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ABSTRACT
A Volume-of-Fluid numerical method is used to predict

the dynamics of shear-thinning liquid drop formation

in air from a circular orifice. The validity of the

numerical calculation is confirmed for a Newtonian

liquid by comparison with experimental measurements.

For particular values of Weber number and Froude

number, predictions for a shear-thinning drop show an

expected more rapid pinch-off, but also a minimum in

the  limiting drop length as the zero-shear viscosity i s

varied. However the dominant effect on drop length is a

reduction due to shear-thinning at higher viscosities.

The evolution of predicted drop shape, drop thickness

and length, and the configuration at pinch-off are

discussed for various shear-thinning parameters.

NOMENCLATURE
a internal radius of the nozzle

C fractional volume function

Fr Froude number 
2

V ga
FS surface force

g gravitational acceleration

ĝ unit vector in the direction of gravity

h minimum neck thickness

L drop length below the nozzle

n shear-thinning parameter

Oh Ohnesorge number We Re
P pressure

Re Reynolds number ρ µ
1 10
Va

t time

t
d

time to pinch-off

U velocity

V mean inlet velocity

We Weber number ρ σ
1

2
V a

γ̇ dimensionless shear rate

η dimensionless Carreau viscosity µ µ
1 10

η∞ µ µ
1 10∞

λ shear-thinning parameter

µ viscosity

ρ density

σ surface tension

ττττ stress tensor

Subscripts

1 drop phase

2 air phase

0 zero shear rate

INTRODUCTION
The growth and detachment of drops from a nozzle is a

familiar occurrence (e.g. a dripping tap), which is also

important in many industrial applications (e.g. ink-jet

printing, biological assays). For drop formation from a

nozzle under the influence of gravity when the liquid

flow rate is low, the pendant drop grows slowly at first

with drop shape determined by a quasi-static balance

between gravity and interfacial tension. Once the drop

volume reaches a critical value, force equilibrium i s

lost leading to the rapid development of necking and

break-up (pinch-off) of the pendant drop. Eggers (1997)

gives a detailed review of recent fluid dynamic research

on interfacial break-up phenomena for dripping

nozzles, jets, liquid bridges and other related problems.

Wilkes et al. (1999) and Cooper-White et al. (2002)

provide more recent summaries concerning pendant

drops.

Apart from work based on a one-dimensional

approximation (Eggers, 1997), numerical studies

include boundary integral solutions of potential flow

(Schulkes, 1994) and Stokes flow (Zhang and Stone,

1997), and finite element (Wilkes et al., 1999; Notz et

al., 2001; Chen et al., 2002; Ambravaneswaran et al.,

2002) and volume-of-fluid (Gueyffier et al., 1999;

Zhang, 1999a,b) solutions of the full Navier-Stokes

equations.

In many practical circumstances (e.g. biological fluids),

the drop fluid can be non-Newtonian.  The evolution of

a pendant drop of visco-elastic fluid has been studied

experimentally by Amarouchene et al. (2001) and more

comprehensively by Cooper-White et al. (2002).

Yildirim and Basaran (2001) used a finite element

numerical method to examine the deformation and

break-up of Newtonian and shear-thinning liquid

bridges contained between two disks. Very recently, the

authors (Davidson et al., 2003) demonstrated the use of

a volume-of-fluid (VOF) numerical method to predict

the growth and pinch-off of a pendant drop of shear-

thinning liquid. Apart from this, there appears to be no

published numerical study of the evolution of a

pendant drop of non-Newtonian liquid. The aim of this

paper is to present and discuss additional results from a

continuation of the work of Davidson et al. (2003).

MODEL FORMULATON
Consider axi-symmetric evolution of a pendant drop

growing downwards in air from a nozzle of internal

diameter 2a and external diameter 4a as shown in

Figure 1. The liquid is assumed to wet the nozzle wall
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so that the liquid-air interface is attached at the outer

nozzle diameter.

