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ABSTRACT 
In this paper a simulation model is presented for the Direct 
Numerical Simulation (DNS) of heat transport in 
dispersed gas-liquid two-phase flow using the Front 
Tracking (FT) approach. Our model extends the FT model 
developed by van Sint Annaland et al. (2006) to non-
isothermal conditions. In FT an unstructured dynamic 
mesh is used to represent and track the interface explicitly 
by a number of interconnected marker points. The 
Lagrangian representation of the interface avoids the 
necessity to reconstruct the interface from the local 
distribution of the fractions of the phases and, moreover, 
allows a direct and accurate calculation of the surface 
tension force circumventing the (problematic) 
computation of the interface curvature. The extended 
model is applied to predict the heat exchange rate between 
the liquid and a hot wall kept at a fixed temperature. It is 
found that the wall-to-liquid heat transfer coefficient 
exhibits a maximum in the vicinity of the bubble that can 
be attributed to the locally decreased thickness of the 
thermal boundary layer. 

NOMENCLATURE 
a Computational domain in x-direction (m) 
Cp Heat capacity at constant pressure (J/(kg.K)) 
D Distribution function (-) 
d Domain size in x-direction (m) 
de Equivalent bubble diameter (m) 
Eo Eötvös number (-) 
F Phase indicator function (-) 
Fo Fourier number (-) 
H  Size of domain in (vertical) z-direction (m) 
M Morton number (-) 
Nup Nusselt number for penetration theory (-) 
Nuw Nusselt number for wall heat transfer (-) 
p Pressure (N/m2) 
R Bubble radius (m) 
Re Reynolds number (-) 
s Tangential co-ordinate direction (m) 
T Temperature (K) 
t Time (s) 
v∞  Bubble rise velocity (m/s) 
Xd Dimensionless volume of drift zone (-) 
xi ith co-ordinate direction (m) 
z z-co-ordinate (m)  

Greek letters 
αp Instantaneous heat transfer coefficient from 

penetration theory (W/(m2.K)) 

αw Local instantaneous wall heat transfer coefficient 
(W/(m2.K) 

λ Thermal conductivity (W/(m.K) 
μ Dynamic viscosity (kg/(m.s)) 
Δρ Density difference (kg/m3) 
ρ Density (kg/m3) 
Δsm Surface area of element (m2) 
σ Surface tension (N/m) 

Vectors 

Fσ
 Net surface force acting on marker m (N) 

Fσ  Volumetric surface tension force (N/m3) 

G  Vector quantity defining metrics of the interface 
(m-1) 

g  Gravitational acceleration (m/s2) 

mn  Unit normal vector of marker m (-) 

kt  Tangent vector shared with neighbouring element 
k (m) 

u  Velocity (m/s) 
x  Position vector (m) 

mx  Position vector of marker m (m) 
 

Subscripts and superscripts 
g Gas phase 
1 Dispersed (gas) phase 
2 Continuous (liquid) phase 
k Index for edge of marker 
p Penetration theory 
w Wall 
z z-direction 
 

Operators 
/ t∂ ∂  Partial time derivative (s-1) 

