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ABSTRACT 
We investigate numerically the transition to turbulence in 
a flat-plate boundary layer controlled by electromagnetic 
forces. The fluid considered is incompressible, Newtonian 
and low electrically conductive. Similar to boundary layer 
suction, when applying a steady, wall-parallel, and 
streamwise oriented Lorentz force, the Blasius velocity 
profile is transformed to an exponential one. Since the 
critical Reynolds number increases to by two orders of 
magnitude, Transition to turbulence is delayed, and finally 
drag is reduced. 
Direct numerical simulation (DNS) of both linear (2D) 
and nonlinear (3D) stages of the transition process were 
performed, as well as a linear stability analysis (LSA) of 
the intermediate velocity profiles. The obtained results 
confirm the expected increased stability of the controlled 
flow. Transition to turbulence is delayed by either 
damping primary instability, or, in the nonlinear case, by 
suppressing the emerge of Omega-vortices which usually 
preceeds the breakdown to turbulence. Surprisingly, our 
calculations suggest interesting stability characteristics of 
the intermediate velocity profiles. The decay rate of small 
disturbances in DNS is maximum in a region near the 
onset of control and decreases as the velocity profile 
evolves towards the exponential shape. In LSA, critical 
Reynolds numbers of intermediate profiles are found to be 
larger than for the exponential profile. 

NOMENCLATURE 
a actuator’s stripe size x,y,z spatial coordinates 
B magnetic field Z Lorentz f. amplitude 
c complex eigenvalue   
E electric field α wave number 
ex unit vector δ displacement thickn. 
F+ frequency parameter κ mapping parameter 
f frequency μ magn. permeability 
fL Lorentz force density ν kinematic viscosity 
H12 shape parameter ρ fluid density  
j electr. current density σ growth rate 
j0 applied j σE electr. conductivity 
M0 magnetization 
p pressure Subscript indices: 
t time 
Re Reynolds number c critical 
ReM magnetic Reynolds exp exponential profile 
u  velocity = (u,v,w) in inflow 
U∞ reference velocity rms root mean square 
 
 
 

INTRODUCTION 
Much effort has been devoted to laminar flow control (see, 
e.g. the review by Joslin, 1998). A very common actuation 
is homogeneous suction, where the flat plate boundary 
layer asymptotically evolves into a velocity profile of 
exponential shape. Since the critical Reynolds number 
increases from 519 to O(50000) while suppressing further 
boundary layer growth, transition to turbulence is 
substantially delayed, thus reducing drag. Recent 
experimental work by Fransson and Alfredsson (2003) has 
reported a large stabilizing effect of suction on both 
Tollmien-Schlichting (TS) type of instability and on 
transition induced by free-stream turbulence. If the fluid 
under consideration is weakly electrically conducting, 
such as sea water in naval applications, a properly 
designed Lorentz force can achieve similar results as 
proposed by Gailitis and Lielausis (1961). 
Electromagnetic actuation in general has recently received 
a renewed consideration, mainly aimed at drag reduction 
in a turbulent boundary layer (Pang and Choi, 2004, Lee 
and Kim, 2002, Du et al., 2002). 
The stability of intermediate profiles developing during 
transition from Blasius to the asymptotic suction profile 
was studied first by Ulrich (1944) who found a 
monotonically increasing critical Reynolds number. 
Tsinober and Shtern (1967) have investigated the shape of 
the intermediate velocity profiles due to electromagnetic 
actuation, but, to our knowledge, the stability properties of 
these profiles have not yet been studied. 
In this paper, we address the question of how a streamwise 
Lorentz force affects the stability of a transitional 
boundary layer. Since the early, linear stages of transition 
are strictly 2D, we study the control influence on 
emerging TS waves by 2D direct numerical simulation 
(DNS), where the flow field is assumed to be uniform in 
spanwise direction. A linear stability analysis (LSA) of 
intermediate velocity profiles is performed. Late-stage, 
non-linear transitional structures are investigated by 
means of 3D calculations. 

