Fifth International Conference on CFD in the Process Industries

CS RO, Melbourne, Australia
13-15 December 2006

UNIAXIAL COMPRESSION TEST AND STRESS WAVE PROPAGATION
MODELLING USING SPH

Rajarshi DAS and Paul W. CLEARY

CSIRO Mathematical and Information Sciences, Clayton, Victoria 3168, AUSTRALIA

ABSTRACT

The paper demonstrates the application of Smoothed
Particle Hydrodynamics (SPH) for modelling compi@ss
and stress wave propagation in elastic solids. This
illustrated using a laboratory scale uniaxial coesgion
test under different loading conditions. To valadhe
SPH based approach, the results are compared thimgt
results using the Finite Element Method. The sohsi
predicted by Smoothed Particle Hydrodynamics avado

to agree well. This paper illustrates the potentil
Smoothed Particle Hydrodynamics for accurate and
efficient modelling of solid materials that are mdbed to

compression, and of the resulting elastic wave
propagation.
INTRODUCTION

The uniaxial test is the most widely used mechdnica
testing process for characterising solid materggdaviour.

It is a simple and versatile method for determining
material properties in almost all kinds of material
applications (Bradlewt al., 2001). Uniaxial tests are also
employed to study localised deformation behavisuch

as strain distribution around a notch in a specimen
(Nawrocki et al., 1998). In this test, a standard specimen
is gripped between the jaws of a tensile testinghimee.
One end of the specimen is pushed/pulled by a movin
piston and the other end is held under a fixed jahe
compression or elongation in the specimen is medsiy
extensometers.

Computational modelling offers an improved way of
understanding the deformation behaviour, whichum t
can assist in determining the test parameters (d a
Wang, 2004). For example, in the case of a plagrasion
test, the specimen must be in plain strain conitioring
deformation. This is ensured by a specimen of higect
ratio and wide jaw grips to prevent lateral corticat A
priori modelling of the test can help design theirapm
specimen dimensions and type of apparatus to b tose
ensure a plain strain condition. Modelling can dsaised

to guide the instrumentation process. An initiahlgsis
can determine the areas of large strains in flexibl
materials, hence can warrant locations of measureme
and type of instrumentations required. For examptieo
extensometry technique is useful for measuring elarg
strains and capturing necking processes (insteagsiofy
conventional mechanical extensometers). In thiskwee
use a mesh-free method Smoothed Particle
Hydrodynamics (SPH) (Monaghan, 1992) to model
uniaxial testing of laboratory scale specimens.

Numerical modelling of fracture with traditional ste
based techniques (e.g. FEM and BEM) requires a very
fine mesh to model the theoretically singular strigsld in

the neighbourhood of damage locations (e.g. crgmk t
One common approach to simulate crack propagatitin w
FEM is to release the adjacent nodes of the element
representing damaged areas (Aliabadi and Rooke,)1991
Furthermore, as the damage evolves, the strucagésto

be re-meshed to take into account the localisedgghan
geometry. Automated re-meshing can lead to mesh
distortion and inaccurate results, especially iadgnt
computations (Fernandez-Mend&zl., 2005). Due to the
mesh-free nature of SPH, the fracturing processthad
associated change in structural configuration aedsily
handled without the need to re-mesh.

SPH uses a particle based Lagrangian approachhichw
the frame of reference is attached to the movintjghes.
This gives the ability to track history dependeraperties
of the material (Clearyet al., 2005). In general a
fracturing process is driven by the stress-strastohy in
the material. Traditional Eulerian methods expearéen
difficulties in capturing the stress-strain histoon a
particle by particle basis and predicting the etiohu of
damage in the specimen. The history tracking gboit
SPH can be utilised to monitor the damage initratmd
crack propagation, thus providing failure historfy tbe
specimen. The dynamics of damage evolution canlibus
explicitly included in the analysis.

