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ABSTRACT 
In this paper, three turbulence models for porous media 
are applied to the gas flow through a randomly packed 
bed and are validated by means of a parametric study and 
by comparison with experimental data in literature. These 
models predict widely different turbulent eddy viscosity, 
with the model by Nakayama & Kuwahara (1999) being 
the best in predicting a reasonable eddy viscosity. 
Residence time distribution (RTD) and velocity 
distribution are then simulated by considering a radial 
profile of porosity, and the results are in good agreement 
with the available experimental data.  

NOMENCLATURE  
a1-4 constants for porosity expression,- 
C scalar concentration, kmol/m3 

cµ,c1,c2,ck turbulence model constants,-  
dp particle diameter, m 
D molecular diffusivity coefficient of tracer, m2/s 
Dax axial dispersion coefficient in plug flow model, m2/s 
K permeability, m2/s 
k turbulent kinetic energy, m2/s2 

k∞ turbulence model constant, m2/s2 

l bed length, m 
Pe Peclet number defined by Eq.(13), - 
R0 resistance coefficient, Ns/m4 

Rep particle Reynolds number,
µ

ρ p
p

Ud
Re =  

Sk source terms in k equation, N/(m2s) 
Sε source terms in ε equation, N/(m2s2) 

Sc Schmidt number,
Dρ

µ
=Sc  

t real time from tracer injection, s 
U artificial velocity, m/s 
u interstitial velocity, m/s 
u interstitial velocity vector, m/s 
y distance to the wall normalised by dp, - 
Z axial position normalised by l,  
θ dimensionless time with respect τ,- 
ε turbulent dissipation rate, m2/s3 
ε∞ turbulence model constant, m2/s3 

σ turbulent Prandtl number (=0.9)  
µ laminar viscosity, Ns/m2 
µt turbulent eddy viscosity, Ns/m2 
γ volume porosity, - 
τ mean residence time, s 

INTRODUCTION 
Many processes in the chemical and metallurgical 
industries involve flow of fluids in packed beds. 
Mathematical modelling of such flow and related 
phenomena is useful in enhancing the performance of 
these processes. To date, most of the models proposed are 
based on the assumption of plug flow and do not take into 
account maldistribution. However, it is well known that in 
unstructured fixed beds, the void fraction in the vicinity of 
the containing wall approaches unity and displays a 
decaying oscillation profile with the distance from the wall 
(Mueller, 1992). Daszkowski and Eigenberger (1992) have 
shown that reaction and radial heat transfer can be 
modelled correctly, only if radial inhomogeneities are 
properly considered.  
 
The radial distribution of velocity follows the permeability 
profile due to the variation of the resistance force. An 
oscillatory velocity profile, although not easily visible 
from the RTD of a tracer (Paterson et al., 2000), has been 
observed both at immediately downstream of the packing 
bed (Bey and Eigenberger, 1997; Subagyo et al., 1998) 
and inside the bed (McGreavy et al., 1986; Stephenson and 
Stewart, 1986).  
 
Direct simulation of the detailed microscopic flow of the 
clear fluid within the voids between packed particles is 
still impractical, but the volume-averaged flow field can 
be described by the Navier-Stokes equations if additional 
terms for fluid-particle interactions are incorporated. 
Vortmeyer and Schuster (1983) proposed the application 
of the extended Brinkman equation where the fluid-
particle interaction was described by a two-dimensional 
Ergun pressure drop correlation and wall friction was 
separately taken into account. Momentum equations for 
interstitial velocity were normally used assuming laminar 
viscosity (Delmas and Froment, 1988). Bey and 
Eigenberger (1997) showed that a turbulent viscosity is 
more appropriate. By employing an effective viscosity as 
an adjusting factor, Ziolkowska and Ziolkowski (1993) 
and Bey and Eigenberger (1997) tried to develop a 
mathematical model of velocity distribution.   
 
In the mathematical or numerical models mentioned 
above, there are a number of assumptions or tuning 
parameters to fit to the measured data under a particular 
set of operating conditions, thus lacking generality for 
general engineering applications. A turbulence model is 
useful in determining the unknown parameters that appear 
in the basic transport equations. The recent progress of 
turbulence models in porous media makes it possible to 

Copyright  2003 CSIRO Australia 509 



 
 

numerically model a wide range of applications directly. 
A review of such models can be found in de Lemos and 
Pedras (2001). In most of these models, macroscopic 
model equations are derived from the microscopic flow 
equations by a form of volume averaging, and extra 
source terms arise in the model equations due to the solid 
particles. These source terms were commonly formulated 
based on numerical experiment results from certain two-
dimensional (particularly periodic fully developed, 
unidirectional) porous matrixes, such as periodic arrays 
of rods. These models have rarely been validated in 
three-dimensional porous structures, i. e., validation 
against a range of three-dimensional porous media, like 
randomly packed spheres, is required.  
 
