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ABSTRACT 

The accurate prediction of dilute gas-particle flows using 

Euler-Euler models is challenging because particle-

particle collisions are usually not dominate in such flows. 

In other words, in dilute flows the particle Knudsen 

number is not small enough to justify a Chapman-Enskog 

expansion about the collision-dominated equilibrium limit. 

Moreover, due to the fluid drag and inelastic collisions, 

the granular temperature in gas-particle flows is often 

small compared to the mean particle kinetic energy, 

implying that the particle-phase Mach number can be very 

large. In analogy to rarefied gas flows, it is thus not 

surprising that two-fluid models fail for gas-particle flows 

with moderate Knudsen and/or Mach numbers.  

In this work, a third-order quadrature-based moment 

method, valid for arbitrary Knudsen number, coupled with 

a fluid solver has been applied to simulate dilute gas-

particle flow in a vertical channel with particle-phase 

volume fractions between 0.0001 and 0.01. In order to 

isolate the instabilities that arise due to fluid-particle 

coupling, a fluid mass flow rate that ensures that 

turbulence would not develop in a single phase flow (Re = 

1380) is employed. Results are compared with the 

predictions of a two-fluid model with standard kinetic 

theory based closures for the particle phase. The effect of 

the particle-phase volume fraction on flow instabilities 

leading to particle segregation is investigated, and 

differences with respect to the two-fluid model predictions 

are examined. 

NOMENCLATURE 

C collision integral 

ep particle-particle restitution coefficient 

ew particle-wall restitution coefficient  

f velocity distribution function 

f* equilibrium velocity distribution function 

F force acting on each particle 

g gravitational acceleration vector 

Kn particle phase Knudsen number 

mp particle mass 

Mijk moment of order i+j+k 

Mi moment of order i 

Mgs momentum exchange term 

p pressure 

Re fluid-phase Reynolds number 

t time 

Ug fluid-phase mean velocity 

v  particle velocity 

 

αg fluid-phase volume fraction 

αs fluid-phase volume fraction 

ρg fluid-phase density 

ρs fluid-phase density 

μg fluid-phase dynamic viscosity 

τc collision time 

τg fluid-phase stress tensor 

INTRODUCTION 

Gas-particle flows represent an important class of 

multiphase flows that occur in many in fields of 

engineering. For example, chemical processes utilizing 

fluidized beds and risers are widely used in a variety of 

processes. In aerospace engineering, gas-particle flows are 

of great interest in helicopter design due to brownout 

phenomenon. Likewise, in other scientific fields such as 

medicine (inhalers design), and vulcanology (dispersion of 

eruptive material in the atmosphere) gas-particle flows 

play an important role. 

The most exact treatment of gas-particle flows would 

completely resolve the flow field around each particle as 

well as all of the turbulent structures in the gas phase. The 

computational cost of such an approach limits its 

applicability to simple canonical flows. At the next level 

of approximation, gas-particle flows can be described by 

solving the fluid-phase continuity and momentum 

equations, modified to account for interactions with the 

dispersed phase. These interactions include the volume-

displacement effect (volume fraction) and momentum 

exchange. The particle phase may be described with a 

variety of methodologies, all based on the analogy 

between the dispersed phase and a granular gas. For 

example, the discrete particle method (DPM) (Hoomans et 

al., 1996) accounts for individual particle-particle 

collisions and uses a mean-field drag model to describe 

fluid-particle momentum exchange. In theory, a granular 

gas is governed by a kinetic equation for the particle 

velocity number density function f(t,x,v). The particle-

phase kinetic equation has terms for transport, body 

forces, fluid drag, and collisions, and is valid for arbitrary 

values of the particle-phase Knudsen and Stokes numbers. 

However, the exact collision term in the kinetic equation 

is not closed (e.g., for hard-sphere binary collisions) and a 

closure must be introduced to replace the two-particle 

number density function by a function of f(t,x,v) (e.g., the 

Boltzmann collision integral).   

Even after closure, the direct solution of the particle-phase 

kinetic equation is extremely expensive and one usually 

mailto:rofox@iastate.edu


 

 

Copyright © 2009 CSIRO Australia 2 

resorts to approximate solutions.  For example, in the 

small Knudsen number limit, a Chapman-Enskog 

expansion can be used to derive a „hydrodynamic‟ 

description of the particle phase.  This is the approach 

used to develop the two-fluid model (Gidaspow, 1994) for 

gas-solid flows and, hence, one cannot expect the two-

fluid model to be valid when finite-Knudsen effects are 

important. 

Approximate solutions to the kinetic equation can also be 

found using Lagrangian methods based on discrete 

simulation Monte Carlo (DSMC) (Bird, 1994). In this 

approach, each particle trajectory is tracked individually 

and collisions are described in a statistical manner that is 

consistent with the closed collision term. (In other words, 

DSMC is less exact than DPM due to the treatment of 

collisions.) If sufficiently large numbers of particles are 

tracked in order to suppress statistical errors, the DSMC 

approach can yield very accurate solutions to the kinetic 

equation. Nevertheless, for practical systems it is limited 

to flows with relatively low particle-phase volume 

fractions, due to its computational cost. In general, the 

cost of DSMC (and DPM) increases with the particle 

concentration because the number of particles to be 

tracked increases and because of the increasing number of 

collisions that must be detected.  

Lagrangian multiphase particle-in cell (MP-PIC) methods 

(Andrew and O‟Rourke, 1996; Patankar and Joseph, 2001; 

Snider, 2001) can also be used to approximate gas-particle 

flows. However, this approach does not accurately 

describe the collision term in the kinetic equation.  