The SPH method has been successfully applied teeimod
different types of metal forming processes invajviarge
deformation (Cleangt al., 2006). In this work, the aim is
to establish SPH as an effective and accurate
computational method to predict transient stresldl fin an
elastic solid, which can then be extended to mbdéle
fracture under compressive loads. In the initiahsient
state of uniaxial compressive loading, the elastiess
wave propagation through the specimen affects
response. It is important to analyse transientctiral
behaviour in that the initial fluctuating streseldi can
trigger generation and propagation of localised
damages/flaws, which can then play a critical rivle
initiating the fracture failure of the specimen.eThtress
wave generation and propagation through the specase

a result of contact excitation by a piston is tfene
investigated. The ability of SPH to model stresyvegais
illustrated using a simple problem of modellingraacxial
tester. We also use the fundamentally different\aiatly
used Finite Element Method for modelling the same
example so as to compare and correlate the FEsegith

the SPH solutions.
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SMOOTHED PARTICLE HYDRODYNAMICS (SPH)
METHOD

A brief summary of the SPH method is presented.here
SPH has been extended to modelling of a varietyob#l
deformation problems (Libersky and Petschek, 1990,
Wingate and Fisher, 1993, Gray al., 2001, and more
recently by Clearyt al., 2006). The interpolated value of
a functionA at any positiom can be expressed using SPH
smoothing as:

A(r)=;mo%;W(r ~ry.h)

wherem, andr, are the mass and the density of particle
and the sum is over all particlbswithin a radius B of r.
Here W(r,h) is a € spline based interpolation or
smoothing kernel with radiush? that approximates the
shape of a Gaussian function, but has compact suppo
The gradient of the functioA is given by differentiating
the interpolation equation (1) to give:

I]A(r):ZmoiDW(r—rb,h)

b Py 2
Using these interpolation formulae and suitable tdini
difference approximations for second order denres;j
one is able to convert parabolic partial differahti
equations into ordinary differential equations ftire
motion of the particles and the rates of changehefr
properties. We now present the differential equation
governing the structural responses and their SPH
approximations.

@)

Continuity Equation

From Monaghan (1992), our preferred form of the SPH
continuity equation is:

% = ZWL(Va _Vb)' UW,,
dt -

where g, is the density of particla with velocity v, and
m, is the mass of particle We denote the position vector
from particle b to particlea by ry, =rg—r,, and let

W :W(rab,h) be the interpolation with
smoothing lengtth evaluated for the distanfeg,|. This

®)

kernel

form of the continuity equation is Galilean invarigsince
the positions and velocities appear only as diffees),
has good numerical conservation properties, andots
affected by density discontinuities or free surface

Momentum Equation
The SPH momentum equation used for the elastoiplast
deformation of the solids is:
av' 190" |
—=———+g
a p, ox’
wherev is the velocity g denotes the body force, amds
the stress tensor which can be written as:

o' =-P +S )
where Ps is the pressure anfl is the deviatoric stress.
Assuming Hooke’s law with shear modulyg, the

evolution equation for the deviatoric stre3§Grayet al.,
2001) is:
i i - L Lo
dizzljs £ _}5|J£ +Sle]k+Q|kSkJ (6)
dt 3
where

(4)
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is the rotation tensor. The following equation tdts is
used:

and

®)

R=c(o. - 0,) ©)
where gy is the reference density. The subscaph the
above symbols refers to the solid state. The budkutus
is K = p,c2 and the Poisson ratig is:

_ (K1, -2)
* 23K/ u, +2)

(10)

TEST CONFIGURATION SPECIFICATION

The uniaxial tester is modelled with SPH via anabi
loaded rectangular specimen of width 86 mm andhteig
140 mm, as shown in Figure 1. The specimen is noade
an elastic material of bulk modulus of 12.2 GPagash
modulus of 2.67 GPa and density of 2300 Kg/tnis held
fixed at the bottom by a rigid plate, and the lomdpplied
through a piston on the top, see Figure 1. Thisukitas
the requisite boundary conditions for a typical axal
compression test.

The stress wave propagation in the specimen wdgsah
using Smoothed Particle Hydrodynamics (SPH). The
specimen domain was discretised with particles of
resolution 1 mm, giving a total of 12,040 particlasthe
two dimensional simulation. The partial differehtia
equations governing the stress and displacemdds fie
elastic solids (Equations 1-10) were used to evaltize
structural response. A cubic kernel interpolatianction
was used for this problem. Based on the material
properties, the time step was 0.261 us. An Imprduaier
explicit integration scheme was used for the titeping.

| |~ Moving piston
\%

Specimen

e/

/ Fixed end plate

Figure 1: Uniaxial configuration with uniform velocity
loading.

