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ABSTRACT 
In the Oil and Gas industry, many situations are 
representative of particulate flows : cutting removal in 
drilling operations, sand management in production, 
dispersed hydrates transportation in pipeline, ... Particles 
may be of arbitrary shape and the fluid itself may exhibit 
non-Newtonian properties. To enhance the comprehension 
of complex phenomena occurring in moderately or highly 
concentrated suspensions, we developed a coupled solver 
based on a Distinct Element Method (DEM) for the 
granular part and a Finite Element Method for the fluid 
part. The scale of description is the particle, which implies 
that our approach may be regarded as a direct numerical 
simulation. The coupling is achieved by a Distributed 
Lagrange Multipliers/Fictitious Domain method 
(DLM/FD) and an operator-splitting algorithm. The DEM 
enables us to account for actual contacts between particles 
and consider particles of (polyhedral) arbitrary shape. 
Simulations up to a few thousands of particles in 2D 
situations are presented. We illustrate the capabilities of 
the numerical tool on the sedimentation of particles of 
polygonal or circular shape in Newtonian and non-
Newtonian shear-thinning and thixotropic fluids. Obtained 
results underline the strong alteration of flow 
characteristics and the particles pattern.  

NOMENCLATURE 
p  pressure 
u   fluid velocity 
ρf  fluid density 
η  fluid dynamic viscosity 
D(u) strain rate tensor 
λ distributed Lagrange multiplier to enforce the 

rigid body motion constraint  
ρs particle density 
M particle mass 
I particle moment of inertia 
U particle translational velocity 
X particle position 
w particle rotational velocity 
R particle vector from center to contact point 
Fci collision force on particle i 
g gravitational acceleration 
v variation for the fluid velocity 
q variation for the pressure 
V variation for the particle translational velocity 
ξ variation for the particle rotational velocity 
α  variation for the Lagrange multiplier 
D/Dt Lagrangian derivative 
d/dt   time derivative 
∂/∂t  partial time derivative 
kn  normal contact stiffness 
δij  overlap between particles i and j 
nij  unit normal vector pointing between the centers 

of particles i and j 

γn  normal dynamic friction parameter 
γt  tangential dynamic friction parameter 
ks static friction coefficient 
μ Coulomb friction coefficient 
mij  reduced mass of particles i and j 
vrn normal relative velocity between particles i and j 
vtn tangential relative velocity between particles i 

