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ABSTRACT 
Numerical simulations of fluid flow in typical industrial 
mixers are made difficult due to geometries involving 
moving parts, small gaps and sharp corners. Gridded 
methods such as finite elements need to constantly 
regenerate the mesh to accommodate the moving objects, 
and these meshes often need to be further refined to 
correctly model fluid flow near small gaps and sharp 
corners. Smoothed Particle Hydrodynamics (SPH), a grid 
free particle method, does not suffer from these drawbacks 
associated with grids. Additionally, the Lagrangian nature 
of SPH is better suited to the analysis of mixing. Each 
particle represents the same finite volume of fluid over 
time, so data describing the transport of any “blob” of 
fluid is readily available. This paper describes 2D SPH 
simulations of a twin-cam mixer and compares the results 
against experimental data and results from two published 
finite-element simulations. We also present a method for 
calculating the Finite-Time Lyapunov Exponent (FTLE), 
using SPH particle data, for each particle at each timestep. 
These Finite-Time Lyapunov Exponents build up a picture 
that describes where mixing is either promoted or 
inhibited in the flow. The purpose of the paper is to 
evaluate the effectiveness of SPH and FTLEs in 
simulating and analysing the mixing in a typical industrial 
mixer. 

NOMENCLATURE 
C right Cauchy-Green deformation tensor 
σ Lyapunov Exponent 

T
t0

σ  Finite-Time Lyapunov Exponent 

W SPH kernel 
h SPH smoothing length 
ma mass of SPH particle a 
ca sound speed at particle a 
rab distance vector from particle a to b 
P pressure 
ρ density 
v velocity 
μ dynamic viscosity 
cs sound speed 
M mixing measure 
x  standard vector L2-norm of x 

INTRODUCTION 
Smoothed Particle Hydrodynamics 
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian 
method for numerically solving the equations of fluid 
dynamics. Instead of a mesh it uses particles, which are 
both interpolation points for the fluid variables as well as 

physical “blobs” of fluid. Due to its Lagrangian nature, it 
is well suited to modelling problems where the transport 
of mass is an important issue. Two or more fluids are also 
simple to model, as each fluid is represented by its own 
set of particles, which is constant throughout the 
simulation. Fluids with different physical properties can 
be modelled by changing the properties of individual 
particles. It is also trivial to incorporate any sort of 
moving boundary with SPH. Traditional meshed methods 
need to either re-mesh the domain at every timestep or use 
an additional method such as the Lagrange multiplier 
based fictitious domain method (See Bertrand et al 1997). 
SPH boundaries are constructed from particles, which can 
be easily moved each timestep with no additional 
calculation. Please see Monaghan (2005) for a good 
review of SPH theory. 

Twin Cam Mixer Experiments and Simulations 
The experimental validation in this paper uses data from 
the work of Avalosse and Crochet (1997). They compared 
their experimental results of a twin cam mixer with a 2D 
finite-element simulation. Their base mesh was a regular 
grid in circular coordinates, with a constant angular 
resolution, and with the radial resolution higher near the 
circle formed by the rotating tips of the triangular cams.  
The elements that intersected the straight edges of the 
cams were re-meshed at every timestep using an automatic 
algorithm based on Delaunay triangulation. Bertrand et al. 
(2003) modelled a similar 2D Twin Cam simulation using 
finite elements. However, instead of using a standard 
finite element method that requires re-meshing at every 
timestep, they used the Lagrange multiplier based 
fictitious domain method. This was combined with an 
adaptive mesh refinement at each timestep, which was 
applied around the cam tips. Results tracing the dispersion 
of a dyed blob of fluid for the experiment and the two 
simulations mentioned above are shown in Figure 3. Note 
that the coloured blob of material in the experiment is not 
completely rectangular, unlike the blob initialised in the 
finite-element simulations. So these simulations start with 
some initial error. 

