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ABSTRACT 
Gas-particle flows in fluidized beds and circulating 
fluidized beds are inherently unstable, and they manifest 
fluctuations in velocities and local suspension density over 
a wide range of length and time scales. In riser flows, 
these fluctuations are associated with the random motion 
of the individual particles and with the chaotic motion of 
particle clusters. Coarse-grid simulations for industrial 
scale gas-particle flows will clearly not resolve the 
structures which exist on sub-grid length scales; however, 
these small-scale unresolved structures are known to 
affect the resolved flow characteristics. We pursue a 
filtered equations approach in which the influence of the 
small scale structures appears as residual correlations for 
which constitutive models should be constructed. In our 
present study, we examine the filter-width dependence of 
correlations in the filtered two-fluid model through three-
dimensional (3-D) calculations and demonstrate that the 
filtered drag coefficient extracted from the analysis of 
computational data generated through highly resolved 3-D 
simulations of a kinetic theory based two-fluid model 
decreased systematically with increasing filter width. We 
also show that both 2-D and 3-D simulations yield 
qualitatively similar results.  

NOMENCLATURE 
d particle diameter 
ρg gas density  
ρs      particle density 
ep coefficient of restitution    
μg gas viscosity 
Pg pressure 
φ   particle phase volume fraction 
vt  terminal settling velocity 

sσ  particle phase stress tensor 

gσ  gas phase stress tensor 

f  gas-particle interaction force 
g  gravitational acceleration 

d  rate of strain tensor 
Ψ  filtered drag 

sΘ  filtered particle phase stress 

u  local average gas velocity 
v local average particle velocity 

u  volume-weighted gas phase velocity 

v  volume-weighted particle phase velocity 

u  filtered (region-averaged) gas phase velocity 
v   filtered (region-averaged) particle phase velocity 

filteredβ  filtered drag coefficient 

INTRODUCTION 
Chemical reactors that take the form of fluidized beds and 
circulating fluidized beds are widely used in energy-
related and chemical process industries. The number of 
particles present in most gas-particle flow systems is 
large, rendering detailed description of the motion of all 
the particles and fluid elements impractical. Hence, two-
fluid model (TFM) equations [1], where the gas and 
particle phases are treated as inter-penetrating continua, 
are commonly employed. The general form of the TFM 
equations is fairly standard and this has permitted the 
development of numerical methods geared towards 
solving them. Open-source packages such as MFIX [2, 3] 
and other commercial software (e.g., Fluent®) can readily 
be applied to perform transient integration (of the 
discretized forms) of the TFM equations. 
  
The Stokes number associated with the particles in many 
gas-particle mixtures is sufficiently large that particle-
particle and particle-wall collisions do occur; furthermore, 
when the particle volume fraction is below ~ 0.5, the 
particle-particle interactions in these systems occur largely 
through binary collisions. The particle phase stress in 
these systems is widely modelled through the kinetic 
theory of granular materials (e.g., see [1, 4]).  
 
Gas-particle flows in fluidized beds and circulating 
fluidized beds are inherently unstable, and they manifest 
fluctuations in velocities and local suspension density over 
a wide range of length and time scales. In riser flows, 
these fluctuations are associated with the random motion 
of the individual particles (typically characterized through 
the granular temperature) and with the chaotic motion of 
particle clusters, which are repeatedly formed and broken 
apart. The origin of these clusters is well understood, and 
it is now well established that TFM equations are able to 
capture their existence in a robust manner [1,4]; however, 
to resolve the clusters at all length scales, extremely fine 
spatial grids are necessary [4]. Due to computing 
limitations, the grid size used in simulating industrial scale 
gas-particle flows is invariably much larger than the 
length scales of the finer particle clusters.  Such a coarse-
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grid simulation will clearly not resolve the structures 
which exist on sub-grid length scales.   
 
Agrawal et al. [4] established that the clustered state 
shows drastically different properties than a uniform field 
of particles and argued that, in coarse-grid simulations 
where the fine details of the particle clusters are not 
resolved, the influence of the sub-grid structures must be 
accounted for through appropriate sub-grid models. In 
other words, the TFM must first be coarse-grained [4-7] 
before it is simulated using coarsely spaced spatial grids. 
In these coarse-grained equations, the consequences of the 
flow structures occurring on a scale smaller than a chosen 
filter width appear through correlations for which closure 
relations should be derived or postulated.  
 