MODEL DESCRIPTION 

Governing Equations 
We consider the flat plate boundary layer flow of an 
incompressible, Newtonian fluid of low electrical 
conductivity. The Navier-Stokes equation, nondimension-
alized using free-stream velocity U∞ and inflow displace- 
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Figure  1: Actuator Design. 
 
ment thickness δin as characteristic scales, then read 
 

 
 
where Rein= U∞ δin/ν is the inflow Reynolds number and ν 
represents the kinematic viscosity. Within conductive 
media, a Lorentz force 
 

 
 
arises from nonparallel electric and magnetic fields, where 
j is the electric current density and B is the magnetic field. 
The current density is determined by Ohm’s law in 
moving media 
 

 
 
Given a weak electrical conductivity σE=O(5 S/m), the 
induced current σE(u×B) is small. In order to achieve a 
reasonably high Lorentz force, an external electric field E 
must be applied which dominates eq. (3). Consequently, 
eq. (2) simplifies to fL=σEE×B. Furthermore, assuming a 
permeability of vacuum μ=4π10-7 Hm, the magnetic 
Reynolds number ReM=μσEνRe is in the order of 10-9. 
Thus, the low induction approximation holds, where B can 
be calculated as if the fluid was at rest (Moreau, 1990). 
Now, both E and B are determined by the shape of the 
actuator only. As shown in Fig. 1, we use an array 
consisting of streamwise aligned, alternating stripes of 
permanent magnets and electrodes of changing 
magnetization orientation and polarity, respectively, flush 
mounted with the flat plate’s surface. Assuming a large 
stripe aspect ratio, Avilov (1998) calculated electric and 
magnetic fields analytically, yielding a wall-parallel, 
purely streamwise oriented Lorentz force. Averaged in 
spanwise direction, the nondimensionalized force density 
finally reads 
 

 
 
It is exponentially decaying in wall-normal direction with 
the maximum found at the wall and a controlling the 
penetration depth of the force. We would like to mention 
that Avilov, Weier, Mutschke, and Gerbeth (1999) found 
this force distribution also directly, i.e. without spanwise 
averaging, by slightly modifiying the actuator design. The 
dimensionless control amplitude Z=(j0M0a²)/(8πρU∞ν) 
describes the ratio of Lorentz and viscous forces, with j0, 
M0, and ρ denoting the applied current density, the 
magnetization of the permanent magnets, and the fluid 
density, respectively. If Z equals unity, momentum loss 
resulting from friction is just balanced by momentum 
input due to Lorentz forcing, and any initial velocity 

 
 
Figure 2: Computational Domain 
 
profile will evolve towards the exponential one. Its 
asymptotic displacement thickness δexp=a/π is again 
determined by the stripe width a. For the studies presented 
here, a=3.34 is chosen, ensuring shortest transition length 
from Blasius to the exponential profile, which occurs if 
the local displacement thickness δ of the Blasius profile 
right at the beginning of the actuator is approximately 1.4 
times the displacement thickness of the asymptotic 
exponential profile δexp (Kneisel, 2004). 

Direct Numerical Simulation 
The governing equations are integrated using a well-
established spectral element solver originally developed 
by Henderson and Karniadakis (1995) which has already 
been applied to various MHD problems, e.g. Posdziech 
and Grundmann (2001), Mutschke et al. (2006). 
Schematically shown in Fig. 2, the rectangular 
computational domain extending over 990 units in 
streamwise direction x and 65 units in wall-normal 
direction y was decomposed into 594 elements of 
polynomial degree 9. A no-slip condition u=0 at the 
bottom wall and outflow conditions at both 
downstream and free-stream boundary were applied. 
Additionally, to prevent any unphysical reflections at the 
outflow boundary, the sponge region technique of Guo, 
Adams, and Kleiser (1996) is used. At inflow x=-200, a 
Blasius profile of Re

0)( =∇⋅ uu

in=360 is chosen, and electromagnetic 
control starts at the origin x=0. For uncontrolled flow, the 
local displacement thickness δ increases up to 3.0, 
yielding a local Reynolds number of Re=1080 at the 
outflow boundary. Similar to Fasel (2002), small 
amplitude disturbances 0.5<F+<4 of nondimensional 
frequency F+=(2πfν/U∞

2)*104 are introduced near the 
inflow boundary by means of an oscillating body force, 
creating TS waves of initial amplitude urms≈0.0006 which 
propagate downstream.  
The local amplitude of a TS wave is then determined by 
finding the maximum root mean square value ûrms of the 
streamwise velocity component over the wall-normal 
direction at given downstream position x. To distinguish 
between stable and unstable flow, a spatial growth rate 
σ=d/dx ln(ûrms)*100 is computed, where σ=0 indicates 
neutral stability. 