∇  Gradient operator (m-1) 
2

∇  Gradient operator (m-1) 
∇ ⋅  Divergence operator (m-1) 
T Transpose of a tensor 
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INTRODUCTION 
Heat transport in conjunction with multiphase flow 
phenomena is frequently encountered in a variety of 
industrial processes involving a.o. coating, granulation, 
drying and synthesis of fuels (Fischer Tropsch) and base 
chemicals. Very often in bubbly flows the (local) heat 
exchange rate (i.e. the Nusselt number) between the 
continuous (liquid) phase and an immersed surface, for 
example a tube, is required for basic design procedures. 
This type of information is hard to access experimentally 
because of experimental difficulties.  
To overcome this problem detailed microscopic models 
can be used to generate closure laws which are needed in 
coarse-grained simulation models which are used to 
describe the macroscopic behaviour and as a practical 
consequence thereof do not resolve all the relevant length 
and time scales. This multi-scale modelling approach has 
been used by the authors previously for dense gas-solid 
flows (van der Hoef et al., 2004, 2006) and for dispersed 
gas-liquid two-phase flows (van Sint Annaland et al., 2003 
and Deen et al., 2004a, 2004b) and can in principle be 
used for other types of multiphase flow as well. 
Our model is based on a combined Front Tracking (FT) 
approach. Front Tracking methods have been developed 
and extensively used by Tryggvason and co-workers 
(Unverdi and Tryggvason, 1992; Esmaeeli and 
Tryggvason, 1998a, 1998b and Tryggvason et al., 2001) to 
a wide variety of very complex free surface problems. In 
FT an unstructured dynamic mesh is used to represent and 
track the interface explicitly by a number of 
interconnected marker points. The Lagrangian 
representation of the interface avoids the necessity to 
reconstruct the interface from the local distribution of the 
fractions of the phases and, moreover, allows a direct and 
accurate calculation of the surface tension force 
circumventing the (problematic) computation of the 
interface curvature. An additional advantage of the FT 
approach is given by the fact that artificial merging of 
interfaces, as encountered in Lattice Boltzmann (LB) and 
Volume of Fluid (VoF) models, can be avoided allowing 
for the study of collective motion of gas bubbles (swarm 
behaviour) and induced mixing and suspension of the 
particulate phase. This method, however also possesses a 
number of disadvantages among which the rather complex 
implementation in a computer code and problems with 
volume conservation should be mentioned. These 
problems can however be overcome as reported by 
Dijkhuizen et al. (2005a, 2005b). They successfully 
applied the FT method to the simulations of the 
traditionally (very) difficult air-water system (Scardovelli 
and Zaleski, 1999). 
The motivation of this work is to develop a method to 
investigate heat transfer in multiphase flow systems, as 
this is a relevant topic for the chemical engineering 
industries. Most work on this topic is based on empirical 
correlations, while underlying fundamental knowledge of 
the interplay between multiphase hydrodynamics and heat 
transfer is largely lacking. A model that describes all 
relevant details of the flow and heat transfer can be used 
to provide the desired fundamental knowledge. 
The organisation of this paper is as follows: first the 
description of the model is given followed by a brief 
description of the numerical solution method. 

Subsequently the results are presented and discussed and 
finally the conclusions are presented. 

MODEL DESCRIPTION 
For incompressible multi-material flows the Navier-Stokes 
equations can be combined into a single equation for the 
fluid velocity u  in the entire domain of interest taking 
into account surface tension through a local volumetric 
surface force Fσ accounting for the presence of the 
dispersed phase. The governing conservation equations for 
unsteady, incompressible, Newtonian, multi-fluid flows 
are given by the following expressions:  
 
 ( )u 0∇ ⋅ =  (1) 

 
( ) ( )

[( ) ( ) ]T

u uu p
t

u u

g

F
σ

ρ ρ ρ

μ

∂
+ ∇ ⋅ = −∇ + +

∂

∇ ⋅ ∇ + ∇ +

 (2) 

 
where the local averaged density ρ  and viscosity μ  are 
evaluated from the local distribution of the phase indicator 
or colour function function F which is governed by the 
Poisson equation given below (Unverdi and Tryggvason, 
1992), where the vector quantity G  contains the infor-
mation on the spatial distribution of the interface: 
 
 2 F G∇ = ∇ ⋅  (3) 
 
the treatment of which will be discussed in more detail in 
the following section. For the local average density ρ 
linear weighing of the densities of the continuous (1) and 
dispersed phase (2) is used:  
 
 

1 (1 )F F 2ρ ρ= + − ρ  (4) 
 
Similarly, the local average dynamic viscosity can also be 
obtained via linear averaging of the dynamic viscosities of 
the continuous (1) and dispersed phase (2). As an 
alternative, more fundamental approach recently proposed 
by Prosperetti (2001), the local average viscosity can be 
calculated via harmonic averaging of the kinematic 
viscosities of the involved phases according to the 
following expression: 
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For certain multi-fluid flows such as parallel flow of two 
immiscible liquids Eq. 5 offers a better representation of 
the tangential stress condition at the interface. However, 
for systems with a high density and viscosity ratio the 
advantage of using Eq. 5 instead of linear weighing to 
evaluate the dynamic viscosity is less pronounced. 
Nevertheless, for all computations reported in this paper 
Eq. 5 was used to compute the local average viscosity. 
The thermal energy equation is given by: 
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where the volumetric heat capacity ρCp and the local 
average conductivity λ are computed respectively from 
the following equations: 
 
  (7) 1 ,1 2 ,2(1 )p pC F C F Cρ ρ ρ= + − p
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extending respectively Eqs. 4 and 5 to the thermophysical 
properties. 