Adopting the approach pursued in large eddy simulations, 
one can start with the TFM equations and perform a 
filtering operation, where the averaging is done over a 
“filter” length scale which is somewhat larger than the 
grid size to be used in the coarse-grid simulation of large 
scale process vessels and over high (temporal) 
frequencies. The dominant terms in the filtered equations 
can be recast in exactly the same form as the original TFM 
equations; however, effective stresses and the interphase 
interaction force term will now involve additional 
contributions resulting from the filtering process. 

 
Coarse-graining is achieved in our studies by filtering a 
kinetic-theory based TFM [4-6]. Andrews et al. [6] carried 
out highly resolved simulations of a kinetic-theory based 
TFM for gas-particle flows in two-dimensional (2-D) 
periodic domains, filtered the results and exposed the 
filter-width dependence of correlations appearing in the 
filtered equations of motion. The objective of the present 
study is to examine the filter-width dependence of 
correlations in the filtered two-fluid model through three-
dimensional (3-D) calculations. We will demonstrate that 
both 2-D and 3-D simulations yield qualitatively similar 
results. 

KINETIC THEORY BASED TWO-FLUID MODEL  
 
In the kinetic theory approach, the continuity and 
momentum equations for the gas and particle phases are 
supplemented by an equation describing the evolution of 
the fluctuation energy (a.k.a. granular energy) associated 
with the particles, which is used to compute the local 
granular temperature; the particle phase stress is then 
expressed in terms of the local particle volume fraction, 
granular temperature, rate of deformation and particle 
properties. The kinetic theory model equations and the 
associated constitutive relations employed in our study 
can be found in Agrawal et al. [4]. 
 
We have performed highly resolved 2-D and 3-D 
simulations of these model equations for a fluidized 
suspension of particles in large periodic domains, using 
the MFIX platform [2, 3]. Although the filtering operation 
does not require a periodic domain, statistical averages 
can be gathered efficiently from periodic-domain 
simulations [6].  In each simulation, after an initial 
transient period which depends on the initial conditions, 
persistent, time-dependent and spatially inhomogeneous 
structures develop. Figures 1 and 2 illustrate snapshots of 

the particle volume fraction field in 2-D and 3-D systems 
with domain-average particle volume fraction of 0.05, 
respectively. The inhomogeneous structures in the 2-D 
system are in the form of clusters and streamers, whereas 
those in the 3-D system are globular and filament-like.  As 
shown in these figures, the sizes of the filament-like 
strands in both systems are of comparable width. The grid 
resolution used in our simulations was found to yield 
essentially grid-size independent statistical averages in 2-
D simulations, and hence was taken as adequate for 3-D as 
well.  
 
Using the computational “data” generated through such 
simulations of the kinetic theory based model equations, 
we have extracted filtered drag coefficient and particle 
phase stresses as functions of the local particle volume 
fraction and the size of the spatial averaging window (i.e. 
filter size). 

 
Figure 1: A snapshot of the particle volume fraction field 
in a large periodic domain of size 16.448 x 16.448 
dimensionless units.  The domain-average particle 
volume fraction, 0.05.sφ =  

 
In this study, we have performed 2-D and 3-D simulations 
with domain-average particle volume fractions of 0.05, 
0.10, 0.20, and 0.35. Although all our analyses are 
performed in terms of dimensionless variables, it is useful 
to present a typical set of dimensional quantities for a 
system practical interest. See Table 1. These correspond to 
75 μm Fluid Catalytic Catalyst particles and ambient air. 
For the 3-D simulations, we have used a cubic domain of 
size 16.448 x 16.448 x 16.448 dimensionless units with 64 
x 64 x 64 grid points and have compared the filtered 
quantities for four filter sizes up to 2.056 dimensionless 
units. These are equivalent to domain and maximum filter 
size of 8 cm and 1 cm, respectively, for the FCC – 
ambient air system. The corresponding 2-D simulations 
were performed in a square domain of size 16.448 x 
16.448 dimensionless units with 64 x 64 grid points. The 
largest 2-D filter size is 2.056 dimensionless units. 
 