Measuring Mixing 
Ottino (1989) has developed a popular mixing theory, 
which is based on the calculation of several variables 
along the paths of material points in the flow. He has 
proposed a commonly used measure of mixing strength: 
length stretch χ. Avalosse and Crochet (1997) apply this 
measure to their simulation of the twin cam mixer. Let dX 
be a material length with orientation M that deforms into 
dx with orientation m after time T. If C is the right 
Cauchy-Green deformation tensor then: 
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Ottino's length stretch is directly related to the chaos 
theory notion of Lyapunov exponents σ, which is a 
measure of how quickly a material trajectory diverges 
from its initial conditions. The Lyapunov exponent is 
related to the length stretch by 

χσ ln1lim
TT ∞→

=  

As with length stretch, high values of σ indicate a higher 
quality of mixing at that point. While Lyapunov exponents 
are only useful for periodic flows, the concept has been 
extended to finite times (Finite Time Lyapunov 
Exponents, FTLE) and finite sizes (FSLE) (Artale 1997, 
Pierrehumbert, 1993, Lapeyre 2002, Joseph and Legras 
2002). We have used FTLEs, rather than length stretch, to 
study the twin cam simulation. Due to the very large 
values of length stretch, a logarithmic scale must be used 
anyway, and dividing by T eliminates a scaling by the T 
used to calculate the length stretch. 
 

Chaotic Transport 
One of the important features of a chaotic system are its 
stable and unstable invariant manifolds and their 
associated hyperbolic or stagnation points. Knowledge of 
the location and movement of these features gives 
important insight into the mixing and transport of the 
system (see Holmes, 1990, Rom-Kedar, 1990 or Ottino, 
1989).  
 
A brief (and very qualitative) description of a stable 
manifold is that a pair of particles straddling the manifold 
will separate faster than any other nearby pairs (except of 
course for a pair across the same manifold). An unstable 
manifold is similar to the stable version, except that the 
particles separate in reverse time. That is, they approach 
the manifold faster than any other pairs in the vicinity. 
Stable manifolds are associated with stretching in the flow 
and unstable manifold cause folding (Haller 2000). 
 
FTLE are often used to find these manifolds when only 
finite-time data is available, since maxima in the forward-
time FLTE map correspond with stable manifolds and 
maxima in backwards-time FTLE indicate unstable 
manifolds. 

SIMULATION DESCRIPTION 
Equations 
All the equations in this section, along with additional 
explanation, can be found in Monaghan (2005). The most 
commonly used kernel for SPH simulations (and the 
kernel used in this simulation) is the cubic spline. This has 
the form: 
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where q = r/h and h is the smoothing length of the particle. 
The kernel determines how the mass of particle is spread 
out in space, as well as how the fluid variables are 
interpolated between particles. 
 
Ignoring gravity, the SPH version of the momentum 
equation for particle a is: 
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where Πab is a viscosity term between particles a and b. 
There are a number of forms for this viscosity term. We 
are using the form: 
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where β≈4 and α is related to the dynamic viscosity μ by: 

hcsρ
μα

15
114

=  

The standard form of the continuity equation for constant 
h is: 

∑ ∇⋅=
b

abaabb
a Wvm

dt
dρ  

The equation of state models a nearly incompressible 
fluid, and is given by: 
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where γ = 7. The pressure scale factor B is given by: 

γ
ρ 0

2
max100v

B =  

where vmax is an estimate of the maximum flow velocity. 
 
The tank walls and triangular cams are modelled using 
boundary particles, which are not allowed to move freely 
but exert boundary forces on the other SPH particles. The 
boundary force on particle a from a boundary particle k, 
where x is the tangential distance (i.e. along the boundary) 
between k and a and y is the normal distance between k 
and a, is given by 
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where nk is the unit normal vector to the boundary. B is 
chosen so that it increases rapidly for small y (so as to 
prevent the particle from penetrating the wall) and so its 
variation with x ensures that the particle feels no change in 
force as it moves tangentially along the boundary. See 
Monaghan (2005) for the form of B used here. 