NUMERICAL SOLUTION METHOD 

Computation of the flow and temperature fields 
The Navier-Stokes equations are solved with a standard 
finite volume technique on a staggered rectangular three-
dimensional grid using a two-step projection-correction 
method with an implicit treatment of the pressure gradient 
and explicit treatment of the convection and diffusion 
terms. A second order flux delimited Barton-scheme 
(Centrella and Wilson (1984)) is used for the discretisation 
of the convection terms and standard second order central 
finite differences for the diffusion terms. For the thermal 
energy equation the conduction terms are treated 
implicitly and the convection terms explicitly. We use a 
robust and very efficient Incomplete Cholesky Conjugate 
Gradient (ICCG) algorithm to solve the Pressure Poisson 
Equation (PPE) and the matrix equation originating from 
the discretized thermal energy equation. 

Computation of the density field 
The spatial distribution of the phase indicator function F 
for both dispersed phases can be obtained from the 
location of the triangulated interface by solving a Poisson-
equation, following the method proposed by Unverdi and 
Tryggvason (1992): 
 
 2 ( )m m m

m

F G D x x n∇ = ∇ ⋅ = ∇ ⋅ − Δ∑ s  (9) 

 
where the summation is carried out over all surface 
elements (markers) m representing the interface, using mn  
to denote the outwardly pointing normal on interface 
element m and Δsm its surface area. The function D 
represents a numerical approximation of the Dirac- 
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Figure 1: Surface tension force exerted by three 
neighbouring surface elements on the central surface 
element. 
 

function normalised to the cell volume. For the 
distribution function D we typically use volume-
weighing, but a distribution function as suggested by 
Peskin (1977) can be applied as well, however, at the 
expense of a significantly increased size of the 
computational stencil. 

Computation of the surface force 
Following Unverdi and Tryggvason (1992) the surface 
force acts via a source term Fσ in the momentum equation 
which only acts in the vicinity of the interface. However, 
our method avoids the explicit computation of the 
curvature of the interface, but instead uses the following 
equation as the starting point for the net surface force ,m sF  
acting on a single surface element m: 
 

 , ( )m sF t n dsσ= ×∫  (10) 

  
or its discrete equivalent (see Fig. 1) given by: 
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k
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where kt is the tangent vector (or edge) shared by 

element m and neighbouring element k and kn  its unit 
normal vector. The summation in Eq. 11 needs to be 
carried out over all three edges of the element. The 
tangent vectors can be readily obtained from the known 
positions of the three corner points of the element. Once 
the tangent vectors are known the unit normal vector can 
be easily found from the cross product of two different 
tangent vectors. Eqs. 10 and 11 give the net surface 
tension forces acting on a single surface element m and 
needs, for each separate edge k of the element m, to be 
distributed to the Eulerian grid to obtain the volumetric 
surface force appearing in the momentum equation. Since 
the control volumes for momentum usually contain more 
than one surface element, the individual element 
contributions need to be summed. Thus, in our model we 
compute the volumetric surface force from: 
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where in addition density weighing is invoked to avoid 
distribution of the surface force to cells that have a very 
low liquid volume fraction (Deen et al., 2004b). This 
treatment of the surface forces produces a stabilising 
effect on the simulation of systems with a very high 
density ratio and pronounced surface tension effects (i.e. 
small air bubbles in water).  
Eq. 9 is again solved using standard second order finite 
difference approximations for the spatial derivatives. The 
resulting linear equation system is again solved with a 
robust and very efficient ICCG algorithm. The corner 
points of the surface elements (markers) are moved with 
an interpolated velocity field using a simple first order 
temporal integration method. Since the interface mesh 
continuously deforms and stretches dynamic remeshing is 
applied to maintain a proper spatial distribution of the 
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markers. We use basically the same remeshing procedures  
 

 
Figure 2: Bubble diagram of Grace (1973) (also see Clift 
et al., 1978) for the shape and terminal rise velocity of gas 
bubbles in quiescent viscous liquids.  
 
as reported by Unverdi and Tryggvason (1992) consisting 
of addition, deletion and reshaping of surface elements. 
Initially typically 30,000 to 100,000 markers are used to 
represent the interface of a single bubble. 

RESULTS 
For a systematic validation of the FT model we refer to 
van Sint Annaland et al. (2006). They performed 
extensive calculations for gas bubbles rising in quiescent 
viscous liquids and demonstrated that the computed 
terminal rise velocities and shapes of the bubbles agreed 
very well with those obtained from the Grace diagram 
(Grace, 1973; Clift et al., 1978) over a very wide range of 
physical properties, while using a high density and 
viscosity ratio  
characteristic for gas-liquid systems. For reference 
purposes a copy of this diagram, taken from Clift et al. 
(1978), is reproduced in Fig. 2 where the dimensionless 
Morton (M), Eötvös (Eo) and Reynolds (Re) numbers are 
given by: 
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The equivalent diameter de is defined as the diameter of a 
spherical bubble with the same volume as the bubble 

under consideration. In the Reynolds number v∞ appears 
which represents the terminal rise velocity of the bubble.  
 

