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ABSTRACT 
A combined population balance (PB) and CFD model 
was developed to model the behaviour of a continuous 
stirred tank gibbsite precipitator. The model is 2-phase 
Eulerian-Eulerian with the population balance particle 
size groups modelled with a series of solid-phase scalar 
transport equations. The population balance kernels 
describe the birth, death, and growth rate of the crystals 
depending on the local rates of nucleation, agglomeration 
and crystal growth. The crystallisation time scales are 
orders of magnitude longer than the flow timescales.  
Although this tends to homogenise the crystal size and 
supersaturation throughout the tank, it also makes the 
numerical problem stiff.  The precipitator under 
consideration was poorly mixed, with particles settling to 
a high concentration in the lower part of the tank. A 
number of cases with different feed rates and impellor 
speeds were investigated. It was demonstrated that they 
lead to different final crystal size distributions depending 
on residence time, supersaturation and solids 
concentration. 

NOMENCLATURE 
Roman  
A Aluminate ion concentration (kg m-3) 
A* Supersaturation conc.,74.15 (kg m-3) 
B Buoyancy force (N m-2) 
Bu Nucleation rate (m-3 s-1) 
Cαβ Inter-phase momentum transfer coefficient 

(kg m-3 s-1) 
d Particle diameter (m) 
ΔE Activation energy (J mol-1) 
G Linear growth rate (m s-1) 
g Supersaturation order  (dimensionless) 
ka Agglomeration rate constant  
kg Growth rate constant  
kn Nucleation rate constant  

M Moment of the size distribution (mi-3) 
m Mass (kg) 
m&  Inter-phase mass transfer rate (kg s-1) 
N Particle number (m-3) 
p Pressure (N m-2) 
R Ideal gas constant 8.314 (J mol-1 K-1) 
r Discretisation ratio, di+1/di (dimensionless) 
S Source (kg m-3 s-1) 
T Temperature, fixed here to 353 (K) 
t Time (s) 
U Velocity (m s-1) 
V Particle volume (m3) 

Greek 
β Agglomeration kernel (m-3 s-1) 
φ Volume fraction (dimensionless) 
ρ Density (kg m-3) 
Γ Diffusivity (kg m-1 s-1) 
μ Viscosity (kg m-1 s-1) 
γtot Total shear rate (s-1) 
γ Steady shear rate, i.e. ½(∇U+∇UT), (s-1) 

Subscripts 
α, β Phase (continuous or dispersed) 
i, j, k Particle size intervals 

INTRODUCTION 
Modelling of crystallisation processes attracts considerable 
attention due to the industrial importance of this separation 
and purification technique. Gibbsite crystallisation, for 
example is an important stage in the production of alumina, 
which is used as the feedstock for aluminium smelting.  
Gibbsite precipitating system has been studied by this 
group for more than a decade and process models of 
different levels of complexity have been developed.  They 
include simple well-mixed crystallisation models as well as 
so-called compartmental models to describe 
in-homogeneously mixed crystallisers (Li et al., 2003b).         

Currently, methods for modelling particle/bubble size 
distributions as part of CFD simulations are becoming 
increasingly widely used (Jones et al. 2003; Heath & Koh, 
2003;  Sha et al. 2006; Koh & Schwarz 2006).  There are 
two main drivers for this, firstly to account for the fact that 
the particle size may vary through the flow.  In practice the 
particle/bubbles may vary both spatially and locally and 
this may alter both the overall flow behaviour and cause 
segregation based on size.   The second driver is to use 
CFD as an environment to model the reaction kinetics of 
aggregation, nucleation, breakage, coalescence, growth, 
etc.  A variety of practical systems have been modelled by 
this approach, for example particulate systems such as 
flocculation, coagulation and crystallisation, and also 
bubbly flows in flotation columns or solvent extraction 
circuits (Lane et al., 2000). 

Two main approaches are used to model systems with 
changing particle size distribution, the population balance 
approach, and the moment method.  Both solve the reaction 
kernels describing the underlying physics of the rates of 
aggregation, growth etc, but the methods vary in their 
approach to solving the kernels.  While the population 
balance method resolves a complete PSD, the moment 
method only gives reduced information - moments of the 
underlying PSD.  Numerically, the population balance is 
solved using a discretised PBE approach, which typically  



 

requires 20-100 size groups.  Since each size group gives 
an additional mass or scalar transport equation, adoption 
of this method was previously hampered due to the 
computational expense. 

