hC, 
of the cavity and height, hT, of the dimple (all measured 
from the free surface – see Figure 1) were 12 and 2 mm, 
respectively. The computed depth compared favourably 
with the theoretical prediction2 of 13 mm, based on 
stagnation pressure analysis for an unconfined jet (Banks 
and Chandrasekhara, 1963; Banks and Chandrasekhara, 
1965): 

 
2 2

3
21

  + =        

C C

L

h h K M
C C gCπ ρ

   , (14) 

where M is the jet momentum and K is a coefficient which 
is a function of the jet Reynolds number. A value of 7.6 
was chosen for K (Wakelin, 1966). 
 
The computed width, dC, of the cavity (obtained from 
Figure 5) of 61 mm also compares favourably with a 
predicted value 59 mm, which is based on the mass of 
displaced liquid and assuming a 4th order polynomial 
cavity profile. The resultant expression is reported by 
Forrester and Evans (1996) as:  

 ( ) ( )
( ) 2

12 1+
= +

+
C C T

L C T C

Md h h
g h h h

α
π ρ

 , (15) 

where α is a parameter with a value of 0 for shallow 
cavities, while is equal to 1 for deeper cavities. For the 
case of Run 1 and α=0 was assumed. 

                                                 
2  The analysis does not account for the formation of the dimple 

at the edge of the cavity, i.e. hT=0. 
 

The simulations of Runs 2-4 aimed to investigate the effect 
of the nozzle-to-pool diameter ratio on the deformation of 
the gas-liquid interface. The nozzle, jet velocity, and 
nozzle clearance were kept constant while the pool 
diameter was varied from 300 to 100 mm in order to 
provide the full range of unconfined, through to confined 
deformation of the gas-liquid interface. The liquid depth 
was kept constant at 5 times the pool diameter in order that 
the deformation was not affected by the base of the pool. 
The nozzle-interface clearance was maintained at 20 times 
the nozzle diameter so that a “free” turbulent jet could 
interact with the free surface. The jet velocity of 100 m/s 
produced a jet momentum of about 1.1 N. 

Run 2                  Run 3           Run 4

Run 1

Run 2                  Run 3           Run 4

Run 1Run 1

 
 
Figure 7: Gas-Liquid Interface Profiles for Runs 1-4 
 
The simulated profiles are presented in Figure 7. It can be 
seen that the cavity shape for Run 2 is similar to that of the 
unconfined jet case in Run 1, where the outer boundary of 
the cavity exhibits a raised dimple and beyond this region 
the free surface is flat (undisturbed). The cavity for Run 3 
has similar profile to Run 2, except that there is flat free 
surface beyond the cavity boundary. Run 3 could be either 
just at the limit of the unconfined jet case or actually be 
confined. Run 4 is clearly a confined system, where the 
cavity diameter, dC, is equal to vessel diameter, DC; and 
the cavity depth is given by (Forrester and Evans, 1996): 

 ( )
( ) 2

24 3 1
7 3 3C

L C

Mh
gD

α
π ρ

  +
 =    −   

   . (16) 

The simulated and predicted cavity dimensions are 
summarised in Table 2. Also included are the assumed α 
and K values used to obtain the model predictions. A 
shallow cavity (α=0) was assumed for Run 1 only; for 
Runs 2-4, α was set to 1. Moreover, Runs 1-3 were 
assumed to be unconfined, with Run 4 being the only 
confined system. It can be seen from the results that the 
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cavity dimension obtained from the CFD simulations were 
reasonably consistent with the theoretical predictions, even 
including Run 3 where it was not clear if the system was 
confined or unconfined. This result suggests that the free 
surface can be modelled as an unconfined system up to the 
point where the cavity boundary actually reaches the vessel 
wall. For the confined jet case (Run 4) the CFD prediction 
for the cavity depth is much less than the theoretical value. 
The reason for this can be found by comparing the 
interface height relative to the undisturbed liquid height 
(ULH) in the vessel (shown as a horizontal line). For Run 
4, no part of the disturbed interface is above the UDL, and 
consequently some of the liquid must have been removed 
from the vessel as a result of splashing. The use of the 
Pressure outlet for the gas exits GF boundary conditions in 
the VOF method allows the removal of water (splashing) 
from the vessel when it reaches the boundary. 
 

 CFD Theory 
Run hC  hT  dC K α  hC  hT dC 

1 12 2 61 7.6 0 14a 0 56b

2 64 14 146 8.8 1 66a 0 123b

3 64 12 119 8.8 1 66a 0 122b

4 27  100 8.8 1 159c 80d 100e

Unconfined: a  Eq. (14): b Eq. (15). 
Confined: c Eq. (14): d hT=0.5hC: e dC=D. 
 
Table 3: CFD and Theoretical Cavity Dimensions 
 
From the information given in Table 3 it can be seen that a 
value of K=7.6 was assumed for Run 1, while a value of 
8.8 was chosen for Runs 2-4. The numerical value of K is a 
function of the jet Reynolds number (Wakelin, 1966), and 
can be related to the decay in the centreline gas jet 
velocity, UCL(z), as a function of distance, z, from the 
nozzle outlet (see Fig. 1) by the expression: 

 ( )
=

+
CL

inlet N

U z K
U z D K

  , (17) 

Equation (17) is based on the original theoretical 
modelling of (Banks and Chandrasekhara, 1963), but has 
been modified to account for the apparent absence of a 
potential core immediately downstream of the nozzle exit.  
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Figure 8: Centreline Gas Jet Velocity for Run 2 

[● CFD results,  Eq. (17) with K=8.8] 
 
A comparison between CFD modelling (closed circles) and 
prediction from Eq. (17), for K=8.8, is shown in Figure 8. 
It can be seen that the hyperbolic dependence of the 
centreline velocity agrees with the CFD modelling up to 
the point at which the jet enters the cavity region. 

CONCLUSIONS 

Computational Fluid Dynamics modelling was used to 
study gas jets impinging onto a gas-liquid interface of a 
liquid pool. The gas and liquid flows were modelled using 
the Volume of Fluid technique.  The phase volume fraction 
was used to describe the density and viscosity of the 
phases involved. The governing equations were formulated 
using Reynolds averaging for the mass and momentum. 
Turbulence was modelled using the k-ε turbulence model. 
The deformation of the gas-liquid interface is modelled 
using the Laplace equation for the pressure jump across the 
interface. The governing equations in the axisymmetric 
cylindrical coordinates are solved using the commercial 
CFD code, FLUENT. The computed results are compared 
with experimental and theoretical data reported in the 
literature. The CFD modelling allows the simultaneous 
evaluation of the gas flow field, the free liquid surface and 
the bulk liquid flow, and provides useful insight to the 
highly complex, and industrially significant flows in the 
jetting system. 
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