* 

Computational grid 50x50x200 (-) 
Grid size 0.0005 m 
Time step 0.0001 s 
Initial bubble radius  0.005 m 
Liquid density 1000 kg/m3

Liquid viscosity 0.1 kg/(m.s) 
Liquid heat capacity 1000 J/(kg.K) 
Liquid heat conductivity 10 W/(m.K) 
Gas density 10 kg/m3

Gas viscosity 0.001 kg/(m.s) 
Gas heat capacity 1000 J/(kg.K) 
Gas heat conductivity 0.025 W/(m.K) 
Surface tension 0.1 N/m 
Initial gas/liquid temperature 293.0 K 
Hot wall temperature 393.0 K 

Table 1: Data used for the simulation with hot right 
wall. 

Wall-liquid heat transfer for step change in wall 
temperature 
Here we apply the extended FT-model to predict the heat 
exchange rate between a liquid and a wall with a step 
change in the wall temperature. For the simulations (see 
Table 1 for the data) an initially quiescent liquid phase 
was assumed with a uniform temperature of 293.0 K. The 
bubble was released with an initial spherical shape (initial 
diameter 0.01 m) with its center at one bubble diameter 
distance from the bottom wall whereas its distance from 
the hot wall was 0.006 m. In the depth, i.e. the y-direction 
the bubble was initially positioned in the center. No-slip 
boundary conditions were imposed at the domain walls. 
For the thermal energy equation all walls were assumed 
adiabatic with the exception of the right wall (x=d=0.025 
m) that was kept at a fixed temperature of 393.0 K.  
In Fig. 3 a number of snapshots are given showing the 
rising bubble together with the computed temperature 
distribution in the central xz-plane of the column. While 
the bubble accelerates to its final speed it attains an 
ellipsoidal shape (as expected on basis of the Grace 
diagram) and moves away from the wall. The Morton and 
Eötvös number for this case are respectively 
approximately equal to 10-3 and 10 which, according to 
the Grace diagram, should correspond with a terminal 
Reynolds number of 22 (case indicated with an asterisk in 
Fig. 2) which exceeds the computed Reynolds number of 
18. This is to be expected since the width of the 
computational domain amounts only 2.5 times the 
(equivalent) bubble diameter. Moreover the bubble moves 
relatively close to the hot wall which will lead to an 
additional retardation. Van Sint Annaland et al. (2006) 
showed that the wall effect becomes negligible small in 
case the size of the domain is 3 to 4 times larger than the 
bubble diameter. They also found that the bubble should 
contain 20 computational cells in each direction to obtain 
sufficiently accurate results. Since in FT the bubble 
volume is not intrinsically conserved it was verified that 
the change in bubble volume was negligible. 
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Figure 3: Snapshots at different times of the rise of a gas bubble through an initially quiescent liquid in contact with a hot 
wall. From left to right: t=0.05 s, t=0.10 s, t=0.15, t =0.20 s, t=0.25 s and t=0.30 s after release of the bubble from its initial 
position (x=0.0190 m, y=0.0125 m, z=0.0100 m). Additional data are given in Table 1. 
 
From the computed temperature distribution the wall-to-
liquid heat transfer coefficient was computed and 
normalized with the instantaneous heat transfer coefficient 
obtained from the penetration theory: 
 

 1 1 ,1p
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The corresponding expression for the Nusselt number Nup 
is given by: 
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where in both expressions (16a) and (16b) the 
thermophysical properties refer to the (continuous) liquid 
phase. Typical results are presented in Fig. 4 in terms of 
the ratio of the Nusselt numbers plotted as function of the 
vertical (i.e. z) co-ordinate along the wall for the central 
plane in the depth direction at t=0.05 s and t=0.30 s after 
release of the bubble from its initial position. From 
inspection of this profile we clearly see that the local heat 
transfer coefficient reaches its maximum at the equator 
position of the bubble. Below this position the local heat 
transfer coefficient first decreases and then increases with 
increasing distance from the bubble. The existence of the 
maximum at the equator position of the bubble can be 
explained by the fact that the bubble locally reduces the 
thickness of the thermal boundary layer leading to a 
higher heat transfer coefficient. The minimum below the 
bubble is caused by the heated liquid which flows down 
between the bubble and the wall. Effectively this leads to 
an increased thickness of the thermal boundary layer and 
consequently a decreased local heat transfer coefficient. 
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Figure 4: Profile of the instantaneous dimensionless heat 
transfer coefficient (left) and corresponding bubble 
position (right) for t=0.05 s (top) and t=0.30 s (bottom). 
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Figure 5: Snapshots at different times of the rise of a gas bubble through an initially quiescent liquid with (initial) linear 
temperature profile in the x-direction. From left to right: t=0.05 s, t=0.10 s, t=0.15, t =0.20 s, t=0.25 s and t=0.30 s after 
release of the bubble from its initial position (x=0.0125 m, y=0.0125 m, z=0.0150 m). Additional data are given in Table 2. 
  