 
Finding the correct normal vector nk can be difficult near 
sharp corners in the boundary. Large changes in the 
direction of neighbouring boundary normals can lead a 
very small value of y (since y=|n
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n
2

n
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Figure 1: Multiple boundary normals for sharp corners. 
For a fluid particle in region 2, use n2. In region 3 use 
n3. In region 1 use unit radial vector in the direction 
from the corner particle to the fluid particle. 

k•rab|), which results in an 
unnaturally large boundary force. To fix this problem, 
each sharp point is represented with a particle that has two 
normals equal to those of its neighbouring boundary 
particles. The correct nk is calculated from these normals 
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and the position of the interacting fluid particle (See 
Figure 1 and Monaghan 2003). 

Geometry 
A diagram of the twin cam geometry is shown in Figure 2. 
The fluid used for the experimental results was a 
Newtonian aqueous solution of glucose, with a viscosity 
of 50 Pa s and a density of 1500 kg/m3. The counter-
clockwise rotating cams are moving at 0.5 rpm, which 
gives a Reynolds number of the order of 0.001. 

 

MIXING ANALYSIS 
Finite-Time Lyapunov Exponent 
The FTLE is calculated considering the trajectories of 
particles over a finite-time period T. What follows is a 
brief derivation of the FTLE, please see the excellent 
description by Shadden (2005) for a more in depth 
discussion. 
 
Consider a flow function that maps particles at time t0 to 
their advected positions at time t0 + T 

)(0

0
xx Tt

t
+φa  

Let δx(t) be the separation of two neighbouring particles 
in the flow. After a time T, their separation can be 
approximated by a first-order Taylor expansion of the 
flow function 
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The magnitude of this separation is given by 
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where C is a finite-time version of the right Cauchy-Green 
deformation tensor. The maximum separation of the two 
particles will occur when they are aligned along the 
eigenvector associated with the largest eigenvalue of C. 
Thus, if λmax is the maximum eigenvalue of C 
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where the bar over δx(t0) indicates that it is aligned with 
the eigenvector associated with λmax. This can be written 
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where σ is the FTLE. That is, the maximum exponential 
separation speed between two neighbouring particles 
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Grid-based numerical methods use tracer particles to 
calculate the FTLE. Since the tracers can be initialised on 

a regular grid, finite-differencing can be used to estimate 
the gradient of the flow map 

dx
d Tt

t
+0

0
φ . In an SPH 

simulation, the particles will not be regularly spaced. 
However, the gradient can be found by solving 
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using a least-squares method (we have used singular-
valued decomposition). The data points for this equation 
are all the particles within the smoothing length 2h of the 
base particle (i.e. the particle where the FTLE is being 
calculated). It is reasonable to assume that the gradient of 
the flow map is constant over this area. 

45mm
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60mm

0.5 RPM

SIMULATION RESULTS 
Experimental Validation 
The results of the simulation can be validated against the 
experiment performed by Avalosse and Crochet (1997). 
Figure 3 shows the initial setup for both the SPH 
simulation and experiment. The same figure also shows 
the simulation and experiment after the cams have rotated 
through 2π and 7π/3 radians (120 and 160 s).  

 
Figure 2: Geometry of Twin Cam mixer 

 
The motion of the cams divides the coloured blob into two 
segments along a line that is roughly diagonal from the 
lower tip of the left cam to the top of the right cam (see 
Figure 5, top, for an image of this line). There is a 
stationary point at the centre of the domain, so particles 
near this point have a lower velocity. This causes a trail of 
particles behind the bulk of the coloured particles as they 
leave the centre of the domain, which shortens to form a 
“kink” in the blob (seen most clearly in lower region of 
the leftmost cam at t = 120 s). The blob is stretched out as 
it is moved around the chamber, due to lower velocities 
near the walls of the chamber. Once the leading edges of 
the divided blobs have completed a revolution and are 
once again between the cams, both are further divided 
along the same line as the initial division, and the mixing 
process continues. The transport of the coloured blob of 
fluid follows the experiment well. Comparing the results 
of the SPH simulation against the two finite element 
simulations (in the same Figure 3), the results of the SPH 
simulation are clearly more accurate than the simulations 
of Avalosse and Crochet (1997), and compare well against 
the results given by Bertrand et. al. (2003). 
 