The moments approach (Marchisio et al. 2006) solves 
instead the moments of the population balance, where the 
moments are given by: 
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Where Mi is the ith moment, and Nk is the number of kth 
sized particles with the diameter dk.  For example, the 
zeroth moment (i = 0) is the total number of particles, and 
the third moment is proportional to volume.  A number of 
moments must be solved for closure, typically zero 
through fifth.  Although this is significantly less than the 
number of channels required for a population balance, it 
may be difficult to reconstruct the complete size 
distribution from a limited number of moments.   In some 
cases, however, knowing the size distribution may not be 
important, for example the average inter-phase drag can 
be calculated from the Sauter mean (ratio of the second 
and third moments), and the moment method may be 
appropriate. 

 This paper uses the former approach, solving the full 
population balance model, to investigate gibbsite 
crystallisation in a continuous stirred tank crystalliser.  
The modelling approach and implementation is 
described, along with a couple of case studies. 

MODEL DESCRIPTION 

A conventional steady-state Eulerian-Eulerian 2-phase 
model is used with the standard k-ε turbulence model 
acting in the continuous phase.  The phases share a 
common pressure field, with the momentum equations 
coupled via the inter-phase drag due to the liquid-particle 
slip.  Implementation is in CFX-4, with extensive use of 
additional Fortran to include the population balance and 
extra physics. 

The population balance size distribution is modelled via a 
series of transported scalars associated with the dispersed 
(particle) phase.  I.e., the scalars share the velocity field 
with the second phase although they are diffused 
according to their own concentration gradients and have 
their own population balance source terms: 
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Where Sβ is the source term from the population balance, 
and the final term is due to inter-phase mass transfer, 
which is also included to account for a significant transfer 
of dissolved alumina from the liquid to particle phase.   

The population balance source term is comprised of 
contributions from nucleation, agglomeration and growth.  
Nucleation gives the birth rate of particles in the smallest 
size range (Rawlings et al., 1993): 
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The above expression relates nucleation rate to 
precipitation process variables such as, total number of 
particles, and supersaturation.  

Agglomeration is the process of cementing the crystals 
simultaneously with deposition of gibbsite from solution. 
The agglomeration rate can be modelled as a function 
proportional to the agglomeration kernel and product of 
particle numbers in aggregating size fractions.  The particle 
size discretisation is critical to the subsequent formulation 
of agglomeration contribution (Hounslow et al., 1988) 
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In the above approach the crystal size is discretised 
according to a geometric progression where each particle 
size group has double the volume of the last, ie: 

 2 1−= ii VV     (5) 

Or, in terms of diameter: 

1
3 2 −= ii dd     (6) 

The agglomeration kernel is assumed to be size 
independent, and a function of the total (γtot) (steady + 
turbulent) shear rate and the growth rate (G): 

Gk .
tota

21 −= γβ     (7) 

More advanced expressions for the agglomeration kernel, 
such as developed recently by Ilievski and Livk (2006), can 
also be included using the same approach.  The crystal 
growth rate in gibbsite precipitation can be modelled as 
(Li et al. 2003a): 
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The crystal growth rate expression could be incorporated 
directly into the population balance (Equation 4).  
However, the effect the crystal growth is to convect 
particles up through the size ranges and can as such be 
treated as a convective term within the sink/source term of 
Equation 2. In our case, the central difference 
approximation was used for its accuracy and simplicity, 
although not surprisingly it has previously been observed 
to be unstable under some conditions (Hounslow et al., 
1988).   
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In addition to the population balance number density 
scalars (Ni), a number of additional transported scalars are 
used to model other variables, in particular aluminate and 
caustic concentrations in solution.  These dissolved species 
determine the supersaturation in solution at a given 
temperature. The additional scalars have transport 



 

equations similar to Equation 2, with the source term 
reflecting the inter-phase mass transfer. 