and j 

INTRODUCTION 
The comprehension of solid/solid and fluid/solid 
interactions in highly concentrated particulate flows is of 
great interest from both fundamental and practical point of 
views. The hydrodynamics of such complex flows is still 
poorly understood, even if the fluid phase exhibits simple 
Newtonian properties. The primary reason for such a poor 
understanding is the fact that such processes involve 
phenomena at very different scales from the particle to the 
flow domain. Therefore, direct numerical simulation at the 
scale of the particle may be of great help to the 
understanding of this type of multiphase flows. 
In particular, assorted processes of the Oil and Gas 
industry  involve particulate flows at moderate or high 
concentration (Peysson, 2004). For instance, settling is a 
key issue for the drilling operation of the well. Drilling 
muds are designed such that they exhibit specific non-
Newtonian properties that prevent the rock cuttings to 
settle at the bottom hole as the drilling fluid circulation is 
stopped. In subsea flowlines, the oil is conveyed under 
low temperature and high pressure that may lead to the 
formation of hydrates. The use of dispersants can inhibit  
or limit the aggregation of hydrates into large clusters that 
can lead to the plugging of the line. However, even in 
dispersed phase, hydrates may be regarded as solid 
particles transported in the pipeline by the flowing fluid. 
Rock cuttings as well as hydrates clusters may be of 
arbitrary shape and may easily differ from the ideal disk  
(2D) or sphere (3D) representation. 
In this paper, we focus on the sedimentation of particles of 
isotropic polygonal shape in a Newtonian fluid. The 
sedimentation of a single particle in a Newtonian or non-
Newtonian fluid has been investigated and reviewed by 
Clift et al. (1978), Chhabra (1993) and McKinley (2002).  
Deep insights into many aspects of  the settling of 
Newtonian suspensions of spherical particles has been 
gained by theoretical, experimental and numerical 
approaches. However, the behaviour of many particles of 
spherical shape sedimenting in a complex fluid or the one 
of many particles of polyhedral shape in a Newtonian 
fluid has been the subject of only a few studies. In 
particular, let us mention the contribution of Haider and 
Levenspiel (1989) who investigated the effect of the 
particle shape on the drag coefficient and terminal 
velocity of a single non-spherical particle settling in a 
Newtonian fluid. In the case of spherical particles in 
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complex fluids, many authors evidenced that settling 
particles in a viscoelastic (Joseph et al., 1994) or 
thixotropic shear-thinning (Daugan et al., 2004) fluid 
aggregate to form columns or chains, in relation to the 
corridors of low viscosity in the wake of the settling 
particles.  
The dynamic simulation of the particles motion in a fluid 
is a non-trivial task in relation to the constantly evolving 
space occupied by the fluid as the particles move. The 
boundary fitted mesh approach proposed by Hu et al. 
(2001) and Patankar and Joseph (2001) is very complex in 
relation to the remeshing requirement of the fluid domain 
and the corresponding projection of the flow fields on the 
updated mesh at every time step. In contrast, non-
boundary fitted methods, such as the lattice-Boltzmann 
method (Ladd, 2001) and the Distributed Lagrange 
Multiplier/Fictitious Domain (DLM/FD) method, are 
easier to implement and more efficient for the simulation 
of the motion of a large number of particles. The DLM/FD 
approach was introduced by Glowinski et al. (1999). The 
main idea of the method is to fill the region occupied by 
the particles with the fluid and to treat the particles motion 
as a constraint of the problem. Then, the particles motion 
contraint inside the particles boundaries is relaxed thanks 
to the use of a distributed Lagrange multiplier. This 
approach was first dedicated to rigid bodies and was 
applied with success to the simulation of the fluidization 
of 1024 spheres (3D) and the Rayleigh-Taylor instability 
of 6400 circular disks (2D) in a Newtonian fluid 
(Glowinski et al., 1999, 2001). Singh et al.(2000), Yu et 
al. (2002) and Hwang et al. (2004) extended the method to 
the case of a viscoelastic fluid whereas Yu et al. (2006) 
recently considered the case of a shear-thinning and 
thixotropic fluid as well as a viscoplastic fluid. Yu (2005) 
even simulated with success the motion of flexible and 
incompressible bodies in a Newtonian fluid flow.  
As the concentration of solid bodies suspended in the fluid 
exceeds more or less 5%, the probability of collision 
between particles increases dramatically. As a 
consequence, this requires the use of proper contact laws 
and a model (or numerical method) to handle the 
numerous multi-body collisions. The Distinct Element 
Method (DEM), also known as Discrete Element Method 
and introduced by Cundall and Strack (1979), is an 
attractive approach in which the system is modelled at the 
particle level. The motion of all particles is computed 
based on the detection of all collisions and the calculations 
of the corresponding contact forces. The advantage is the 
enhanced accuracy of the modelling of the system but it is 
computationally highly expensive. Recent contributions to 
the literature using the DEM include Cleary and Prakash 
(2004) and Wu and Cocks (2006). 
In the next section we shortly describe the basic features 
of the method. Then, we investigate the effect of the 
particle shape in sedimentation process. We show the 
significant influence of the particle shape on the drag 
coefficient and sedimentation time. The last section is 
devoted to conclusion and perspectives.         

MODEL DESCRIPTION 
For simplicity, we only consider one particle and a 
Dirichlet velocity boundary condition on the outer 
boundary of the flow domain in the description of the 
formulation below.   