As mentioned earlier, we filter the microscopic two-fluid 
model to average over the small-scale structures that we 
do not intend to capture in the coarse-grid simulations. For 
this step, we start with a highly resolved simulation of 
microscopic two-fluid equations. Initially, we had a 
homogeneously fluidized system of uniformly sized 
particles. The system is isothermal, and there are no 
reactions, which means the energy and species 
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conservation equations are turned off in the simulation.  
After an initial transient period depending on the initial 
conditions, persistent spatially inhomogeneous structures 
start to form, as shown in figure 1 and 2, and the system 
reaches a statistical steady state.  Filtering, or region 
averaging, is turned on, which involves volume-weighted 
averaging the variables necessary for developing the 
constitutive relationships in regions with sizes ranging 
from one grid to the domain size. In such a filtering 
process, the region-averaged (filtered) data are sorted out 
into bins of filtered particle volume fraction. The filtered 
quantities were evaluated and averaged within each bin. 
From such bin statistics, the filtered drag coefficient, 
filtered particle-phase normal stress, and filtered particle-
phase viscosity were calculated as functions of filtered 
particle-phase volume fraction. In a filtered quantity vs. 
particle-phase volume fraction plot for various filter sizes, 

each point represents the average of many realizations. 
These different realizations came from snapshots gathered 
at various times. To ensure that the snapshots are not too 
closely correlated, snapshots were gathered only every 50-
100 time steps. 
__________________________________ 
d  Particle diameter   7.5 x 10-6 m 
ρs  Particle density   1500 kg/m3

ρg Gas density    1.3 kg/m3

μg Gas viscosity    1.8 x 10
-5

 kg/m⋅s  
ep Coefficient of restitution     0.9    

tv  Terminal settling velocity 0.2184 m/s 
2
tv

g
 Characteristic length  0.00487 m 

tv

g
 Characteristic time   0.0223 s 

____________________________________ 

Table 1: Physical properties of gas and solids. 

The particle phase momentum equation used in the highly 
resolved simulations for the particle phase is given in 
equation 1. 
 

( )s
s s g

(ρ )
 ρ

t
 φ

sφ φ ρ
∂

+ ∇ ⋅ = −∇ ⋅ − ∇ ⋅ + +
∂

⎡ ⎤
⎢ ⎥⎣ ⎦

v
vv σ σ f φg     (1) 

 
where φ  is the volume fraction of particles;  is the local 

average velocity of the particle phase; 

v

sρ  is the particle 

phase density; sσ and gσ are the stress tensors associated 

stress tensors associated with the two phases expressed in 
a compressive sense; is the interaction force between 
the phases per unit volume of the bed; 

f
g is the 

gravitational acceleration. It is assumed that the gas-
particle interaction force, , is only due to drag, and the 
Wen-Yu drag correlation [1] has been used in our 
simulations. Upon filtering, the momentum equation for 
the particle phase takes the form given by equation 2.  

f

 

 
Figure 2: A snapshot of the particle volume fraction 
field in a large periodic domain of size 16.448 x 
16.448 x 16.448 dimensionless units.  The domain-
average particle volume fraction, 0.05.sφ =  

( )(ρ )s ρ +  + s g
t

  s s
φ

φ φ ρ φ
∂

+ ∇ ⋅ = −∇ ⋅ − ∇ ⋅
∂

v
vv σ gΘ Ψ  (2) 

 
where sΘ is the filtered particle phase stress; Ψ is the 

filtered drag; v  is the filtered (region-averaged) particle-
phase velocity. The filtered velocities for the particle and 
gas phases are given in equations 3 and 4.  
 

φ

φ
=
⎡ ⎤
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⎣ ⎦

v
v      (3) 

( )
( )
1

1

φ

φ

−
=

−

⎡ ⎤
⎢ ⎥
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u
u     (4) 

The filtered particle phase stress represented in equation 5 
involves the filtered particle phase stress from the kinetic 
theory and the Reynolds stress term; similarly the filtered 
drag given in equation 6 involves the average of the drag 
in the original particle phase momentum balance plus the 
term involving gas pressure fluctuation. 
 

