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ABSTRACT 
In this paper, a kind of meshfree (meshless) methods, 
namely Radial Point Interpolation Collocation Method 
(RPICM), has been applied to the numerical simulation of 
two phase flow in porous media. The main feature of this 
approach is to use the interpolation schemes in local 
supported domains based on radial basis functions. As a 
result, this present method is different from the traditional 
global Radial basis functions (RBF) method because it is 
local and its algebraic matrix is banded. In the numerical 
testing, it was applied to solve a 2D homogeneous 
reservoir problem. Some preliminary numerical simulation 
results, which will be beneficial for us to further 
investigate reservoir simulations by the present method, 
have been obtained. Meanwhile, the feature with no 
meshes needed shows the present schemes possess a 
considerable perfect potential to reservoir simulation and 
environmental engineering problems. 

NOMENCLATURE 
vw, vo (m.s-1) the velocities of water and oil phases 
pw, po  (Pa)  the pressures of water and oil 
Pc (Pa) capillary pressure 
µw, µo (kg.m-1.s-1) the dynamic viscosities 
ρw, ρo (kg.m-3) the densities of water and oil phases 
Sw water saturation 

wo λλ ,  the phase mobilities for water and oil phases 
φ  the porosity of medium 
~

ow qq ~,  the sources of water and oil phases 
kro, krw the relative permeabilities 

Tv  is the total velocity 

INTRODUCTION 
There are many approaches applied to reservoir numerical 
simulation in petroleum industry. To name a few: Finite 
Difference Method (FDM); Finite Element Method 
(FEM), etc. (Peaceman, 1977; Aziz, 1979) and in recent 
years, “Meshfree (Meshless) Methods” have been 
attracting a great attention in the field of computational 
mechanics and computational mathematics. A variety of 
approaches named as “meshfree (meshless)” have 
appeared (Liu G. R., 2002). Here, a kind of meshfree 

(meshless) methods, namely Radial Point Interpolation 
Collocation Method (RPICM), has been applied to the 
numerical simulation of two phase immiscible flow in 
porous media. Point Interpolation Method (PIM) was 
originally proposed by Liu and Gu (1999), PIM is based 
on Galerkin or Petrov-Galerkin weak forms, and 
numerical integrations are required. Radial PIM (RPIM) 
was presented by Liu and Wang (2002). RPICM has also 
been developed by Liu and Tang (2003).  

In this paper, RPICM is applied to 2D reservoir 
simulation. In next section, the governing equations for 
immiscible flow are briefly derived, and then point 
interpolation approximations with Radial basis functions 
are constructed. Meanwhile, collocation schemes for the 
pressure and saturation equations are formulated with 
RPICM. Then, this present numerical formulations are 
employed to solve immiscible flow in reservoir 
simulation. Finally some concluding remarks are given. 

GOVERNING EQUATION FOR TWO-PHASE 
IMMISCIBLE FLOW 
The governing equations describing two-phase immiscible 
flow through porous media are considered below. Two 
immiscible fluids involve two separate phases: the wetting 
phase (water) and the non-wetting phase (oil).  
Water-phase:  
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Sw is the water saturation; ρw, ρo are the density of the 
water and the oil, respectively; φ  is the porosity of 

medium; ow qq ~,~ .are the sources of water and oil phases. 

 are the velocities of water and oil phases.  ow vv ,
If ignoring the effect of gravity, the phase velocities are 
usually expressed through Darcy’s Law as follows: 

ww p∇−= λwv , ooo p∇−= λv  (3) 

wo λλ ,  are the phase mobilities for water and oil phases. 
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where k is the absolute permeability, kro, krw are the 
relative permeabilities, µo, µw are the dynamic viscosities,  
pw, po are the pressures of water and oil and they can be 
expressed as: 

cwo Ppppp −== ,  (5) 

Where Pc is the capillary pressure, and assumed here to be 
a function of saturation. 
Assuming that the fluids and the medium are 
incompressible, continuity (or “pressure”) equation can be 
yielded: 