Linear Stability Analysis 
In order to get further insight into the stability behaviour 
of local velocity profiles, temporal linear stability analysis 
has been performed. Assuming small velocity 
disturbances Φ(y)exp(ia(x-ct)) to a base profile u(y), 
linearization leads to the Orr-Sommerfeld equation 
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Figure 3: Curves of neutral stability for small values of Z 
obtained from DNS, and comparison with non-parallel 
theory (Herbert and Bertolotti, 1991). 
 
Hereby, real values of α and the real part of c denote wave 
number and phase velocity of the disturbance, 
respectively. Negative imaginary parts of c then signal 
instability of the profile. The boundary conditions are that  
the disturbance and its first derivative have to vanish at 
y=0 and y→∞. We have implemented a Chebyshev tau 
method based on the modifications described by Gardner, 
Trogdon, and Douglas (1989) to avoid spurious 
eigenvalues. An exponential mapping x=2exp(-κy)-1 
transforms between the semi-infinite wall-normal 
coordinate y and the Chebyshev interval [-1,1] of the new 
coordinate x, where κ denotes an additional mapping 
parameter. The discretization procedure results in a 
generalized eigenvalue problem of expansion order N-2 
which is solved by a standard LAPACK procedure. 
Extensive resolution tests and validation runs for both the 
Blasius boundary layer profile and the exponential 
velocity profile have been performed ensuring the 
accuracy of the method. The critical Reynolds number of 
the exponential profile was found to Reexp,c=47119.5 at 
ac=0.16225 and cr=0.15587 at N=102 and κ=0.1 which is 
in excellent agreement to other numerical results 
published in Lakin and Reid (1982). 

RESULTS 

2D Direct Numerical Simulation Results 
In the absence of Lorentz forcing (Z=0), TS waves grow 
and decay corresponding to non-parallel linear stability 
theory reported by Herbert and Bertolotti (1991). Both 
branches of the neutral stability curve in Fig. 3 are well 
reproduced by our DNS. Already when applying weak 
Lorentz force amplitudes Z=0.01 and 0.02, the unstable 
region is reduced. At Z=0.05, TS waves of all investigated 
frequencies are damped within the computational domain. 
Figure 4 shows the behaviour of the growth rate vs. the 
downstream coordinate for three selected TS wave 
frequencies. For the uncontrolled case (lines marked with 
circles), the unstable region (σ>0) between branch I and II 
is clearly visible. In case of control at amplitude Z=1 
(lines without markers), the corresponding growth rates 
are already reduced at x<0 because of a small upstream 
influence due to the elliptic nature of the Navier-Stokes 
equations. Beginning at the onset of control at x=0, σ 
sharply drops and reaches a minimum in a region 
100<x<200. Further downstream, it again increases as the 
velocity profile approaches the exponential state. This 

Figure 4: Evolution of TS wave growth rates for selected 
frequencies during transistion from Blasius to exponential 
profile. Lines with circles: Z=0, lines without markers: 
Z=1. 
 
behaviour is observed for all investigated frequencies. 
Further downstream, below an ûrms level of 10-6, the TS 
waves vanish in numerical noise. 

Linear Stability Analysis Results 
Linear stability analysis has been applied to velocity 
profiles extracted from the above DNS at several x in the 
absence of any disturbance input. As the Lorentz force is 
switched on at x=0, Fig. 5a) and b) show curves of neutral 
stability vs. Reynolds number at three different 
downstream locations. Upstream the Lorentz actuation at 
x=-100, the profile is close to the Blasius shape, resulting 
in a critical Reynolds number only slightly above 
ReBlasius,c=519 (vertical dotted line). Far downstream, at 
x=700, the profile is almost exponential, resulting in a 
critical Reynolds number slightly above Reexp,c (vertical 
dotted line). However, downstream the onset of the force 
at x=100, the critical Reynolds number is clearly larger 
than Reexp,c, that is Rec increases non-monotonically. The 
corresponding velocity profiles and their deviations from 
the exponential profile are shown in Fig. 5c). As can be 
seen from Fig. 6a), the action of the Lorentz force leads to 
intermediate velocity profiles which are more stable than 
the asymptotic exponential profile. For a number of 
boundary layer flows, Fig. 6b) indicates a good correlation 
between the critical Reynolds number and the shape 
parameter H12, the latter being defined as the ratio of 
displacement thickness to momentum thickness. However, 
the profiles near the onset of electromagnetic control 
differ remarkably. 