Wall-liquid heat transfer for equilibrium system 
In the first example a system was considered in which a 
step change in the temperature of one of the confining 
walls (i.e. x=d) was imposed at t=0 s. In the second 
example (see Table 2 for the data) we will consider a 
system where initially thermal equilibrium prevails and 
the left and right wall are kept at a temperature of 
respectively T0=293.0 K and T1=393.0 K whereas in the 
quiescent liquid a linear temperature profile in the x-
direction was taken as the initial condition: 
 

 1 0( ) ( )
x

T x T T T
d

= − + 0  (17) 

 
Computational grid 50x50x200 (-) 
Grid size 0.0005 m 
Time step 0.0001 s 
Initial bubble radius  0.01 m 
Liquid density 1000 kg/m3

Liquid viscosity 0.1 kg/(m.s) 
Liquid heat capacity 1000 J/(kg.K) 
Liquid heat conductivity 10 W/(m.K) 
Gas density 10 kg/m3

Gas viscosity 0.001 kg/(m.s) 
Gas heat capacity 1000 J/(kg.K) 
Gas heat conductivity 0.025 W/(m.K) 
Surface tension 0.1 N/m 
Initial gas/liquid temperature Linear distribution in x-

direction K 
Left wall temperature (x=0) 293.0 K 
Right wall temperature (x=d) 393.0 K 
Table 2: Data used for the simulation with imposed 
linear temperature distribution. 
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Figure 6: Profile of the instantaneous Nusselt number 
(left) and corresponding bubble position (right) for t=0.05 
s (top) and t=0.30 s (bottom). 
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where d is the size of the domain in the x-direction. For 
this (steady state) system the Nusselt number for the wall-
to-liquid heat transfer is given by: 
 

 
1

1w
w

d
Nu

α

λ
= =  (18) 

 
The pertubation of the system is created by the rising 
bubble which is released with an initial spherical shape 
(initial diameter 0.02 m) in the center of the domain at 
0.015 m distance from the bottom wall. No-slip boundary 
conditions were imposed at the domain walls whereas for 
the thermal energy equation all walls were assumed 
adiabatic with the exception of the left (x=0) and right 
wall (x=d). In Fig. 5 a number of snapshots are given 
showing the rising bubble together with the computed 
temperature distribution in the central xz-plane of the 
column. Due to the fact that the domain size in the lateral 
directions only amounts 1.25 times the initial bubble 
diameter (slug regime), the bubble shape is considerably 
influenced by the presence of the confining walls. The 
Morton and Eötvös number for this case are respectively 
approximately equal to 10-3 and 40 which, according to 
the Grace diagram, should correspond with a terminal 
Reynolds number of 60 which, as expected, considerably 
exceeds the computed Reynolds number of 32. Also in 
this case it was verified that the change in bubble volume 
was negligible. 
In Fig. 6 the instantaneous Nusselt number (defined 
according to Eq. 18) is plotted as function of the vertical 
(i.e. z) co-ordinate along the wall for the central plane in 
the depth direction at t=0.05 s and t=0.30 s after release of 
the bubble from its initial position. Similar to the first case 
a maximum in the heat transfer coefficient is found but 
now at the base of the bubble where the lateral diameter is 
at its maximum. Below the bubble the heat transfer 
coefficient is again relatively low. 

CONCLUSIONS 
In this paper a simulation model was presented for the 
Direct Numerical Simulation (DNS) of heat transport in 
dispersed gas-liquid two-phase flow using the Front 
Tracking (FT) approach. The FT model developed and 
validated by van Sint Annaland et al. (2006) was 
supplemented with a thermal energy equation to extend 
the model to non-isothermal conditions. The extended 
model was applied to predict the local heat transfer 
coefficients between the liquid and a hot wall kept at a 
fixed temperature. It was found that the profile of the heat 
transfer coefficient exhibits a maximum in the vicinity of 
the bubble due to the locally decreased thickness of the 
thermal boundary layer whereas a region of relatively low 
heat transfer coefficient exists below the bubble which is 
attributed to local thermal saturation caused by the 
downward flowing liquid between the bubble and the hot 
wall. 
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