( )s sρs φ ′ ′= +σ v vΘ    (5) 

 
=    gφ ′− ∇ ⋅fΨ σ     (6) 

 
Here, ′v =  - v v , where angle bracket denotes average 

over the filter region and v is the volume-weighted 
particle phase velocity in the filtered region. 
 

φ

φ
=

v
v      (7)  

( )
( )
1-

1 -

φ

φ
=

u
u     (8) 

 
v is the ensemble average of v  over many realizations. 

Similarly, u  is the ensemble average of the volume-

weighted gas velocity in the filtered region, u .  
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For sΘ  and  we seek simple constitutive models of 

the form:  

Ψ

 
  =  -  2s s, filtereds, filtered

μP dΘ   (9) 

(filteredβ= u vΨ )−     (10) 

 
Each realization of the filtered drag coefficient is thus 
evaluated through the following averaging over the 
filtering region. Here the y-direction is pointing vertically 
up. 
 

( )u v

(1 )u v

(1 )

g g
y y

filtered
y y

dP dP
dy dy

β φ φ

β
φ φ

φ φ

− − + ⋅

=
−

−
−

⎛ ⎞
⎜ ⎟
⎝ ⎠ (11) 

 

filteredβ is then found by averaging filteredβ over many 

realizations.  
 
The new drag  is now defined as the product of a 
filtered drag coefficient (see Equation 11) and the filtered 
slip velocity. It should be noted that the filtered drag 
coefficient for a filter size equal to the grid size 
corresponds to the original Wen & Yu drag coefficient 
used in our highly resolved computations.  

Ψ

 
The filtered particle-phase horizontal normal stress and 
viscosity given in equations 12 and 13, respectively, 
include the pressure arising from the streaming and 
collisional parts captured by the kinetic theory and the 
sub-filter-scale Reynolds-stress like velocity fluctuations. 
The filtered particle-phase horizontal stress for a filter size 
equal to a grid size corresponds to the kinetic theory 
pressure. Similarly, the filtered particle-phase viscosity for 
a filter size of one grid point corresponds to the kinetic 
theory viscosity.  
 

s x ,x

x x
s x x s ,

 P  v v

v v
v v

s, filtered,xx s kinetic

s kinetic

ρ φ

φ φ
ρ φ ρ

φ

′ ′= + Ρ

= − + Ρ
⎡ ⎤

⎡ ⎤⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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  (12) 
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φ φ
φ
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−
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∂∂
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⎢ ⎥
⎣ ⎦
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where square bracket denotes the ensemble average of the 
volume-weighted quantities in the filtered region. 
 
The filtered particle-phase horizontal normal stress and 
viscosity described below have been made dimensionless 
using particle density, terminal velocity and acceleration 
due to gravity as characteristic density, velocity and 
acceleration. It should be kept in mind that the trends 

discussed in this study with respect to volume fraction 
apply for the range of volume fractions shown in the 
corresponding figures. 
 

Filtered Drag Coefficient  
In the limit of Stokes drag and no hydrodynamic 
interaction between particles, the drag coefficient would 

be 218
g

dμ φ . We define dimensionless filtered drag 

coefficient as 2 18
filtered g

dβ μ φ . 

 
In Figures 3 and 4 the dimensionless filtered drag 
coefficient for 2-D and 3-D systems are presented as 
functions of particle volume fraction for four filter sizes 
used in the analysis. The filtered particle-phase drag 
coefficients extracted from 2-D and 3-D simulations 
manifest qualitatively similar dependence on filter size 
and particle-phase volume. For a given region size, the 
filtered drag coefficient initially decreases with increasing 
particle-phase volume fraction. This is due to the 
organization of particles into clusters result in an increase 
in the drag coefficient. We also see that the filtered drag 
coefficient decreases with region size in both regions.  
The explanation for this trend is that the larger region 
sizes will contain larger particle clusters and offer greater 