The flow domain is taken to be a cylindrical region

about the axis of symmetry with radius 4a (i.e. twice the

outer radius of the nozzle) below the nozzle and radius

a within the nozzle. The length of the flow domain i s

chosen to be sufficient to completely contain the drop

fluid for the duration of the calculation. The drop and

the surrounding air are considered to be a single fluid

with variable properties. This fluid takes the properties

of the liquid within the drop and those of air within the

surroundings. Here the ratio of the air viscosity to the

liquid viscosity at zero shear ( µ
10

) is taken to be 0.003.

The corresponding density ratio is 0.001.

4a

2a

(i)

(ii)

2a

Figure 1: Schematic showing (i) the initial drop shape

and (ii) the drop shape at a later time. The shaded parts

indicate the annular nozzle wall.

The equations of motion, with velocity, length and time

scaled according to V , a and a V , respectively, are

∂
∂
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The Carreau model of shear-thinning is used for the

drop fluid where the dimensionless Carreau viscosity i s

given by
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( ˙ )
( )n

(5)

The shear rate γ̇  is the second invariant of the rate of

strain tensor (Bird et al., 1987).

A stable equilibrium drop shape was used as an initial

condition. This was determined in a pre-calculation

with zero inflow at the nozzle, beginning with a

specified drop volume below the nozzle (in

dimensionless terms we choose 40 3π , corresponding

to a cylinder of radius 2 and height 2, capped at its base

by a hemisphere of radius 2).

A parabolic velocity profile was chosen at the inflow to

the nozzle. A linear profile, as set by Schulkes (1994)

and Gueyffier et al. (1999), was also tried, yielding

almost identical results. The velocity profile at inflow

is also set at the bottom of the computational domain

(with zero velocity when r > a) to conserve the total

volume of fluid therein. Zero normal gradients in C are

set at the domain boundaries except at the inlet to the

nozzle where C = 1. Free slip velocity conditions are

taken at radial boundary of the domain below the

nozzle. The usual no-slip condition applies at the

nozzle wall.

NUMERICAL CONSIDERATIONS
The VOF algorithm of Rudman (1998) was adapted to

solve Equations (1-3) for shear thinning fluids. The

diffusion time step limitation in the explicit Rudman

algorithm was eliminated using the semi-implicit time

stepping procedure of Li and Renardy (2000) to

facilitate the calculation of very low Reynolds number

flows. Axi-symmetric flow calculations were performed

in cylindrical polar coordinates on the symmetric half

of the computational domain (radius 4a). A uniform

grid with 16 cells spanning a nozzle inner radius (a)

was chosen. Doubling the mesh density had a

negligible effect on the predicted drop evolution in test

cases.

RESULTS
Predicted drop shapes for a Newtonian drop are

compared with corresponding photographic images as

reported by Davidson et al. (2003) and are shown here

in Figure 2. In that case Re = 1.25, We = 0.000687 and

Fr = 0.00437. The results show that the overall detail of

the drop shape, including the neck and the satellite

drop formation, is closely predicted. See Davidson et al.

(2003) for further details. Results for shear-thinning

fluids are presented below for varying Ohnesorge

number Oh = We
1/2

/Re based on the zero shear

viscosity. The Ohnesorge number represents a ratio of

viscous to surface forces. For the Newtonian case in

Figure 2, Oh = 0.021.

The calculations in Davidson et al. (2003) were

performed without including the region inside the

nozzle (height 2a in Figure 1) in the computational

domain. Including the nozzle region proved to have a

negligible effect for large enough liquid viscosity (Oh

> 0.02 with We and Fr fixed at the values above), which

is true for the cases considered by Davidson et al.

(2003). However, it is important to include this region

for lower viscosity liquids as will now be explained. As

the neck thins, liquid flows out of it by exiting

downwards from the bottom and upwards from the top

of the neck (Wilkes et al., 1999). Decreasing the

viscosity reduces the normal viscous stresses resulting

in an increase in the pressure in the neck which, in turn,

increases the velocity of outflow from the neck. The

upwards flow out of the neck collides with the liquid

flowing down through the nozzle opening, creating a

stagnation point. The location of the stagnation point

depends on the velocity of the reverse upward flow
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 2: Predicted drop shapes (white outlines)

compared with corresponding photographic images

from an experiment for a Newtonian liquid. The

sequence (a-i) corresponds to —30, -20, -10, -5,  -1, 0, 1,

2, 3 milli-seconds, respectively, from the moment of

pinch-off.