3D Direct Numerical Simulation Results 
For three-dimensional DNS, the domain extends over 26 
units in spanwise direction where periodicity is assumed, 
allowing for a Fourier ansatz of up to 128 modes. The 
streamwise length is 320 units for Z=0, and 500 units for 
the remaining cases Z=0.1 and Z=0.2. Actuation starts 100 
units downstream of the inflow, again at x=0. Inflow 
Reynolds number is Rein=585. Transition to turbulence is 
initiated by introducing three-dimensional disturbances 
similar to Rist and Fasel (1995). Figure 7 shows vortex 
visualization by means of the λ2-method (Jeong and 
Hussain, 1995) of the flow when applying different 
Lorentz force amplitudes. Due to the secondary instability 
mechanism, three-dimensional disturbances grow rapidly. 
While detailed effects of Lorentz forcing on secondary 
growth rates are currently under examination, the early 
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development of Λ-vortices appears almost unchanged in 
the present calculations. This is probably due to the late 
onset of forcing and rather dramatic secondary growth 
rates, however, the intensity (vorticity) of Λ-vortices 
lowers as Z is increased. In the uncontrolled case Ω-
vortices emerge, followed by the usual breakdown to 
turbulence. Applying a moderate Lorentz force Z=0.1 
delays this process, Λ-vortices are elongated and Ω-
vortices appear further downstream. Finally, the flow 
becomes turbulent again. When further increasing the 
Lorentz force to Z≥0.2, Λ-vortices remain stable and 
dissipate downstream. 

DISCUSSION 
The numerical results presented confirm the expected 
increased stability since TS waves and late stage 
transitional structures are damped when Lorentz force is 
applied. Surprisingly, both DNS and LSA results suggest 
interesting stability characteristics of the investigated 
intermediate velocity profiles. In DNS, strongly 
decreasing growth rates are found near the onset of 
control. In this region, temporal LSA reports superior 
linear stability properties, which clearly differ from the 
monotonic behaviour of the critical Reynolds number 
versus shape parameter known so far. Although this 
method is limited in concluding on spatial stability of the 
boundary layer, it gives first ideas on the influence of the 
Lorentz force. Furthermore, the critical Reynolds number 
of 519 in temporal analysis is well reproduced by TS 
wave growth rates obtained from DNS, as shown in Fig. 1, 
which supports the relevance of the LSA results. We 
would also like to mention that critical Reynolds numbers 
larger than the one for the exponential profile have also 
been found in other problems (Zhilyaev et al., 1991). 

CONCLUSION 
Lorentz force actuation appears to be interesting for 
transition control. However, given the magnetic field 
strength available by today’s permanent magnets, its 
practical application is currently limited due to significant 
power requirements for driving the electrodes. As the 
Lorentz force acts within the boundary layer, another 
appealing application of the actuator could be opposition 
control, where TS waves are damped by superposing 
antiphased waves, also as experimentally force amplitude 

and penetration depth may easily be adjusted. This 
typically requires power input being at least an order of 
magnitude lower. 

Figure 5: Curves of neutral stability vs. Reynolds number obtained from LSA for three velocity profiles: x=-100 (close to 
Blasius profile), x=100 (during transition) and x=700 (almost exponential). a) wave number α, b) phase velocity cr. c) 
corresponding velocity profiles u(y). At u = 0, additionally the deviation from the exponential profile is shown. 

 
Figure 6: Critical Reynolds number a) vs. down-stream 
coordinate x, b) vs. shape parameter H12. Experimental 
data (markers) taken from Wazzan et al. (1981). 
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