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ABSTRACT 
In this study we have examined blood flow in a model of 
the portal vein with and without obstructions to simulate 
conditions, which are common in liver diseases. We 
evaluated the impact of both conditions on the flow 
behaviour and found significant differences in the two 
models. Blockages, even when the flow conditions did not 
change, had an impact on the velocity magnitude, 
pressure, strain rate and shear stress in a model of portal 
vein hypertension due to liver diseases. 

NOMENCLATURE 
k consistency index 
u  velocity 
τ shear stress 
µ viscosity 

INTRODUCTION 
Portal hypertension is one of the major complications in 
patients with diseases of the liver, such as liver cirrhosis, 
veno-occlusive disease, idiopathic extrahepatic portal vein 
obstruction and pre-hepatic portal idiopathic pathology. 
Portal hypertension is a build up pressure in the portal 
vein, usually just before it enters the liver. Thus, there is a 
significant reduction of the blood flow to the liver, which 
causes diminished blood supply to the liver and reduction 
of normal liver function.  
 
In this study we have used CFD to examine blood flow in 
a model of portal vein hypertension. We have compared 
flow with idealized thrombosis and without thrombosis, 
with the expectation that blockages would affect blood 
flow.  

MODEL DESCRIPTION 
Flow model 
We have used a simple 3D geometry, shown in figures 1 
and 2, which has 4 branches with different flow rates. 
Table 1 shows the dimensions of the geometry used in this 
model. At inlet (bottom) the velocity is considered to be 
0.07 m/s and operating pressure is 3922.66 Pascal 
according to J-P.TASU (2002). The velocity magnitude, 
pressure, and dimensions of the geometry are an 
approximation from the majority of published values. This 
model geometry was constructed by using Gambit 2.0.4 
(FLUENT 6.0) with tetrahedral and hexahedral grids 
shown in figures 1 and 2. Figure 1 is the simple portal vein 

with no blockages and figure 2 has a few blockages: one 
in at the main vein and other two are in first main 
branches. The number of computational grid cells for 
figure 1 is 27,457 and 60,731 for figure 2. The simulations 
were carried out using a super computer at VPAC 
(Victorian Partnership of Advanced Computing), which 
takes up to 60 minutes to converge using Fluent 6.0. The 
flow properties of blood used in this study are given in 
table-2 (Syoten Oka, 1980). The convergence criterion of 
reduction of residuals by five orders of magnitude for 
continuity and three orders of magnitude for other 
transport equations was used.  

 
Figure 1: Portal vein with 4 branches (27,457 grids). 
 

 
Figure 2: Partially blocked Portal vein with 4 branches 
(60,731 grids). 
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Table 1: Model dimensions 
Inlet diameter  10 mm 
First branching diameter 8.5 mm 
Outlet diameter 6.375 mm 
Total hight of the  91 mm 
 
Table 2: Non-Newtonian power law parameters (see 
equation 8): 
Power law index (n) 0.4851 
Consistency index k (kg-s^n-2/m) 0.2073 
Reference temperature (0K) 310 
Minimum viscosity limit ηmax (kg/m-s) 0.00125 
Maximum viscosity limit ηmin (kg/m-s) 0.003 
 
This paper describes the non-Newtonian simulations only. 
The simulation for Newtonian flow, not shown in this 
paper, shows minor changes in the results around the 
obstacles. 

MATHEMATICAL MODEL 
Continuity and Momentum Equations 
For all flows, FLUENT solves conservation equations for 
mass and momentum. For flows involving heat transfer or 
compressibility, an additional equation for energy 
conservation is solved. For flows involving species mixing 
or reactions, species conservation equations are solved or, 
if the non-premixed combustion model is used, 
conservation equations for the mixture fraction and its 
variance are solved. Additional transport equations are 
also solved when the flow is turbulent. In this paper, the 
conservation equations for laminar flow (in an inertial, 
non-accelerating, reference frame) are presented 
 
The Mass Conservation Equation 
The equation for conservation of mass, or continuity 
equation, can be written as follows: 
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Equation (1) is the general form of the mass conservation 
equation and is valid for incompressible as well as 
compressible flows. The source Sm is the mass added to 
the continuous phase from the dispersed second phase 
(e.g., due to vaporization of liquid droplets) and any user-
defined sources. In this case it is 0. 
 