Two qqq −=+−=+⋅∇=⋅∇ )()( owT vvv  (6) 

owT vvv += , wwwooo qqqq ρρ /~,/~ ==  (7) 
Where  is the total velocity. It can be derived by 
equations (3), (5) and (7) as follows: 
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Substituting equations (8), (9), (10) and (11) into (1), 
saturation equation can be obtained: 
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If , we obtained Buckley-Leverett equation for 
saturation: 
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If , . The phase velocities can be 
expressed as: 

0=cP ppp ow ==

pw∇−= λwv , poo ∇−= λv  (15) 

In this case, the pressure equation can be derived from (6) 
and (15): 

Tqp =∇⋅−∇ )(λ  (16) 

At sink well, a commonly used condition is 
TooTww qfqqfq == ,                      (16a) 

However, at source well, 
0)1( ≠−=−→= wwTwwwT qfqfqqq        (16b) 

RADIAL POINT INTERPOLATION 
The approximation of a field function u(x), using radial 
basis functions, may be written as a linear combination of 
n radial basis functions, viz., 
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where n is the number of points in the supported domain 
near x, ai are coefficients to be determined and φ are the 
radial basis function, such as Multiquadrics (MQ), 
Gaussian, Thin plate spline. 
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The shape parameter can be defined as c )( cci rc α==  
(Liu G. R., 2002). 
For 2-D problems: 

( ) ( )22
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Due to good accuracy and convergence of MQ, MQ is 
chosen as interpolation basis function in following 
numerical calculations. When MQ function is adopted, the 
selection of the shape parameter c is an issue. In a given 
interpolation, as c value increases, the shape of the MQ 
interpolants becomes flatter, and the collocation matrix 
becomes more singular. The accuracy of the 
approximation, however, gets better and better, until the 
numerical inversion breaks down due to round off error. 
How to choose the optimal shape parameter is a problem 
that has received the attention of many researchers (Liu 
and Wang, 2002). So far, this is an open question and no 
mathematical theory has been developed for determining 
the optimal value. Here, the form of dimensionless shape 
parameter αc will be employed. The rc is the characteristic 
length that is related to the nodal space in the local 
supported domain of the collocation point and it is usually 
the average nodal spacing for all the nodes in this 
supported domain. Here, for uniform discrete model, it is 
chosen to be the distance between uniformly equally 
distributed points. For scattered point model, it is chosen 
to be average size of supported domain. 
The coefficients ai in Equations (17) can be determined by 
enforcing that the function interpolations pass through all 
n nodes within the supported domain.  
The interpolations of the function at the kth point have the 
form: 
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They can be expressed by matrix formulations as follows: 
Φau =eˆ  (20) 
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[ ]Tni aaa LL1=a  (22) 
Thus the unknown coefficients vector  

euΦa ˆ1−=  (23) 
Finally, the approximation form of function can be 
obtained as follows: 

eeu uψuφΦφax ˆˆ)(ˆ 1 === −  (24) 

[ ] ),(),( 1 cc nrrrrφ −−= φφ LL (25) 
The shape functions can be expressed as follows 
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1 == −φΦψ  (26) 

Here ψi are shape functions. The shape functions 
constructed have delta function property, which is very 
attractive to impose essential boundary condition in 
Galerkin-based meshfree methods (Liu and Gu, 2001; Liu 
and Wang 2002).  