Dimensional governing equations 
The variational combined momentum equations that 
govern both the fluid and solid motion has been derived 
by Glowinski et al. (1999). Here the fluid is assumed to be 
purely viscous. Therefore the viscosity is either constant 
for a Newtonian fluid as assumed in this paper or variable 
for a shear-thinning and thixotropic fluid as considered in 
our previous paper (Yu et al., 2006). Since the flow is 
incompressible, the fluid mass conservation reduces to the 
divergence free constraint of the velocity field i.e. the 
continuity equation. The governing equations can be non-
dimensionalized by introducing the following scales : Lc 
for the length, Uc for the velocity, Lc/Uc for the time, ρfUc

2 
for the pressure and ρfUc

2/Lc for the Lagrange multiplier. 
The complete set of dimensionless governing equations 
comprise the following two parts :    
 

1. Combined momentum equations 
 

( ) ( ) ∫∫

∫∫

=++

⋅∇−⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂

Ω

ΩΩ

P

dd

dpd
t

0:
Re
1 xλvxvDu2D

xvxvuuu

 (1) 

( )

( )∫∑∑ =×+−×−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

Pj
cj

j
cj

Pr

d

dt
d

g
Fr

dt
dV

0

1 *

xrξVλRξFVF

ξwIVgU *ρ
 (2) 

( )( )∫ =×+−
P

d 0xrwUuα  (3) 

 
where ( )3* / csp LMV ρ=  and ( )5* / csLρII =  denote the 
dimensionless particle volume and moment of inertia, 
respectively. 
 

2. Continuity equation 
 

0=⋅∇− ∫
Ω
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In the above equations the following dimensionless 
parameters are introduced : 

Reynolds number : 
η

ρ ccf LU
=Re  

Froude number : 2
c

c

U
gLFr =  

density ratio : 
f

s
r ρ

ρρ =  

Collision model 
Binary hard sphere model and soft sphere model are the 
two categories of collision models for the particulate flows 
(Crowe et al., 1998). For the hard sphere model, the 
momentum exchange between two colliding particles 
takes place exactly at the time when the two particles 
touch. In contrast, for the soft sphere model, the velocities 
of colliding particles are determined from the Newton 
equations of motion with the collision forces of soft 
potential as a function of the separation or overlap 
distances between the particles and possibly the particles 
velocity. A soft sphere model with an artificial repulsive 
force to prevent any overlap has been proposed by 
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Glowinski et al. (1999, 2001) and used later by Yu et al. 
(2002).  In our previous paper (Yu et al., 2006), we 
incorporated a lubrication correction in the collision 
model.  
Here the collisions are described by a soft sphere approach 
implemented in a DEM granular solver. In this model, the 
particles are allowed to slightly overlap and the collision 
forces are calculated based on the overlapping region or 
distance and the normal and tangential relative velocities 
at the point of contact (Cundall and Strack, 1979, Cleary 
and Prakash, 2004, Wu and Cocks, 2006). The considered 
collision forces comprise: 
• the elastic restoring force fel : 
 

ijijnel k nf δ−=  (5) 
 
• the viscous dynamic force fdn in the normal direction to 

account for the dissipative aspect of the contact: 
 

rnijndn m vf γ2−=  (6) 

where 
ji

ji
ij MM

MM
m

+
= . 

• the tangential friction force ft : 
 

{ }tffff sdtelt +−= ,min μ  (7) 
 
where rtijtdt m vf γ2−=  denotes the dissipative frictional 

contribution and  the static frictional 

contribution which behaves like an incremental spring that 
stores energy during the time of contact tc. Note that the 
magnitude of the tangential friction force is limited by the 
Coulomb frictional limit.  
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The total collision force acting on a particle i is the sum of 
the contributions related to the contact with the 
neighbouring particles j : 
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Computational scheme 
Following Glowinski et al. (1999), we employ the first 
order Marshuk-Yanenko operator splitting algorithm to 
decouple the system into the following sub-problems : 
 