Momentum Conservation Equations 
Conservation of momentum in an inertial (non-
accelerating) reference frame is described by 
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where p is the static pressure, τ  is the stress tensor 

(described below), and  and  are the gravitational 
body force and external body forces respectively.  
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The stress tensor τ  is given by 
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where µ is the molecular viscosity, I is the unit tensor, and 
the second term on the right hand side is the effect of 
volume dilation.  

Viscosity for Non-Newtonian Fluids 
For incompressible Newtonian fluids, the shear stress is 
proportional to the rate-of-deformation tensor D :  
  Dµτ =  (4) 

where D  is defined by 
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and µ is the viscosity, which is independent of D . For 
some non-Newtonian fluids, the shear stress can similarly 
be written in terms of a non-Newtonian viscosity η: 
  ( )DDητ =  (6) 
In general, η is a function of all three invariants of the 
rate-of-deformation tensor D . However, in the non-
Newtonian models available in FLUENT, η is considered 
to be a function of the shear rate γ&  only. γ&  is related to 

the second invariant of D  and is defined as 

  DD :=γ&  (7) 
FLUENT provides four options for modelling non-
Newtonian flows:  

Power law 
Carreau model for pseudo-plastics 
Cross model 
Herschel-Bulkley model for Bingham plastics 

 
Note that the non-Newtonian power law described below 
which has been used in this model. 

Power Law for Non-Newtonian Viscosity  
The non-Newtonian-power-law model is used in this 
study, where the non-Newtonian viscosity is calculated as 
(FLUENT 6.0 Manual, Chapter 7.3.5): 
  TTn ek 01−= γη &  (8) 
FLUENT allows upper and lower limits to be placed on 
the power law function, yielding the following equation: 
  max

1
min

0 ηγηη <=< − TTn ek &  (9) 
where k, n, T0, ηmin, and ηmax are input parameters. k is a 
measure of the average viscosity of the fluid (the 
consistency index); n is a measure of the deviation of the 
fluid from Newtonian (the power-law index), as described 
below; T0 is the reference temperature; and ηmin and ηmax 
are, respectively, the lower and upper limits of non-
Newtonian viscosity used in the power law. If the 
viscosity computed from the power law is less than ηmin, 
the value of ηmin will be used instead. Similarly, if the 
computed viscosity is greater than ηmax, the value of ηmax 
will be used instead. Table 2 shows how viscosity is 
limited by ηmin and ηmax at low and high shear rates in this 
model. The value of n determines the class of the fluid: 
  n = 1  Newtonian fluid 
  n > 1  shear-thickening (dilatant fluids) 
  n < 1  shear-thinning (pseudo-plastics) 
 
The values of k and n used in this study were obtained 
from data of shear rate vs shear stress (Syoten Oka, 1980). 

RESULTS 

The outflow was pre-defined with flow rate weighting 
0.15 for each of outlets 1 and 2 (left branch) and 0.35 for 
each of outlets 3 and 4 (right branch). In both models the 
same parameters were used (see above) and the following 
results were obtained (Fig 3-6). We use the differentiation 
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of the flow rate in the outlets based on the fact that the two 
lobes of the liver are different in size (the left lobe is over 
2 times smaller than the right one).  

 
Figures 3a: Contour of velocity magnitude on an x-y 
plane cutting through the middle of the geometry without 
blockages. 

 
Figures 3b: Contour of velocity magnitude on an x-y 
plane cutting through the middle of the geometry with 
blockages. 

 

 
Figure 3c: Closer view contour of velocity magnitude on 
an x-y plane cutting through the middle of the geometry 
with blockages. 