opportunities for the gas to bypass through. It is clear from 
the figures 3 and 4, the filtered drag coefficient from the 
3-D case is lower for a given filter size than that from the 
2-D case. This result was also expected since 3-D 
inhomogeneous structures, in the form of 3-D globular 
and filaments (see Figure 1), allow the gas bypass these 
structures more than the 2-D clusters and streamers (see 
Figure 2), which take the form of cylinders and sheets if 
extended to 3-D. 
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Figure 3: The dimensionless filtered drag coefficient 
calculated by filtering data gathered from 2-D 
simulations.  The filtered drag coefficients were 
calculated for various filter sizes, listed in the legend 
in dimensionless units.  Data used for filtering were 
generated by running simulations for domain-
average particle volume fractions of 0.05, 0.10, 0.20, 
and 0.35.  
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Filtered Particle-phase Horizontal Normal Stress 
The filtered particle-phase horizontal normal stresses 
extracted from 2-D and 3-D simulations manifest similar 
trends over the range of volume fractions presented in 
Figures 5 and 6. However, the horizontal stress in 3-D is 
noticeably smaller than that in 2D. The difference is 
pronounced for larger filter sizes. Both Figures 5 and 6  
illustrate that the filtered particle-phase horizontal normal 
stress is dependent on the local particle volume fraction 
and the filter size. The filtered particle phase normal 
stresses increase as the filter size is increased for a given 
volume fraction. It is also clear from the figures that the 
sub-filter-scale stress is significantly larger than that 
captured by the kinetic theory for both 2-D and 3-D cases. 
In Figures 5 and 6, the filtered horizontal normal stress for 
a filter size equal to the grid size corresponds to the 
kinetic theory pressure. 

 
Filtered Particle-phase Viscosity 
Figures 7 and 8 illustrate the dependence of the filtered 
viscosity on the filter size used in this analysis and local 
particle volume fraction in 2D and 3D systems, 
respectively. The filtered particle-phase viscosity 
extracted from 2-D and 3-D simulations also manifest 
similar trends, and they are qualitatively comparable over 

the range of volume fractions presented in the figures. In 
both 2-D and 3-D cases the filtered particle-phase 

viscosity increases with the filter size. It should also be 
noted that the sub-filter scale viscosity is significantly 
larger than that captured by the kinetic theory. In Figures 
7 and 8, the filtered viscosity for a filter size equal to the 
grid size corresponds to the kinetic theory viscosity. The 
sub-filter fluctuations cause the system to be more 
dissipative on the macro-scale. 
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Figure 4: The dimensionless filtered drag coefficient 
calculated by filtering data gathered from 3-D 
simulations.  Everything else is as in figure 3.   
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Figure 6: Dimensionless filtered horizontal normal 
stress for different dimensionless filter sizes, 
extracted from 3-D simulations. 
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Figure 7: Dimensionless filtered particle-phase 
viscosity for different dimensionless filter sizes, 
extracted from 2-D simulations. 
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Figure 5: Dimensionless filtered horizontal normal 
stress for different dimensionless filter sizes, 
extracted from 2-D simulations.  
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Figure 8: Dimensionless filtered particle-phase 
viscosity for different dimensionless filter sizes, 
extracted from 3-D simulations.   
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SUMMARY 
The filtered drag coefficient extracted from the analysis of 
computational data generated through highly resolved 3-D 
simulations of a kinetic theory based two-fluid model 
decreased systematically with increasing filter width. This 
behaviour is consistent with what was seen earlier in 2-D 
simulations. The filtered particle-phase stresses extracted 
from 2-D and 3-D simulations manifest similar trends. 
Thus, the differences between 2-D and 3-D simulations 
are not qualitative.  
 
This is in marked contrast to what one observes in single 
phase turbulence. This difference between two-phase and 
single phase systems is not surprising, at least in 
retrospect. The energy to sustain the fluctuations motion 
in the gas-particle flows is extracted from mean flow via 
the drag force, which is included in both 2-D and 3-D 
simulations. Hence the addition of a third dimension 
makes only a small (but not qualitative) difference to the 
filtered quantities. 
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