(and hence on the liquid viscosity). For Newtonian

fluids, Wilkes et al. (1999) showed that this stagnation

point penetrates the region inside the nozzle if the

viscosity is low enough. In such cases a region inside

the nozzle must be included in the computation

domain.

Figure 3 shows the effect on minimum neck width (h) of

decreasing either the zero shear viscosity (decreasing

Oh) or the infinite shear viscosity (decreasing η∞ ),

while keeping the other fixed. Changes in η∞  represent

changes in the degree of shear-thinning. The overall

effect is a more rapid narrowing of the neck. However,

the neck width h is predicted to be insensitive to shear-

thinning when Oh = 0.2. The reason for this is not

known. The overall effect of varying Oh and η∞  i s

consistent with predictions of the effect of viscosity on

Newtonian pendant drops (Wilkes et al., 1999).
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Figure 3: Minimum neck thickness for Newtonian

( η∞ = 1 0. ) and shear-thinning liquids ( η∞ = 0 2 0 6. , . )

for different values of Oh when We = 0.000687 and Fr =

0.00437. Results for η∞ = 0 6.  are not shown for Oh <

0.02. Other shear-thinning parameters are λ = 1  and n =

0.2. The curves shift to the right with increasing η∞ for

each Oh value.
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Figure 4: Drop length below the nozzle for Newtonian

and shear-thinning liquids for the cases shown in

Figure 3. For each Oh value, the curves shift to the right

with increasing η∞ .

The dependence of drop length L prior to pinch-off on

Oh and η∞  is shown in Figure 4. In each case, L is seen

to grow slowly at first, followed by a very rapid

increase, as expected. This rapid increase occurs sooner

as either Oh or η∞  decreases, except when the viscosity

is very small (small Oh). The limiting length achieved

is predicted to have a minimum with respect to Oh. For

the largest Oh values, the limiting length increases with

Oh because the neck drains more slowly as viscosity

increases. However for Oh < 0.02, instead of continuing

to decrease, the limiting length increases as Oh

decreases (at least until Oh = 0.0002 at which further

reductions in viscosity have no effect). This occurs

because, although the more rapid thinning of the neck

as the viscosity (and hence Oh) decreases promotes a

shorter limiting length, the velocity of liquid expelled

from the neck increases sufficiently for the drop below

the neck to assume an ellipsoidal shape with its long

axis in the direction of flow; this tends to increase L.
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The net effect of these two opposing trends is to

increase L as Oh decreases from 0.02 to 0.0002. The

effect of changing η∞  follows the same trend as for

changing Oh.

At the smallest zero shear viscosity (Oh = 0.0002) in

Figures 3 and 4, both h and L are insensitive to shear-

thinning. This occurs because changes in a viscosity

which is already very small will have little effect. This

has been noted by Yildirim and Basaran (2001) in

relation to non-Newtonian liquid bridges. The

oscillations in h and L which are predicted to develop

initially as the zero shear viscosity is reduced

(decreasing Oh) occur because of the impulsive start to

the flow. The oscillations are damped out if the

viscosity is large enough. Such oscillations have been

found in low viscosity calculations of Newtonian drop

formation (Wilkes et al., 1999).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6

M
in

im
um

 n
ec

k 
th

ic
kn

es
s 

(h
/4

a)

0 .02

0.20

1.0

Oh

td - t

Figure 5: Minimum neck thickness, as a function of

time measured backwards from the time of from pinch-

off, for Newtonian ( η∞ = 1 0. ) and shear-thinning

liquids ( η∞ = 0 2 0 6. , . ). For each Oh value, the curves

shift to the right with increasing η∞ . Other parameters

are the same as for Figure 3.