DIFFERENT LOADING CONDITIONS

In a uniaxial test, the load on the specimen isallgu
applied so as to produce a uniform strain rate. The
movement of the piston is hydraulically controll¢al



ensure that the loaded end is deformed at the rextjui

constant rate, thus causing a uniform longitudstidin in

the specimen. This is termed as ‘uniform velocity
loading’, also known as ‘constant strain rate lagdiThis

type of loading is particularly suitable where the 1.31E4+04
possibility of acceleration or deceleration of tbading
piston can cause sudden fluctuation in the applied
pressure. The motion of the piston at a specifmstant

rate prevents any accelerated motion and ensures a
uniform rate of deformation of the loaded face bé t
specimen. Another common loading mechanism is
‘uniform pressure loading’, where a constant foise

applied on the piston, which in turn is transmittecthe

test specimen. This exerts a uniform pressure @n th
specimen at the loaded surface. In this work, wesicker 1.27E-13
only the uniform velocity loading condition.

In this study we adopt von Mises stress (Timoshearkad
Goodier, 1984) as the criterion (structural respdrisr
analysing the stress field and elastic wave prapagan
the specimen. The von Mises stress combines nanthl
shear components of the deviatoric stress tensopaint,
and is a commonly used criterion to assess fa{lgsign)
strength of materials.

(&) t=0.04 ms

Uniform Velocity Loading 1.16E+04

In this example the piston was moved vertically

downwards at a constant velocity of 1.5 mm/s, wtiile

bottom end of the specimen was kept fixed by ptadin

on a rigid plate, see Figure 1. In the initial stagf

loading, we observe the transient phenomenon atiela

stress wave propagation within the specimen. Ttages

will be termed as the ‘transient state’ in this @ag-igure

2 demonstrates the nature of wave propagation grthe
specimen. As a consequence of the current boundary
conditions, the waves initiate from the top of #pecimen
and propagate downwards. The rapid variation in the
stress pattern in the specimen is shown in Figure 2

On reaching the bottom surface, the elastic waeéieat (b) t=0.08 ms
from the rigid plate at the bottom of the specim&he
reflected waves then propagate back upwards aedeng
with the (newly generated) incident waves from top
(Figure 3). This creates a wave pattern by supéipoof
the incident waves and the reflected waves (from th 1.98E+04
bottom plate). The ‘superposed’ waves propagatddur
up through the specimen and are then reflected them

moving top piston. These reflected waves againracte

with the waves reflected from the bottom plate. The
superposition of the waves alternately reflectexnfrthe

top piston and bottom plate continues. This phemume

gradually leads to a complex interacting stress evav

pattern in the specimen, as seen in Figure 3. @hiation

in the amplitude of the superposed elastic wavadsléo
spatial fluctuation in the von Mises stress disttidn. The
resulting stress variation is shown in Figure 3.

After sometime the interacting waves reach a stesialye
with little change in the stress wave pattern withe.
However, the magnitude of the stresses at all pamthe (c)t=0.11ms
specimen continues to increase uniformly. As thp to
piston is being pushed vertically down, the specire
compressed axially, which steadily increases the
magnitude of the stress.

Figure 2: Stress wave propagation from the top piston
towards the bottom plate for uniform velocity loagli
case.



2.62E+04

(&) t=0.12ms

3.63E+04

(b)t=0.24 ms

Figure 3: Reflected waves propagation from the bottom
plate and their interaction with the waves origimgfrom
the top piston for uniform velocity loading case.

The steady state stress distribution is shown gure 4
and is extremely even. It may be noted that theersrof

1.04E+07

1.00E4+05

(@ t=70ms

1.48E4+07

1.00E4+05

(b) t=100 ms

Figure 4: Steady state response of the specimen with little
change in stress pattern for uniform velocity loadtase.

The variation of the von Mises stress as the spatiim
loaded is shown in Figures 6-8 for both the tramsand
steady responses. The instantaneous response of the

the specimen, due to the presence of sharp geometry structure when the load is just applied is showFigure

changes, create regions of (theoretical) streggikirities.
This induces and maintains ‘localised’ high stressiethe
corners throughout the simulation, which is a ptgity
intuitive phenomenon.

To monitor the stress variation, we select three
representative points in the specimen, as shovkigare

5. The rationale behind choosing these three dpecif
points are:

* Point A (0 mm, 70 mm) lies on the vertical and
horizontal planes of symmetry (planes v-v’ and h-h’
* Point B (21.5 mm, 103.5 mm) lies on neither of the
symmetry planes.
e Point C (21.5 mm, 70 mm) lies on a single symmetry
plane (plane h-h’).
These representative locations characterise thessstr
variation taking into account the problem symmetry.