1. A degenerated Stokes problem : find un+1/5 and pn+1/5 
such that : 
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2. A purely transport problem for inertia : find un+2/5 such 
that : 
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3. A viscous problem : find un+3/5 such that : 
 

( ) ( ) 0:
Re
1 53

5/253

=+
Δ
−

∫∫
Ω

+

Ω

++

xvDu2Dxvuu dd
t

/n
n/n

 (12) 

 
4. Update particles velocities (Un+4/5, wn+4/5) and positions 
Xn+4/5  
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5. Fictitious domain problem (fluid/solid interactions) : 
find un+1, Un+1 and wn+1  such that : 
 

∫∫ =+
Δ
−

Ω

++

P

nn

dd
t

0
5/41

xλvxvuu  (14) 

( )

( ) ( ) VgxrξVλ

ξwwIVUU *

g
FrVd

tt
V

Pr
P

nnnn

Pr

*

5/415/41
*

1

1

−=×+−

⎥
⎦

⎤
Δ
−

+⎢
⎣

⎡
Δ
−

−

∫

++++

ρ

ρ
 (15) 

( )( )∫ =×+− +++

P

nnn d 0111 xrwUuα  (16) 

 

Computational details 
For the sake of consistency, we sum up briefly below the 
various features of the numerical implementation : 
• the spatial discretization scheme for the fluid is a 

standard Finite Element method with linear triangular 
element for the pressure and linear triangular element on 
a twice finer mesh for the velocity (usually called 
P1/P1ISOP2 interpolation). We also use mass lumping 
technique for the discretization of the unsteady term 
such that the corresponding matrix is diagonal. 

• the purely transport problem 2 is solved by a wake-
like/projection method (Pan and Glowinski, 2000), 
avoiding the use of any upwinding technique. 

• saddle-point problems 1 and 5 are solved by an efficient 
preconditioned Uzawa/conjugate gradient algorithm. 

• in problem 4, the integration of the equations of motion 
is actually carried out by an explicit leap-frog scheme 
(Cundall and Strack, 1979, Wu and Cocks, 2006). Since 
the time scale of the contact between two particles is 
much smaller than the fluid time scale, the time interval 
Δt in problem 4 is sub-divided in N time intervals. In 
other words, we solve N times problem 4 with a time 
step Δt/N for every fluid time step Δt. 

• in problem 4, most of the computation time is dedicated 
to the search of the connection between particles and the 
calculation of the overlapping regions. To reduce at 
most this task, we use an efficient linked cell algorithm 
based on an underlying mesh for the location of the 
particles. 

• in problem 5, the spatial discretization of the Lagrange 
multiplier for the rigid body motion constraint is based 
on the collocation point method proposed by Glowinski 
et al. (1999, 2001). It was found that a minimim of 8 
elements on the particle diameter is necessary for an 
acceptable accuracy of the solution.  
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RESULTS 
We focus here on the sedimentation of 2D isotropic 
polygonal particles in a Newtonian fluid (previous papers 
(Yu et al., 2006, Yu and Wachs, 2006) were dedicated to 
the sedimentation in a non-Newtonian fluid). To account 
for the shape of the particle, we follow Haider and 
Levenspiel (1989)'s 3D sphericity concept  and introduce 
a similar concept of circularity in 2D, Φ, defined as: 
 

dp SS /=Φ  (21) 
 
where Sp and Sd are the surfaces of the polygon and the 
disk, respectively. In (21), polygon and disk perimeters 
are identical. In the case of an isotropic polygonal particle, 
Φ reads : 
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where np is the number of sides of the polygon. 