Figure 5 shows the variation of h near pinch-off in more

detail as a function of time measured backwards from

the time of pinch-off ( t
d
). Here t

d
 is chosen to be the

time at which h a4 0 01= .  which is approximately

equal to the resolution of the grid. For Oh = 1, the

viscosity is greatest and so is the effect of shear

thinning ( η∞ ) on the h variation. As the infinite shear

viscosity decreases, the rate of variation in h increases.

For decreasing viscosity (reducing Oh), the effect of

shear thinning reduces until Oh = 0.02 whereupon the

time dependence of h, relative to the moment of pinch

off, falls on a common curve. This limiting, low

viscosity curve exhibits a ( )t t
d

− 2 3
 time dependence

which accords with the scaling law for potential flow.

However, the numerical resolution is too coarse to

predict the transition to a linear time dependence which

occurs when h becomes of order Oh
2 

 and the viscosity
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Figure 6: Predicted drop shapes and liquid velocity

vectors near the moment of pinch-off for Newtonian

( η∞ = 1 0. ) and shear-thinning liquids ( η∞ = 0 2 0 6. , . )

when (a) Oh = 0.2 and (b) Oh = 1.0. Other parameters are

the same as for Figure 3.

of the surrounding air becomes important (Lister and

Stone, 1998, Chen, Notz and Basaran, 2002).

Figure 6 shows the final drop shapes predicted at

pinch-off when Oh = 0.2 and 1.0. Both cases show a

reduction in final neck length due to shear-thinning,

consistent with Figure 4 for these Oh values. The effect

is greater for the higher the initial viscosity (Oh = 1.0)

because the subsequent change in viscosity with shear

rate is then greater for given η∞  < 1. The velocity

vectors for Oh = 0.2 show the outflow at the top and

bottom of the neck. The outflow at the top of the neck

(which opposes the downward flow from the nozzle) i s

seen to increase with shear-thinning (decreasing η∞ ).

This occurs for the same reason that the neck drains

more rapidly, as discussed by Wilkes et al. (1999) for

Newtonian drops.

An instability in the filament for Oh = 1.0 (Figure 6b) i s

evident by the bumps  along its length. This is similar

to the instability described for highly viscous jets

close to break-up (Eggers, 1997). Interestingly, the

neck is predicted to break first at the top for the

Newtonian case (highest overall viscosity), whereas in

all other cases considered here, the break-up occurs first

at the bottom. For the related problem of shear-thinning

liquid bridges, Yildirim et al. (2001) found that pinch-

off could occur from the top or the bottom of the neck,

depending on the stretching speed.
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Figure 7: Predicted liquid viscosity contours during

the approach to pinch-off for η∞ = 0 2.  and Oh = 0.2.

Other parameters are the same as for Figure 3.

The variation of liquid viscosity in a shear-thinning

drop at selected times during the approach to pinch-off

is shown in Figure 7 for η∞ = 0 2.  and Oh = 0.2.

Initially the liquid viscosity equals its value at zero

shear rate ( η = 1). As the drop begins to neck the

viscosity in the neck begins to fall in response to the

increased shear rate in that region. As the neck

continues to thin, the region of lower viscosity grows

to encompass almost the entire drop with the lowest

values ( η η= ∞) occurring within the neck and just

outside it where the outflows from the neck occur.

CONCLUSION
The evolution of a drop of shear-thinning liquid

forming at a nozzle, directed vertically downwards in

air, is predicted using a Volume-of-Fluid numerical

method. The  paper forms part of an on-going study.

The effect of shear-thinning is a more rapid reduction in

the thickness of neck analogous to the effect of

reducing the viscosity of a Newtonian drop. For the

values of Weber number and Froude number chosen, the

limiting length of the drop prior to pinch-off exhibits a

minimum as the zero-shear viscosity is varied.

Predictions for a high viscosity drop show instabilities

along the neck as it forms into a thin filament. The

increase in the limiting drop length with reducing shear

thinning at high viscosity is shown.
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