RPICM FOR PRESSURE AND SATURATION 
EQUATIONS 
From (24), the point interpolation forms for pressure and 
saturation functions can be expressed as: 
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Assuming that there are Nd internal (domain) points and 
Nb =Nb1+ Nb2 boundary points, where Nb1 are Neumann 
boundary points and Nb2 are Dirichlet boundary points. 
At time tm+1, the following Nd equations are satisfied in 
internal domain nodes: 
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It should be noted that a small diffusion term has been 
added to (30) to handle shocks and ε is the adjustable 
diffusion coefficient. Here, implicit time integration 
scheme has been adopted.  
The following 2*Nb1 equations are satisfied on reflected 
boundaries for both pressure and saturation equations: 

0ˆ 1 =∇⋅ +m
i

T pn  ,  1,1 bNi LL= (31) 

0ˆ 1 =∇⋅ +m
iw

T Sn  ,  1,1 bNi LL= (32) 
The following 2*Nb2 equations are satisfied on Dirichlet 
boundaries for both pressure and saturation: 
At source well for injected fluid (water),  

0
1ˆ i

m
i pp =+ , ,  0.1ˆ 1 =+m

iwS 2,1 bNi LL= (33) 
At sink well for produced fluid (oil),  

0ˆ 1 =+m
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iwi Sp ˆ,ˆ , and their derivatives in equations (29-34) can be 
obtained by (27) and (28) while x=xi. The last system 
algebraic equation can be solved by Newton-Raphson 
iteration scheme.  

NUMERICAL SIMULATIONS 
In this section, a 2D homogeneous two-phase immiscible 
reservoir problem (Langtangen, 1990) has been tested by 
RPICM. Owing to symmetry, only the upper half of the 
reservoir needs to be discretized. Source and sink nodes 
with specified p values are indicated by the thick lines in 
Figure 1. Sw was kept equal to unity at the source. Values 
of the physical parameters are as in Figure 1. The 

25×13=325 uniform and 325-point Halton scattered point 
models shown as Figure 2 and Figure 3 are used to solve 
the pressure and saturation equations. Figure 4 shows the 
wetting fluid saturation distributions and its contours at 
1000 days and 2000 days with uniform model. In this 
case, the following MQ parameters were chosen, that is 
c=αcc0, αc=3.0, c0=16.0m, Q=1.0. There are 25 points in 
every supported domain. Figure 5 shows the wetting fluid 
saturation distributions and its contours at 1000 days and 
2000 days with random model. In this case, the following 
MQ parameters were chosen, that is c=αcc0, αc=0.5, 
c0=59.16m is the average size of all supported domains, 
Q=1.0. There are 30 points in every supported domain. 
For both uniform model and random model, the following 
time integration parameters have been chosen: 500 time 
step numbers; 4 days time interval. In addition, diffusion 
coefficient ε=0.01 was chosen for two cases. The results 
obtained by RPICM in this paper are compared with Fig. 
13 in Langtangen’s paper (1990), and they approximately 
tend to be the same. It should be noticed that results 
obtained with uniform and scattered point models show 
some difference at water saturation front. The reason 
perhaps is due to the choice of shape parameter and 
supported domain. Further research and explanation will 
be completed in future. 

CONCLUSIONS 
We have employed a novel numerical method RPICM to 
solve immiscible two-phase flow in porous media. Some 
preliminary numerical simulation results, which will be 
beneficial for us to further investigate reservoir 
simulations by the present method, have been obtained. 
The reason that the results shown in Figure 4 and Figure 5 
are some different perhaps is due to the choice of shape 
parameter and supported domain. In a word, further 
perfect numerical simulations will be our future research 
topics, especially for the simulation when using scattered 
point model. In addition, the issue regarding the h-
convergence depending on the shape parameter in MQ 
function need to be further investigated for RPICM. 
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Figure 1: 2D horizontal homogeneous reservoir.  
The size of the reservoir is [0,400.0m]× [0,400.0m] 

325-point uniform model

 
Figure 2: 25×13=325 uniform model 

325-point Halton model

 
Figure 3: 325-point Halton scattered model 
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(a) at 1000 days 
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(b) at 2000 days 

Figure 4: Water saturation distribution for 25×13=325 
uniform model 
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(a) at 1000 days 
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(b) at 2000 days 

Figure 5: Water saturation distribution for 325-point 
Halton random model 
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