Sedimentation of a single particle in an infinite domain 
Here we study the influence of the particle shape on the 
drag coefficient of a single particle settling in an infinite 
domain as a function of the Reynolds number. The chosen 
characteristic length and velocity are the particle projected 
length Lp and the terminal settling velocity U∞, 
respectively. The density ratio ρr is set to 1.1. The infinite 
domain is modelled by considering a rectangular flow 
domain that expands as far as 200 times the particle 
diameter in both directions.  
The drag coefficient Cd is computed as : 
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Table 1 gathers the various shapes considered and their 
corresponding circularity.  
 

Particle shape Circularity Φ 
Disk 1 

Decagon 0.967 
Hexagon 0.907 
Square 0.785 

Triangle 0.605  
Table 1. Particles shape and circularity 

 
In the range of Reynolds numbers [1,35] considered, the 
velocity profile is stable as the particle reaches the 
terminal velocity. Indeed, the Von Karmann vortex 
shedding regime is well known to start above Re=50-70. 
The mesh together with the DLM/FD set of points are 
illustrated in figure 1. It comprises 29768 triangular 
elements for the pressure (15129 pressure unknowns) and 
119072 for the velocity (179586 velocity unknowns). In 
the single particle case, the particle is accurately described 
with 40 elements on the particle diameter, as shown in 
figure 1(b). Results obtained with coarser meshes (20 and 
12 elements on the particle diameter) give comparable 
results. Numerical experiments revealed that the lowest 
bound for an acceptable accuracy seems to be 8 elements 
on the particle diameter. The time step is set to Δt=10-3. At 
the initial time, the fluid and solid velocity are zero. The 

simulation is run until the particle reaches its terminal 
settling velocity. The average number of time steps 
required to reach the steady state is 50000 for a total 
computation time of more or less 24hours on a 3.0GHz 
Linux sequential workstation.  
 

(a) Flow domain 
 

(b) Zoom on the particle 
Fig 1. Mesh and DLM/FD set of points in the case of a 
single particle (hexagon) settling in an infinite domain 

 
Figure 2 presents the evolution of the drag coefficient as a 
function of the Reynolds number for the different 
polygonal particles. For all shapes, the drag coefficient 
decreases when the Reynolds number increases. This trend 
has been reported by many studies in the case of the flow 
past a fixed circular cylinder (for instance see Lima e silva 
et al. (2003)).  
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Fig 2. Evolution of the drag coefficient as a function of 
the Reynolds number for the various shapes considered 
 
In figure 3, we compare our computed drag coefficients 
for a disk with the results of Lima e silva et al. in the 
range [10,50] (to be consistent with the drag coefficient 
formula of Lima e silva et al., we plot in figure 3 : 
Cd

*=Cd.π/4).  The agreement is very satisfactory. We 
evidence here that our non boundary-fitted numerical 
method dedicated to the free motion of solid bodies in a 
fluid is able to provide accurate results in the case of a 
disk and extends the results to particles of polygonal 
shape. 
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Fig 3. Evolution of the drag coefficient Cd

*=Cd.π/4 as a 
function of the Reynolds number for a disk : comparison 
with the numerical results of Lima e silva et al. (2003)  
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Figure 4 shows the influence of the circularity on the drag 
coefficient in the range of Reynolds numbers [1,35]. For a 
given Reynolds number, the ratio of the drag coefficients 
between a triangle and the ideal disk is of the order of 2. 
This sheds light on the importance of the particle shape on 
the sedimentation process, especially in terms of terminal 
settling velocity and sedimentation time. 
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Fig 4. Evolution of the drag coefficient as a function of 
the circularity for different Reynolds numbers (values of 
Reynolds number correspond to the disk case)  