The inter-phase mass transfer is sufficient to warrant 
inclusion into the hydrodynamic and volume fraction 
equations.  Overall the mass transfer is given by a sum of 
the contributions from growth and nucleation: 
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I.e. the volume fraction equation is: 
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with the momentum equation: 
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Inter-phase drag is given by the Schiller and Neumann 
(1933) modification of Stokes’ law to intermediate 
particle slip Reynolds’ numbers 

In addition, the transfer of dissolved alumina out of the 
continuous phase changes its density.  In this work, the 
following equation for the liquid density was used, which 
describes its dependency on aluminate, caustic, and 
temperature: 
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RESULTS 
1-D results to check code implementation 

The results are broadly divided into two parts, the first 
section presents results on a simplified 1-D CFD model, 
which served for the comparison to a transient 
well-mixed MATLAB model.  The subsequent section 
describes simulation results from a full 3-D crystallizer 
model. 

The first step in code development/debugging in the CFD 
environment was to simplify the CFD model back to a 
1-D model to allow a direct comparison of the CFD 
model and MATLAB well-mixed model.  To achieve this 
a 1-D pipe reactor model was set up in CFX-4.  The 
“pipe” is 1600 m long hexahedral mesh with dimensions 
1000 × 1 × 1 nodes and symmetry plains on the sides.  
The cells are spaced out progressively, i.e. smaller at the 
beginning of the pipe where the crystallisation reactions 
are the fastest.  A flow velocity of 0.0044 m s-1 was used 
to give a residence time of 10 hours.  All diffusive terms 
were knocked out to give plug-flow.  Gravity was 
switched off, and the shear rate was fixed in the PB.   

Figures 1-3 compare MATLAB results with those from 
CFD with plug flow.  Note that the MATLAB model was 
run as a time-marching initial-value problem, whereas the 
CFD is steady-state Eulerian-Eulerian.  Clearly the 
coding and implementation is equivalent between the 

models indicated by the near exact overlapping of 4 lines in 
each figure; two black dotted CFD lines and two solid red 
MATLAB lines.  The CFD results are converted to 
time-based results by dividing the pipe length by the flow 
velocity.   
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Figure 1: Comparison of CFD and MATLAB results for 
solid fraction and alumina concentration. 
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Figure 2: Comparison of CFD and MATLAB results for 
mean crystal size, d43, and continuous phase density. 

Figure 1 shows the increase in solid volume fraction due to 
crystallisation, and the corresponding reduction in 
dissolved alumina.  Figure 2 shows the changes in the 
mean crystal size, which reduces initially from the seed 
crystal size due to the dominance of nucleation early in the 
process, followed by the growth in size later in the process 
when the reduced supersaturation favours agglomeration 
and growth.  Figure 3 shows evolutions of the number of 
particles in different size intervals (first, fifth, tenth, etc).  
Again, CFD and MATLAB results are closely matched.  
Also notable in the plot is the wide range (y-axis) of the 
values of number of particles.  This range contributes to the 
stiffness of the numerical problem since the different 
number densities are used together in the population 
balance (Equation 4). 
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Figure 3: Comparison of CFD and MATLAB results of 
numbers of particles for selected size intervals.  

3-D results for a continuous stirred tank crystalliser 
After initial code verification the model was transferred 
to a continuous stirred tank crystalliser geometry.  It 
should be noted from the outset that this model is difficult 
to converge satisfactorily.  There are several contributing 
factors beyond just the number of additional transport 
equations being solved – and convergence is not simply a 
matter of patience.  The model is multi-phase with the 
equations solved in a segregated fashion; and the 
liquid-phase density varies through the flow as a function 
of the (transported) alumina and soda concentrations.  
Also, the flow is inherently unstable, although running it 
in transient mode isn’t an attractive proposition.   

However, what really seems to make convergence 
difficult is the difference in the time-scales between the 
flow and crystallisation processes.  The flow time-scale is 
in the order of seconds, as is the loop-circulation time in 
the lab-scale tank.  However, in order to achieve the 
required residence time for crystallisation (hours) the 
velocities at the inlet and outlet patches are very low.  
This makes it difficult to achieve global mass, scalar, and 
in particular volume fraction conservation.  The volume 
fraction matrix appears almost singular, and is quite 
prone to divergence or linear solver failures.  
Convergence strategies were along the lines of using the 
algebraic multi-grid (AMG) linear solver with a 
minimum of sweeps, no under-relaxation on the scalar, 
pressure or volume fraction equations, but with density 
heavily under-relaxed. 