6 for a very short period of 0.1 ms. The stregsoatt B is
raised first by the load (blue line in Figure 6hig is
followed by rise in stress levels at points A ands€e
Figure 6, as the initial stress wave reaches tloesgions.
This is physically intuitive as point B is near tlrading
(top) edge. So the initial stress waves first repoimt B

and then points A and C. As points A and C areaates
distance from the top edge, the rise in stresddeatethese
locations is observed almost simultaneously. Afee
instantaneous sharp rise and the initial osciltetion the
stress levels, the subsequent transient stresxpdttp to
~3.5 ms) exhibits reduced waviness in stress variati
This is because the amplitude of the elastic waves
diminishes rapidly and the response becomes
approximately linear, reaching a steady state Fipare 7.
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Figure5: Locations of the representative points in the
specimen for monitoring von Mises stress variation.

In a laboratory scale uniaxial test, our primargu® is the
steady state response of the structure. Idealtya fimear
elastic structure the steady state response slkounklist of

a uniform stress distribution at various locatidapart
from the loading region where contact mechanicgpka
dominant role and affects the local stress fie@f)ce the
system has reached steady state (t > 3.5 ms)trémsas

at points A, B, and C are found to be the samengt a
given time and vary linearly with load (and therefo
time). This demonstrates that the SPH method is
producing the expected uniform (spatial) stress
distribution at steady state and linear elasticicstrral
behaviour (Figure 8).
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Figure 6: Very early stress variation in response to
loading at the representative points.

FINITE ELEMENT ANALYSIS AND VALIDATION

The Finite Element Method was also used to model th
uniaxial test so as to provide a high quality solutwith
which to compare the SPH solutions. The domairhef t
specimen was meshed with quadratic (8-node) reduced
integration quadrilateral elements. The finite ed@in
solution was obtained using an implicit dynamiclgsia.
The results presented in this section use a SPttlpar
resolution of 1 mm, which is the same as the elémsige
used with the Finite Element Method. The mesh re&woi

with FE and the particle resolution with SPH weeptk
same so as to enable a comparative study of the two

methods using fundamentally different numericalazgpis
(used in FE and SPH). The effect of different it
resolutions on the SPH solutions and their comparis
with the FE solution is reported in the later smtti
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Figure 7: Stress variation at the three representative
points in the specimen as a function of time (ldadhe
initial stage.

The same uniform velocity boundary condition of 1.5
mm/s (vertically downwards) was imposed on the top
surface of the specimen. The bottom surface wag aga
constrained to be fixed (as in Figure 1).
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Figure 8: Stress variation at the three representative
points in the specimen over longer times when yiséesn
has reached steady state.

The finite element solution was taken as the bé&sis
evaluating the accuracy of the SPH method for stres
analysis. Figure 9 shows the comparison betweeSié
and the FEM predictions of the von Mises stress tinee

at point A (from Figure 5) in the specimen. Theusiohs
agree very well for both the transient and steadyes
stages of compression. The maximum relative (%)
deviations from the FE solutions were 4.9%, 5.5%d a
7.1% for points A, B, and C (in Figure 5) respeetyv For
the transient region the FE solutions have conalder
oscillations (as seen in Figure 9(a)), whereas Sk
solutions are smooth and non-oscillatory, see Eid{a).
This indicates that SPH solutions show more stgbiti
capturing the initial transient response (elagtiess wave
propagation) in the specimen.

Effect of Particle Resolution on the Stress Field

The application of Smoothed Particle Hydrodynanfiars
structural stress analysis is relatively new. Heritas

instructive to perform a convergence study to assks
effect of particle resolution on the SPH solutidrhe



uniaxial test was modelled with two more different
particle resolutions (1.5 mm and 2 mm) in additiorthe

1 mm resolution case reported so far. The stredd fi
obtained for each particle resolution case was eoetp
with the FE solution at each of the representdtieations
(points A, B and C in Figure 5). The results arespnted
in Figure 10 for point B. It can be seen thatladl particle
resolutions produce desired linear stress variatod
show no instability.
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Figure 9: Comparison of von Mises stress at point A in
the specimen using SPH and FEM.

The relative difference between the SPH and the FE
results are found to be SPH resolution dependenbife
should expect). A fine particle resolution leads &o
solution closer to the corresponding finite element
solution. For example, the deviation from the FRison

is illustrated in Figure 11 for point B in the sfiyastate
region. It can be observed that the difference grow
gradually, reaches a limiting value, and then duss/ary
significantly. As expected, the coarser the pagticl
resolutions, the higher the difference betweerSihkl and
FE solutions. Furthermore, the relative differehetwveen
the SPH and FE solutions is found to be approxilpate
proportional to the square of the particle resoluti
(Figure 11). This is consistent with the secondeord
accuracy expected in a two dimensional problem doma
A detailed resolution study against an analyticdiitson

or a numerical solution with a considerably finesmevill
appear in a later paper.