This paper compares three recently published turbulence 
models (Takeda, 1994; Nakayama and Kuwahara, 1999; 
Pedras and de Lemos, 2001) applied to a simple 
isothermal packed column of spheres. It will be shown 
that a CFD model facilitated with a proper turbulence 
model is capable of simulating the flow in such packed 
beds.  

MODEL EQUATIONS 
The steady state form of mean flow equations in an 
isotropic porous medium can be written as, 
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which is similar to the Reynolds averaged Navier Stokes 
equations with an eddy viscosity accounting for the 
turbulent effect. The last term in Eq.(2) represents a 
resistance to flow in the porous medium. Based on 
Ergun’s equation, the resistance coefficient for a flow 
through a bed of smooth spheres is given by, 
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The turbulence model equations based on the standard k-
ε model run as, 
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These macroscopic turbulence model equations, in 
contrast with the microscopic k-ε equations, present two 
extra terms, i.e., Sk and Sε that represent extra 
transport/production of turbulence kinetic energy and its 
dissipation due to the presence of the porous media. The 
source terms vary in formulation (Takeda, 1994; 
Nakayama and Kuwahara, 1999; Pedras and de Lemos, 
2001) and are listed in Table 1. The values of these 
sources vanish for the limiting case of no packing 
material present, or say, when the porosity 1→γ , 
meaning that the normal k-ε model equation is recovered. 

We choose these three models because of their relative 
simplicity and completed closure. Validation of other 
models is the subject of future work. 
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Table 1: Source terms in the turbulence equations for flow 
through porous media (packing of spheres). 

MODEL SET-UP 
The base case in the current study is the gas flow through a 
packed cylindrical column of monosized spheres. The 
column dimensions are 1.0m long and 0.14m in diameter 
and the diameter of the inlet/outlet, centrally located, is 
0.04m. The sphere diameter is 3mm, and the tube-to-
particle ratio is 46.7. The operating condition is based on 
the work of Paterson et al. (2000). Molecular diffusivity of 
the tracer gas (CO2) in air is set to 1.39×10-5 m2/s. We 
choose this case in order to compare directly with their 
experimental data.  
 
The local packing structure and resulting porosity 
variation reflect the wall effect in the numerical model. 
Typically the radial porosity distribution has a limit of 
unity at the wall and exhibits an exponential variation 
combined with a damped oscillation. These fairly well 
defined radial variations of the porosity are due to the 
confining effect of the wall of the bed. In a randomly 
packed bed, the layer of spheres nearest to the wall tends 
to be highly ordered, with most of the spheres touching the 
wall at a point contact, and the subsequent layers are less 
and less ordered, until a fully randomised arrangement is 
attained far away from the wall. For mathematical 
convenience, the variation in porosity is fitted by a set of 
equations (Cohen and Metzer, 1981), 
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γb is the bulk porosity, with a value of 0.35 being used. 
The constants were determined to be a1=0.3463, 
a2=0.4273, a3=2.4509 and a4=2.2011.  

SIMULATION PROCEDURE 
A commercial CFD code CFX4.4 has been used as a 
platform, and the porosity and source terms are 
implemented in the provided user subroutines. The inlet 
and outlet of the simulation domain are treated as fully 
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developed, and the well-known wall function is used. By 
fully developed, a distributed velocity profile is solved 
based on the given flow rate and zero velocity gradient.  
 
In the physical experiment, a pulse of tracer gas is 
injected from the inlet and is assumed to be fully mixed 
with the main gas flow before entering the domain. An 
integral (global) RTD curve is obtained by monitoring 
the concentration at the exit. In a CFD simulation, the 
injection of the pulse of tracer is realised by setting a 
scaler fraction over a short time (in a single time step) on 
the inlet plane. A two-dimensional axisymmetric 
simulation is carried out for velocities and turbulence 
quantities. Then a transient scalar transport is solved, 
giving a time dependent tracer concentration field. The 
RTD is obtained by area-averaging the tracer 
concentration at the outlet for each time step. The Peclet 
number is defined by the plug flow with axial dispersion 
model, and is evaluated by fitting an analytical solution 
to the integral RTD curve predicted. 
 