Due to difficulties in finding an effective convergence 
strategy the model is still quite simple; more advanced 
crystallisation kinetics will be incorporated in the future, 
along with heat transfer and mesh improvements.  The 
geometry is a simple lab-scale (see Li et al. 2003b for 
details) stirred tank that is intentionally made tall-form so 
that it is poorly mixed with respect to solids.  Particles 
tend to accumulating towards the base.  The mesh is 
essentially a very simple 5 bloc hexahedral mesh of 
~140 K nodes.  The central block is solid, i.e. forming the 
impellor shaft, and the outer blocks were merged to a 
single block when creating the final geometry file. 

There is no impellor as such, but rather a momentum 
source acting in a donut shaped ring in the area swept by 
the impellor.  Downward motion and swirl are imparted 

via a 2-D patch, with the velocities coded as a function of 
radius to generally match previous CFD simulation results 
(Li et al. 2003b), where the A310 impellor geometry was 
meshed directly within a sliding grid.  The momentum 
source was implemented in user Fortran by overwriting the 
matrix coefficients in the momentum equations. 

In addition extra turbulent kinetic energy (k) is added in the 
impellor patch to simulate the missing turbulence created 
by the impellor.  This is critical for the population balance 
agglomeration kernel (Equation 7) which is a function of 
γtot, the total (turbulent + steady) shear rate, given by: 

γ
μ
εργ +=  tot     (14) 

As the energy dissipation rate in our case is known from 
measurements, the approach taken here is to add turbulent 
kinetic energy until the total dissipated energy matches the 
desired experimental figure.  Since the required k isn’t 
known beforehand the k-source term is varied on the fly via 
a PID feedback loop coded in with user Fortran.  I.e. k is 
manipulated to achieve a given ε set-point.   With a little 
tuning of the PID coefficients this approach appears to 
work quite well, although it probably does little to improve 
convergence. 

Figures 4-8 show various aspects of the baseline simulation 
in the continuous stirred tank crystalliser (CSTC).  Figure 4 
shows the overall solid volume fraction profile.  This is the 
solver result for the dispersed phase.  Note that summing 
the volumes of individual particle sizes gives the same 
result with a well-converged solution. 

 
Figure 4: Solids distribution through tank.  The tank is 
intentionally poorly mixed to encourage solid segregation 
and increase the hold-up. 

A couple of the inlet patches are just barely visible in red at 
the top of the tank.  The upper visible patch is the seed 
inlet, a minor flow in with a high concentration of seed 
crystals (mean size of 4 × 10-5 m).  The patch below that 
and close to the impellor shaft is the outlet, specified as a 
pressure boundary in this case since there is a density 
change and inter-phase mass transfer.  The feed inlet 



 

(major flow in, supersaturated but free of crystals) isn’t 
visible, but is spaced at the same height opposite from the 
seed inlet. 

Figures 5 and 6 show the turbulent kinetic (k) and 
dissipated (ε) energies respectively.  Note the impellor 
2-D patch used to simulate the downward pumping 
impellor, and the resulting recirculation flow pattern in 
the bottom of the tank.  Due to the baffles and fairly tall 
aspect ratio of the tank the flow is almost quiescent at the 
top. 

 
Figure 5: Turbulent kinetic energy (k), see text for details 
of k-source in impellor region. 

 
Figure 6: Turbulent dissipated energy. 

Figure 7 shows the dissolved alumina concentration, 
which is almost perfectly mixed through the tank due to 
the long residence time compared to the flow time-scales.  
There is a slight (at an expanded scale) increase in the 
alumina concentration around the inlet patch towards the 
top of the tank.  This appears to be physical rather than a 

convergence issue, because a similar non-reacting scalar 
(not shown here) becomes completely uniform through the 
tank on convergence. 

The final figure shows the volume weighted mean size 
through the tank, which is also fairly uniform apart from a 
small area on the top near the seed inlet, where smaller 
seed crystals are introduced. 

 
Figure 7: Dissolved alumina concentration.  Due to the 
long residence time in the tank it is almost perfectly mixed. 

 
Figure 8: Mean volume weighted crystal size, d43, through 
tank.  Due to the long residence time in the tank it is almost 
perfectly mixed. 