Gravity Loading

One load case was investigated to study the efféct
gravity on the specimen. The purpose of this stisdio
assess the stability of the inherently transientH SP
methodology to predict a steady state solution. The
specimen was placed on a rigid platform under gyavi
only, and the von Mises stress field in the spenimas

monitored. This specific example was chosen as i i
simple problem with a static solution. The variatia the
von Mises stress in the specimen is shown in Fidire
Initially the stress levels reach to the statiesdrvalues
(as determined by the gravity), and thereafter dtness
levels remain essentially the same. The magnitidbeo
stresses at various points depends on their distafnom
the reference horizontal plane (i.e. the bottonfaser of
the specimen). This is evident from the gradedsstre
pattern in Figure 12. Furthermore, the solutiofoisnd to
stabilise rapidly. This demonstrates the stabibifythe
current SPH implementation in predicting steadytesta
solutions.
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Figure 10: Steady state stress variation at point B for
different SPH particle resolutions and their congmar
with the finite element solution.
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Figure 11: Deviation of von Mises stress from the finite
element solution at point B for different SPH pali
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Figure 12: von Mises stress distribution in the specimen

at t = 60 ms subjected to gravity loading.



DISCUSSION

This work demonstrates that Smoothed Particle
Hydrodynamics is able to accurately predict stiease
propagation and material deformation in uniaxial
compression tests on laboratory scale specimens. Th
boundary conditions on the specimen can be impisad
variety of ways, such as velocity based loadingsgure
based loading, and gravity loading. The effect afying
test parameters on specimens of various dimensiods
materials can be rapidly assessed by the SPH tpahais
pre-processing (meshing and boundary conditions)
requirements with SPH is considerably less tharseho
needed with conventional mesh-based techniques, and
SPH can produce good accuracy with a (relativeEd F
coarser resolution.

In the current SPH implementation, the loadinggrisind
the fixed jaw (plate) are explicitly modelled, athe loads
and constraints are applied through them. Therefotee
present application of SPH, the boundary conditiares
imposed by modelling the realistic loading or coaisting
agents explicitly, such as the loading piston dredfixed
plate here. This direct contact modelling simulates
realistic test conditions better than simulated ngsi
specified boundary conditions (uniform pressure or
velocity), which are commonly used with the Finite
Element Method. Indeed, when using FEM, the sinuat
of contact between the surfaces (e.g. piston aedisen
here) involves detailed pre-processing requiremdois
accurate contact definition and very fine meshaptare
the interactions between the surfaces in contaith BPH

the modelling of contact for the purpose of norreald
transmission can be performed without resolving iem
aspects of detailed contact mechanisms and without
requiring a finely graded mesh near the load boriesla
(as needed in the Finite Element Method). This is
particularly advantageous when simulating mechanica
tests that involve surfaces transmitting normat#oarhe
typical uniaxial test problem was also analyseagishe
Finite Element Method. It was found that the resgoof
the specimen obtained using SPH agreed very wéfi wi
the finite element solution.

CONCLUSIONS

This study has evaluated and established Smoothed
Particle Hydrodynamics as an effective and efficien
numerical tool for stress analysis, modelling étastress
wave propagation and simulating mechanical teske T
generation, reflection and superposition of thestaa
waves are well captured using SPH. The SPH sokition
can predict attainment of steady state conditionissihow

no instability. The stable response under grawtyding
illustrates the ability of SPH in modelling statitress
analysis problems. The proper load transfer to the
specimen indicates that an SPH based approach &an b
used for simulating realistic test conditions ining a
variety of load cases. Moreover, the SPH formutatised
here can provide accuracy comparable to that of FEM
This will enable rapid analysis of a wide rangetest
scenarios.

This study has also established the potential gtinsnof
SPH as a numerical tool that can be used for miadell
fracture in compression tests. The SPH solutionchest
the FE result for non-fracturing cases in accuraeyg can

easily handle the discontinuous large scale deftoma
involved in fracture problems due to its mesh-leasure.
Furthermore, the Lagrangian formulation makes SFH w
suited to simulating damage initiation and propagaby
tracking the history of stress-strain state of platicles.
Therefore, the underlying numerical concepts and
formulations embedded in  Smoothed Particle
Hydrodynamics provide an effective framework for
modelling fracture problems.
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