The time step is chosen to be two orders of magnitude 
less than the mean residence time in the column. The 
length scale of the average porosity oscillation is about 
one particle size. In order to properly implement the 
oscillatory porosity profile, refined grid spacing must be 
used near the wall. It is not intended to resolve the flow 
details below the particle dimension, since we are solving 
macroscopic flow and the k-ε model was not designed as 
a sub-grid model as in a large eddy simulation. The grid 
size used is 200×150. The mass residual for a converged 
solution is below 1% the total flowrate.  

COMPARISON OF THE TURBULENCE MODELS 
For simplicity, a section of densely packed bed with 
uniform porosity is chosen to avoid the complexity of the 
top and bottom wall effects. A steady fully developed 
flow with a free-slip wall is simulated, which is 
equivalent to an infinitely long bed. Except for the 
molecular diffusion, the effective viscosity calculated is 
essentially due to the presence of the packing of spheres, 
since there is no global shear stress present. 
 
The mean effective viscosity (µeff) averaged over the 
cross-section is shown in Figure 1, along with the 
empirical correlation by Bey and Eigenberger (1997). 
The three models investigated give significantly different 
results in a wide range of particle Reynolds number 
(Rep). The effective viscosity increases with increasing 
Rep for all cases, but shows different trends and the order 
of magnitude. The models of Takeda (1994) and Pedras 
and de Lemos (2001) generate an eddy viscosity 1-2 
orders of magnitude higher than the model of Nakayama 
and Kuwahara (1999). Parametric study shows that it 
makes little difference to the result in Figure 1 whether or 
not the near wall porosity oscillation is considered, and 
that adjusting ck does not change the overall trend.  
 
With a fixed Rep, the effective viscosity predicted by 
using the model of Nakayama & Kuwahara (1999) is 
insensitive to the change in particle size, whereas the 
other two models show strong dependency on particle 
size (Figure 2). In the latter cases, a lower eddy viscosity 
corresponds to a larger particle size. According to a 
review by Pedras and de Lemos (2001), for porous flows 
in general, the literature recognises that distinct flow 
regimes are largely determined by the so-called pore 

Reynolds number, namely: (a) Darcy flow (Rep<1); (b) 
Forchheimer flow regime (1~10<Rep<150); (c) unsteady 
laminar flow (150<Rep<300); (d) fully turbulent flow 
(Rep>300). This seems to suggest that excessive 
dependency of µeff/µ on particle size is not correct. For a 
flow in a densely packed bed, the turbulence level is 
controlled mainly by a local equilibrium within the voids 
between its generation and dissipation, thus the turbulence 
length scale should be related to particle size. This 
assumption, for example, leads to an algebraic turbulence 
model developed by Masuoka and Takatsu (1996) and the 
one used by Panjkovic et al. (2002), where µeff/µ is only a 
function of porosity and Rep. 
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Figure 1: Comparison of the effective viscosity calculated 
using different turbulence models with experimental 
correlation: ◊, Nakayama & Kuwahara (1999); △, Takeda 
(1994); ×, Pedras and de Lemos (2001); full line only, 
correlation by Bey and Eigenberger (1997). 
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Figure 2: Sensitivity of the effective viscosity to particle 
size using different turbulence models: symbol only, 
Nakayama & Kuwahara (1999); full line with symbol, 
Pedras & de Lemos (2001).  
 
Radially oscillatory behaviour of the velocity distribution 
has been observed by many investigators. By adjusting an 
effective viscosity, Bey and Eigenberger (1997) fitted the 
simulated maximum velocity of the by-pass to the 
measured values downstream of the bed, and the µeff 
obtained was correlated to the Reynolds number in 
proportion to Rep

2. This provides qualitative information 
for the analysis of the present simulation results. For the 
case of the model by Nakayama and Kuwahara (1999), µeff 
increases slowly for low Rep and becomes nearly 
proportional to Rep when Rep is high. In contrast, the 
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effective viscosity predicted using the other models 
shows a similar trend, varying in proportion to Rep

0.5. 
 