Comparison of CSTC runs under different conditions 

Although the supersaturation and crystal size are virtually 
uniform throughout the tank, the shear rate and particle 
concentrations aren’t.  This impacts on the crystallisation 
behaviour because the crystallisation kinetics are functions 
of the particle number density; and in the case of 



 

agglomeration also the shear rate.  To demonstrate this a 
couple of additional simulations were run (figures not 
shown) under slightly different conditions.   

The first one was run at the same seed and feed flow rates 
but to simulate a higher impellor rpm.  Nominally the 
rpm was increased 30 % from 480 to 625 rpm, in this 
case by simplistically increasing the vertical and swirl 
velocities by 30 % in the 2-D “impellor” patch.  From 
impellor power number calculations this increased the 
power draw (∝ rpm3) and the mean energy dissipation 
rate ( )ε was correspondingly increased from 0.18 to 
0.40 m2 s-3.   

Increasing the impellor speed has a number of effects on 
the flow and crystallisation process.  Firstly it tends to 
homogenise the solids in the tank by increasing both the 
pumping rate (i.e. convection) and turbulent diffusion.  
This in turn lowers the mean solids in the tank.  I.e., since 
this is a steady-state simulation, the solids concentration 
builds up in the bottom of the tank until the concentration 
at the outlet leads to a balance with the feed solid plus 
mass increase due to crystallisation.  So speeding up the 
impellor stirs up the solids in the bottom of the tank and 
lifts them up towards the outlet, reducing the average 
steady-state solids content in the tank.  This in turn 
impacts on the crystallisation process since the 
crystallisation kinetics are functions of the particle 
number density.  Reducing the solids concentration in the 
tank also reduces the residence time for crystals to grow.  
In addition, since the particle number density is lower 
there is less particle surface area for alumina 
precipitation, so the supersaturation is also increased, 
which then feeds back to change the precipitation 
kinetics.   These various couplings contribute to the 
convergence difficulties since although the physics is 
coupled the equations are solved in a segregated fashion. 

The final simulation discussed here was run with the 
original impellor speed but decreased residence time, 
achieved by fivefold increase of the seed and feed flow 
rates.  As shown in Table 1, this has the overall effect of 
dramatically decreasing the final crystal size.  The reason 
appears to be partly in the reduction of crystal residence 
time (allowing less time for agglomeration and growth) 
and partly because the supersaturation was higher, 
favouring nucleation.   

Baseline Higher Higher
impellor rpm throughput

Mean solid fraction (dim'less) 0.23 0.09 0.193
Solid fraction at outlet (dim'less) 0.080 0.079 0.074
[4, 3] mean crystal size (m) 5.5 × 10-5 4.4 × 10-5 4.3 × 10-5

Mean alumina conc. (g L-1) 88 92 94

Mean dissipation rate, ε  (m2 s-3) 0.18 0.40 0.18
Superficial mean residence time (s) 1.3 × 104 1.3 × 104 2.6 × 103

Liquid mean residence time (s) 1.0 × 104 1.2 × 104 2.3 × 103

Solids mean residence time (s) 4.0 × 104 2.3 × 104 8.1 × 103

 Table 1:  Simulation results from CSTC runs  

CONCLUSIONS 

A coupled population balance and CFD model for 
gibbsite crystallisation has been coded into CFX-4.  The 
model is Eulerian-Eulerian 2-phase with 35 additional 
solid–phase scalar transport equations for the particle size 
intervals, and additional liquid-phase transport equations 
for dissolved alumina and caustic.  Crystallisation 

kinetics, such as nucleation, crystal growth and 
agglomeration are described by rate expressions containing 
main process variables. 

Simulation results in a poorly-mixed CSTC showed that 
although the solids were poorly distributed through the 
tank the crystal size and supersaturation were relatively 
uniform due to the relatively long residence time compared 
to the flow time-scale.  This difference in time-scales also 
contributed to the model stiffness although convergence 
was still achievable with the correct model set-up. 

The model development is in its early stage, requiring 
additional developments in several areas, e.g. more 
complex crystallisation kinetics, the mesh density, impellor 
geometry and also the inclusion of appropriate enthalpy 
equation. However, the simulations conducted so far show 
that a model based on this approach is feasible and has the 
potential to capture complex behaviour observed in 
industrial crystallisers.  This can be very valuable for 
advancing crystallisation equipment design and process 
optimisation. 
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