Sedimentation of 300 particles in a closed box : effect 
of the shape 
In this subsection we investigate the effect of the particle 
shape on  the sedimentation of 300 particles in a closed 
box. The study is restricted to the two following extreme 
cases : the ideal disk and the isotropic triangle. The chosen 
characteristic length and velocity are the disk diameter d 
and the terminal settling velocity U∞ of a single disk in an 
infinite domain, respectively. The density ratio ρr is set to 
1.1. The Reynolds and Froude numbers based on U∞ are 
25 and 12.5, respectively. 
The flow domain is a rectangular closed box the 
dimensions of which are . A zero 
velocity (no slip) Dirichlet condition is imposed on all 
boundaries. At the initial time, the particles are drifted at 
the top of the box in a random fashion and the fluid and 
particles velocity is zero. The simulation is run until all 
particles have settled to the bottom of the box. 

ddHW 6020 ×=×

The mesh is a structured and constant grid size mesh. It 
comprises 120 and 360 points in the width and height 
direction, respectively. This means 153600 triangular 
elements for the pressure (77441 pressure unknowns) and 
614400 for the velocity (616962 velocity unknowns).   
The time step is set to Δt=5.10-3. In both cases (disks and 
triangles), 50000 time steps are computed for a total 
computation time of 8 days on a 3.0GHz Linux sequential 
workstation.  
Figure 5 presents snapshots of the particles pattern and 
vertical velocity contours. The first stages of the 
sedimentation process highlights a hydrodynamic 
Rayleigh-Taylor (RT) instability (t=31.25) involving the 
pack of particles which later breaks into small clusters or 
individual particles (t=62.5). Finally, the particles settle at 
the bottom of the box and the fluid returns to rest. 
Figure 6 plots the time evolution of the mean vertical 
velocity and position (rescaled between 0 and 1) of the 
particles. The RT hydrodynamic instability is triggered 
later in the case of the disks (first velocity peak) but once 
the pack of particles breaks into many small clusters or 
individual particles, disks settle around 10% faster than 
triangles. The actual Reynolds number based on the mean 
settling velocity is around 4. The drag coefficient of a 
triangle settling in an infinite domain is twice larger than 
the one of a disk. This may partly explain the faster 

sedimentation process of disks but other more complex 
phenomena related to the solid/solid and fluid/solid 
interactions that require a deeper analysis, as the particles 
pattern for instance, may be responsible as well. 
 

Fig 5. Sedimentation of 300 triangles in a closed box :  
particles pattern and contours of vertical velocity 
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(a) Mean vertical velocity (b) Mean vertical position 

Fig 6. Comparison between disks and triangles in the case 
of the sedimentation of 300 particles in a closed box 

Sedimentation of 2500 disks in a closed box 
We illustrate here the 
capabilities of the numerical 
code to simulate particulate 
flows with a few thousands 
of particles. 
Figure 7 presents a snapshot 
of a sedimentation of 2500 
disks in which the initial state 
is an homogeneous lay out of 
the particles (solid 
concentration is 40%). Here 
the disks are twice smaller 
than in the previous section. 
This requires the definition of 
a finer mesh and the 
corresponding computation 
time for the complete 
sedimentation in around 30 
days.  Fig 7. 2500 disks settling 

in a closed box 

CONCLUSION 
We presented a novel method to tackle the numerical 
simulation of particulate flows at moderate or high 
concentration. To the best of our knowledge, it is the first 
time the coupling of a DEM solver with a Finite Element 
DLM/FD method is reported in the literature. The 
resulting tool enables us to consider particles of arbitrary 
(polyhedral)  shape in a Newtonian or non-Newtonian 
fluid. Here we applied our method to the effect of the 
particle shape in a 2D sedimentation process in a 
Newtonian fluid. Obtained results underline the increase 
of the drag coefficient with decreasing circularity in the 
case of a single particle settling in an infinite domain at 
Reynolds number in the range [1,35]. Finally, the 
sedimentation of a large number of particles in  a closed 
box at Re=4 exhibits complex particles patterns and 
confirms that particles of low circularity (triangles) settle 
slower than disks. At the practical level, the consideration 
of a large number of particles (tens of thousands) is 
limited by the computation time on a sequential 
workstation. To overcome this difficulty, our next 
objective is to upgrade to a full parallel version of the 
code. 
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