The foregoing discussion suggests that the model by 
Nakayama and Kuwahara (1999) seems to be superior to 
the other models considered in terms of giving a realistic 
trend, thus it is chosen as a standard model in the 
subsequent simulation. Nakayama et al. (1995) and 
Kuwahara et al. (1996) showed through numerical 
experiments that the results based on a two-dimensional 
numerical model can be used to estimate the pressure 
drop and thermal dispersion in packed spheres, which 
further supports our finding. 
 
However, difference in µeff between the experimental 
correlation and the prediction using the model by 
Nakayama and Kuwahara (1999) exists, which may 
partially be attributed to several reasons. First, the 
effective viscosity in the model by Bey and Eigenberger 
(1997) was considered to be constant over the entire bed, 
while a localised value is more appropriate because of 
the varying flow conditions. It is found by an observation 
of the simulation results that the eddy viscosity is 
relatively low in the centre region and, though 
oscillatory, increases as approaching the wall, where the 
higher shear rate (velocity gradient) above the pore scale 
generates extra turbulence. Second, the accuracy of the 
model predictions relies to a great extent upon the 
validity of the available correlations for the porosity 
profile, since the voidage has a much stronger influence 
on the velocity profile than the effective viscosity does, 
as found by Bey and Eigenberger (1997). Finally, the 
measured velocity profiles a few millimetres downstream 
of the bed are not necessarily representative of the actual 
flow field inside the bed.  

RESIDENCE TIME DISTRIBUTION 
Traditionally the axially dispersed plug-flow model has 
been used to represent the fluid flow in uniformly packed 
beds when the diameter of the tubular container is much 
larger than particle diameter. The mean flow pattern is 
assumed to be a plug-flow with dispersion caused mainly 
by mixing of streams in the lee side of particles; the 
effect of any lateral variations in the interstitial fluid 
velocity is lumped into a dispersion coefficient. 
Assuming constant fluid density and dispersion 
coefficient, Dax, the concentration of a tracer gas in the 
bed, C(Z,θ), is given by an one-dimensional transport 
equation (Crawshaw et al., 1993), 
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Pe1 is a Peclet number with the characteristic dimension 
being the bed length. If the tracer is injected as a Dirac 
delta function at the bed inlet, the solution to the equation 
is available for boundary conditions corresponding to an 
infinitely long packed bed, that is, 
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The Peclet number based on particle diameter is, 

l
d

D
ud p

ax

p
lp PePe ==     (13) 

The tracer concentration is normalised to give a 
comparable RTD in both the experimental measurements 
and current simulations regardless of the initial tracer 
concentration,  
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The mean residence time is calculated as 
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The tracer is not only carried by the macroscopic mean 
flow, but can also spread in both lateral and axial direction 
by means of molecular diffusion/turbulent dispersion. The 
integral RTD is, therefore, a combined consequence of 
maldistribution of the velocity due to near wall porosity 
variation, the effective viscosity and the end effect of the 
inlet/outlet geometry. Here we use the plug-flow model 
only for the purpose of easy comparison rather than its 
validity.  
 
In the RTD simulation, a numerical diffusion due to the 
truncating error in discretizing the pulse of scalar 
concentration is not negligible for a low velocity, and in 
the order of magnitude, it could be as much as the laminar 
diffusivity. This numerical diffusion acts to broaden the 
RTD curve. However, the effect of velocity distribution 
and turbulence becomes dominant as the flowrate 
increases.  
 
Figure 3 shows the RTD for several conditions: (a) laminar 
flow with wall effect; (b) turbulent flow without wall 
effect (uniform porosity to highlight the end effect); (c) 
turbulent flow with wall effect (normal case). The end 
effect due to the sudden change in cross-section is 
important only for a short column. In addition, unlike the 
volume-averaged macroscopic flow, the actual 
microscopic fluid moves around the packed spheres in a 
zigzag path, thus an enhanced scalar mixing is expected 
even for a low Reynolds number laminar flow. The current 
turbulence model used is devised for fully turbulent flows. 
Whether this model could accommodate the mixing effect 
in the laminar regime in terms of an extended sense of 
eddy viscosity is a question, but it is evident from Figure 3 
that assuming a laminar flow or disregarding the porosity 
non-uniformity is inappropriate in the simulation, since 
otherwise a skewed RTD curve could result compared 
with the measured one. The inclusion of the turbulence 
model and wall effect does, on the other hand, have 
improved the prediction of the RTD shape compared with 
the measured one by Paterson et al. (2000).  
 