The SPH simulations shown in Figure 3 use 7995 particles 
(160 particles along the horizontal). Bertrand initially uses 
2388 finite elements to represent the domain, but this is 
before the mesh refinement around the cam edges. Using a 
rough visual estimate, the total number of elements was 
approximately 6000, which is comparable to the number 
of SPH particles used in these simulations. 

Timestep and Viscosity Issues 
Due to the very low Reynolds number of the experiment, 
the time-scale of the viscous forces present in the 
simulation is much smaller than the time-scale of the 
rotating cams. Estimating the viscous time scale as equal 
to that of a cylindrical Couette flow (with the distance 
between the cylinders as d = 10 mm) and the time scale of 
the rotating cams as their period (t = 120 s) gives: cam 
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Figure 3: Comparison of SPH simulation (Top row), experiment by Avalosse & Crochet (1997) (Second row), simulation 
by Avalosse & Crochet (1997) (Third row) and simulation by Bertrand et. al. (2003) (Last row) at three different times: 
right column shows initial state, centre column shows the state at 120 s (after one cam revolution), left column shows the 
mixing state at 160 s (after 4/3 cam revolutions). 
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Since SPH is an explicit method, with a viscous timestep: 
5

2

103 −=≈ xhtvisc μ
ρ

δ  

the SPH simulation would need 4x106 steps to allow the 
cams to move through one revolution. This is impractical 
for what is a small-scale 2D simulation. 
 
However, since the time-scale of the viscous forces is so 
small compared with the rotating cams, the viscous forces 
can be made significantly weaker without affecting the 
transport of the fluid. This will increase the time needed 
for the viscous forces to converge to a solution that 
balances the pressure and boundary forces, but this time 
would have to be comparable to the time-scale of the 
rotating cams for this to affect the transport of the fluid. 
 
The viscosity in these simulations is set at 0.005 Pa s, a 
factor of 10-4 smaller than the experiment viscosity. The 
simulation has been run with higher viscosities up to 0.05 
Pa s, but this has no distinguishable effect on the results, 
indicating that the reduced viscosity has little or no impact 
on the solution. 

 

MIXING RESULTS 
Finite-Time Lyapunov Exponents 
Figure 5 shows the results of calculating both the forward 
and backward time FTLE over a time interval of one cam 
rotation. The maxima ridges in these plots clearly show 
the location of the main stable and unstable manifolds and 
their associated fixed hyperbolic point (the intersection of 
the stable and unstable manifolds at the centre of the 
domain). The fixed point is the dominant source of mixing 
in the flow. Not quite as clear, but still distinguishable by 
comparing the two plots in Figure 5, are the many 
homoclinic points formed as the two manifolds criss-cross 
each other around the cams. A homoclinic point is the 
intersection of a stable and unstable manifold originating 
from the same hyperbolic point. As t→∞, these points will 
approach that hyperbolic point. The presence of transverse 

homoclinic points (which these points are) indicates the 
presence of chaotic orbits, which are essential for mixing.  
 
Knowledge of these features is important, as they are 
responsible for much of the behaviour of chaotic systems 
and therefore the mixing. The particular geometry of these 
manifolds means that not all of their effects are positive. 
Both stable and unstable manifolds act as separatrices for 
the flow, i.e. there is very little flux of material across 
these lines. For the twin cam mixer, this means that fluid 
is trapped between the tangle of manifolds and the cams 
and does not mix with the rest of the domain. This 
indicates that there will be limits on the quality of the 
global mixing that can be produced by this specific mixer.  
 

 

Figure 6: Counter-rotating twin cam simulation. Top: 
FTLE with T = +120 s. Middle: Coloured particles at t 
= 0 s. Bottom: Coloured particles at t = 245 s. 