Figures 3a and 3b show velocity contours on an x-y plane 
cutting through the middle of the geometry (see figure 1). 
Figure 3c also represents the velocity contour near 
blockages. As can be seen from figures 3a and 3b, there 
were significant changes in the velocity magnitude in the 

two conditions. The way the model was created assumed 
that the problem causing portal hypertension was in the 
liver, the portal venous flow was diminished and the portal 
vein pressure was 3922.66 Pascal (40 cm H2O). In this 
case there are two possible conditions: Figure 3a shows 
the velocity magnitude if there were no additional 
complications in the portal vein; Figure 3b shows the 
additional complication of portal vein thrombosis and the 
impact on blood flow. Near blockages velocity is very 
high (figure 3c) and thereby the pressure is low. This may 
cause of more shrinkage of vein, which stops blood 
circulation finally. In this model, there is no additional 
decrease in velocity, and so it gives the most favourable 
picture of this condition (i.e. hypertension). 

Figures 4a and 4b show pressure contours on an x-y plane 
cutting through the middle of the geometry (see figure 1). 
These two figures correlate to the findings of figures 3a 
and 3b. The zones of low pressure, which were typical for 
the two higher flow outlets (figures 4a and 4b), have 
“moved” to the area of the blockages, thus increasing the 
pressure in the low flow outlets (figure 4b). 

 

 
Figures 4a: Contour of static pressure on an x-y plane 
cutting through the middle of the geometry without 
blockages 

 
Figures 4b: Contour of static pressure on an x-y plane 
cutting through the middle of the geometry with blockages 
 
Figures 5a and 5b represent the contour of strain rate on an 
x-y plane cutting through the middle of the portal vein (see 
figure 1). In figure 5a the strain rate is uniform through the 
portal veins according to the velocity distribution. But in 
figure 5b the contour of strain rate is not uniform because 
of the existence of obstacles in blood flow. As expected 
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the strain rates are higher in the constriction created by the 
obstruction. 

 
Figures 5a: Contour of strain rate on an x-y plane cutting 
through the middle of the geometry without blockages. 
 

Figures 5b: Contour of strain rate on an x-y plane cutting 
through the middle of the geometry with blockages 
 

 
Figures 6a: Contour of wall shear stress on an x-y plane 
cutting through the middle of the geometry without 
blockages. 
 
Figures 6a and 6b show contour of wall shear stress near 
the wall on an x-y plane cutting through the middle of the 
geometry (see figure 1). The blockages in the portal veins 
decrease the available cross section area. This reduction of 
available cross section area ultimately introduces higher 
strain rates around the blockages. The higher strain rates 
around the blockages results in significantly higher shear 
stress near the wall presented in figure 6b. The portal 
veins without blockages in figures 5a and 6a show much 
lower values of strain rates and wall shear stress. 

 
Figures 6b: Contour of wall shear stress on an x-y plane 
cutting through the middle of the geometry with blockages 
 

CONCLUSION 
These simulations confirmed the expectation that the 
blockages would have an effect on the blood flow in the 
portal vein even in the case of diminished blood supply to 
the liver due to disease of the organ. We have used low 
flow velocity, although increased compared to normal 
portal vein and average pressure of 40 cm H2O column. 
The clinical condition our presentation is based on is 
portal hypertension and we examined the impact of 
blockages on this condition. The next study will be based 
on the size and location of the blockages and their impact 
on the flow to the liver under the same conditions. We will 
add to the model the thrombogenic effect of the blood in 
portal hypertension with blockages. The input data to this 
CFD model can be from in vivo measurements (Duplex 
Ultrasound, Magnetic Resonance, echo-Doppler, Doppler 
Duplex sonography, Biopsy and other) for individual 
patients. This model can be adjusted for a variety of flow 
parameters and can assist medical practitioners, in 
conjunction with the patient-based measurements, to 
predict the degree of risk to the patient. We believe that 
this type of model can be used to predict the chances of 
survival and the risks of liver failure and mortality in 
patients with portal hypertension.    
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