An increase of the flowrate (Reynolds number) can change 
the RTD shape slightly as shown in Figure 4. The RTD for 
the higher Reynolds number shows an obvious by-pass 
flow, characterised by a “front tail”. That is, for a higher 
velocity, the Forchheimer term dominates (the particle 
shape drag, the second terms in Eq. (5)) over the Darcy 
term (particle surface friction), which causes a stronger 
local velocity difference near the wall and subsequently 
stronger channelling. 
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Figure 3: RTD simulated for different assumptions and 
comparison with measurement (Rep): □, Laminar with 
wall effect; ◊, Turbulent without wall effect; thick full 
line, turbulent with wall effect; ×, measured by Paterson 
et al. (2000). 
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Figure 4: RTD simulated for different Reynolds 
numbers. 
 
An equivalent value for the Peclet number Pep can be 
obtained by fitting the plug model Eq. (13) to the 
predicted RTD curves by the least-square method. Figure 
5 shows the predicted Pep as Rep changes (by changing 
the gas flowrate and fixing Sc=0.95), together with some 
experimental data reported in the literature (Wen and 
Fan, 1975; Crawshaw et al., 1993). A correlation for the 
Peclet number was given by Wen and Fan (1975) as, 
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The simulated Pep agrees closely with the correlation of 
Wen and Fan (1975) over a wide range of ScRep above 
60, indicating that the current numerical model performs 
well for the fixed bed. In view of the numerical diffusion 
and the discrepancy between the available experimental 
data for low Reynolds numbers, the difference is still 
acceptable. It can be seen from Figure 5 that the Peclet 
number approaches a constant as Rep increases above 
1000, implying that the axial dispersion coefficient, like 
the effective viscosity, is proportional to particle size and 
mean gas velocity for high Reynolds number flows. 
 
Since the resistance force is closely related to porosity, 
the radial variation of the velocity (Figure 6) basically 
follows the porosity profile except at the wall boundary 
where no-slip is imposed. The effect of the eddy 
viscosity on the velocity profile is relatively unimportant 
compared with the body force.  
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Figure 5: Peclet number for different particle Reynolds 
numbers: full line only, correlation of Wen and Fan 
(1975); □, Current simulation; ◇, Crawshaw et al. (1993). 
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Figure 6: Radial distribution of velocity simulated. 
 
Although the oscillatory nature of the velocity has been 
observed downstream of the packed bed by many authors 
(Bey and Eigenberger, 1997; Subagyo et al., 1998), 
accurate measurement inside the bed is difficult. Paterson 
et al. (2000) tried to measure the local velocity indirectly 
by the tracer method. They injected a pulse of tracer gas at 
a radial location and monitored the concentration 0.5m 
downstream at exactly the same radial location. By the 
same way in the simulation, we found that the local mean 
residence time does not show any oscillation with radius, 
and the velocity thus obtained increases consistently 
towards the wall (Figure 7). While the tracer can spread 
through molecular diffusivity, turbulence further enhances 
the radial mass transfer at the near wall region. The 
simulated velocity distribution appears to be consistent 
with that of Paterson et al. (2000), except at the immediate 
proximity to the wall (within 2dp), where the measured 
velocity shows a relatively stable value. Nevertheless, it is 
clear from the simulation that the mean residence time 
alone does not fully represent the true local velocity and 
that the velocity profile calculated based on the tracer 
method without considering the radial mixing may be 
misleading. The current CFD model is able to repeat many 
observed phenomena.  
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Figure 7: Radial distribution of velocity using tracer 
method: full line, current; □, measured by Paterson et al. 
(2000). 

CONCLUSIONS 
Several turbulence models for porous flows have been 
applied to the gas flow in a circular packed column of 
spheres and validated against each other and against 
experimental data in literature. These models perform 
rather differently, with the model by Nakayama & 
Kuwahara (1999) giving the most reasonable eddy 
viscosity. The chosen turbulence model is able to account 
for the mixing and mass transfer within the bed. By 
considering the local porosity variation near the wall, the 
basic features of the velocity distribution and the RTD 
predicted are consistent with those measured. The 
predicted Peclet numbers defined by the plug flow model 
are close to the experimental results.  
 
The current work shows that the chosen turbulence 
model is suitable for simulating the flow in porous media 
of spheres, particularly at high Reynolds numbers. The 
numerical model is potentially useful to such applications 
as packed beds in general. Future work will further 
validate the current turbulence model coupled with heat 
transfer. 
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