Figure 5: Top: Forward-time FTLE with T = +1 cam 
revolution. Bottom: Reverse-time FTLE with T = -1 
cam revolution 

COUNTER-ROTATING SIMULATION 
The previous simulations had the twin cams rotating in the 
same direction at a constant speed of 0.5 rpm. This 
configuration is expected to produce good mixing. For the 
case where the cams are rotating at the same speed but 
opposite directions, there should be little or no mixing. 
This provides an interesting case to explore what happens 
to the manifolds in a poor mixing case, as well as a simple 
test of the simulation accuracy. Figure 6 shows the initial 
SPH particles coloured according to their forwards and 
backwards-time FTLE (calculated using T = ±120 s). This 
shows a vertically orientated, strong unstable and stable 
manifold at x = 60 mm. Since both manifolds coexist, 
every point along their length is a homoclinic point, but 
these are degenerate homoclinic points, which, unlike the 
transverse kind, do not indicate chaotic mixing. 
Additionally, since the manifolds are separatrices, this 
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MONAGHAN, J.J., (2005), “Smoothed Particle 
Hydrodynamics”, Rep. Prog. Phys., 68, 1703-1759. 

should prevent any fluid in the left chamber from entering 
the right and visa versa. 
 MONAGHAN, J. J., KOS, A. and ISSA, N., (2003), 

“Fluid motion generated by impact”, Journal of Waterway, 
Port, Coastal and Ocean Engineering, 129, No. 6, 250-
259 

Figure 6 shows the particles initialised at t = 0 so that the 
particles in the left chamber are a different colour to the 
right. It also shows the particles at t = 245 s. The interface 
between the two different colours is preserved almost 
exactly, even though the fluid particles have been rotated 
though just over two periods. The small flux of particles 
from one chamber to the other near the top corner of the 
outside chamber (x,y) = (60, 55) (in mm) is a physical 
effect. The experiment by Avalosse and Crochet (1997) 
showed a similar flux. 

OTTINO, J.M., (1989), “The kinematics of mixing: 
stretching, chaos and transport”, Cambridge University 
Press. 

PIERREHUMBERT, R. T., and YANG, H., (1993), 
“Global Chaotic Mixing on Isentropic Surfaces. Journal of 
Atmospheric Sciences, 50, 2462-2480. 

POUX, M., FAYOLLE, P., BERTRAND, J., BRIDOUX, 
D. and BOUSQUET, J., (1991), “Powder mixing: some 
practical rules applied to agitated systems”, Powder Tech., 
68, 213-234. 

CONCLUSION 
SPH is very well suited to modelling mixing processes. 
There is no need to numerically solve any extra equations 
in order to track material points or fluid concentrations, as 
each particle represents the same blob of fluid for the 
duration of the simulation. Moving objects, essential to 
any practical mixer, are simply modelled via moving 
boundary particles. Most importantly, the fluid transport is 
accurately modelled. The SPH simulation of a twin cam 
mixer compares well against experiment and two other 
finite-element simulations. 

ROM-KEDAR, V., LEONARD, A. and WIGGINS, S., 
(1990), “An analytical study of transport, mixing and 
chaos in an unsteady vortical flow”, J. Fluid Mech., 214, 
347-394. 

SHADDEN, S., (2005), “Lagrangian Coherent 
Structures: Analysis of time-dependent dynamical systems 
using finite-time Lyapunov exponents”, 
http://www.cds.caltech.edu/~shawn/LCS-tutorial/FTLE-
derivation.html. 

 
Traditional post-processing techniques used to analyse 
mixing, such as FTLE, can be used on SPH particle data. 
FTLE maps of the twin cam simulation have provided 
valuable information on the barriers to mixing in the 
simulation and where mixing is promoted. The Twin Cam 
mixer generates chaotic orbits in the outer portion of the 
domain, which promote mixing in this region. However, 
separatrices in the flow prevent fluid transport out of a 
region close in to the flat edges of the Cams, so this fluid 
area does not mix will with the rest of the domain.  
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