Instead, particles are grouped into „parcels‟ to reduce the 

computational cost in the dense limit where collisions are 

dominant. In some implementations, to further reduce the 

computational cost, only an isotropic stress tensor is added 

to the MP-PIC formulation to enforce the maximum 

particle packing limit (Snider, 2001). This approximation 

limits the capabilities of the approach to properly predict 

particle segregation in polydisperse flows. More 

generally, unlike DSMC, the MP-PIC approach does not 

attempt to accurately reproduce the terms in the 

underlying kinetic equation by carefully controlling the 

statistical errors due to finite sample sizes. As shown by 

Passalacqua et al. (2009), statistical errors in Lagrangian 

methods strongly affect the instabilities observed in fully 

coupled gas-particle flow solvers. 

Eulerian approaches to approximating the kinetic equation 

consider a set of moments of the number density function, 

and track their evolution in space and time. This class of 

methods goes under the name of the method of moments, 

and various flavours can be applied to the simulation of 

gas-particle flows. One popular Eulerian approach is 

represented by two-fluid models, where only the lowest-

order moments (number density, mean momentum and 

granular temperature) of the particle velocity distribution 

are considered. In two-fluid models, the fluid-dynamic 

properties of the granular phase are evaluated using 

moment closures obtained from the kinetic theory of 

granular flows under the hypothesis of near-equilibrium, 

collision-dominated flow (Gidaspow, 1994; Enwald, 

1996). This limit corresponds to a particle Knudsen 

number near zero, which prevents the two-fluid model 

from properly predicting the behaviour of gas-particle 

flows in which rarefaction effects play an important role.  

Recently novel Eulerian approaches have been 

investigated to work around the shortcomings of the two-

fluid model. For example, Sakiz and Simonin (1998) 

adopted the Grad (1949) approach to study non-

equilibrium phenomena in very dilute riser flows (i.e., 

with one-way coupling).  Desjardin et al. (2008) used a 

quadrature-based moment method to show the limitations 

of the two-fluid model in predicting particle trajectory 

crossing, which leads to inconsistent predictions by the 

hydrodynamic model for all the velocity moments for 

non-zero Stokes numbers and to the over-prediction of 

particle segregation. By comparing with Lagrangian 

simulations of particles in a turbulent flow, Desjardin et 

al. (2008) showed that intense particle segregation at 

moderate Knudsen numbers is an artefact (known as a 

delta-shock in the mathematical literature) of the 

mathematical structure of the two-fluid model rather than 

a true physical phenomenon. In the dilute limit, the 

particle pressure and particle stress tensor appearing in the 

two-fluid model are very small since the collision term 

scales with the square of the particle-phase volume 

fraction. The mathematical structure of the two-fluid 

model is then equivalent to the pressure-less gas dynamic 

equation, the prototypal example for delta-shock 

formation.  Physically, a delta-shock is formed when 

faster moving particles overtake slower moving particles. 

In the dilute limit, the faster particles simply pass by the 

slower particles, a phenomenon that is accurately captured 

by Lagrangian methods. In the two-fluid model (and any 

other model based on Chapman-Enskog-like expansions), 

the local particle velocity is single-valued, causing 

particles to artificially collide when the fast particles try to 

pass the slow ones. The method developed by Desjardin et 

al. (2008) overcomes this fundamental shortcoming of the 

two-fluid model by allowing the local particle velocity to 

be multi-valued.  

In a coupled gas-particle flow, the inability to capture 

particle trajectory crossing has profound effects on the 

entire simulation.  First, particles artificially cluster when 

they should not, leading to dense particle zones in an 

otherwise dilute flow.  These dense regions then change 

the evolution of the gas-phase flow through the coupling 

terms, leading to a completely different overall flow 

structure.  Moreover, because by definition a delta-shock 

is concentrated on a lower-dimensional manifold in three-

dimensional space, it is impossible to obtain a grid-

independent solution for the two-fluid model in the dilute 

limit (i.e., whenever the particle-pressure term is too weak 

to eliminate delta-shocks). In practice, grid refinement 

will cause the gas-particle flow to become completely 

segregated into dense structures separated by particle-free 

zones. Such intense segregation is not observed in 

Lagrangian simulation or experiments (He et al. 2009) of 

dilute gas-particle flows. 

Another significant shortcoming of the two-fluid model is 

the treatment of particle-wall collisions under dilute 

conditions. By definition, a specular collision with a wall 

leads to a bi-modal velocity distribution function with one 

mode corresponding to the incoming velocity, and the 

other to the outgoing velocity. Due to insufficient particle-

particle collisions in the region next to the wall, in dilute 

gas-particle flows the resulting „Knudsen layers‟ can 

extend far away from the walls.  In terms of the moments 

of the velocity distribution function, specular collisions 

result in an increase in the granular temperature at the 
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wall, causing particles to move away from the wall.  In 

contrast, in the two-fluid model the granular temperature 

near the wall found using specular collisions is small, 

resulting in an artificial clustering of particles in the low-

temperature zone next to the wall.  

In order to better capture the physics of dilute gas-particle 

flows, Fox (2008) developed a third-order quadrature-

based moment method (QMOM) that has recently been 

implemented into the CFD code MFIX (Syamlal, 1998) by 

Passalacqua et al. (2009). These authors have validated 

the MFIX-QMOM approach against Lagrangian and two-

fluid simulations and showed that the values of the 

particle-phase Knudsen and Mach numbers in moderately 

dilute gas-particle flows are well above the range of 

validity of hydrodynamic models with partial-slip 

boundary conditions. In this work the MFIX-QMOM code 

is applied to simulate dilute gas-particle flows in a vertical 

channel with particle-phase volume fractions in the range 

[0.01, 0.0001]. As in our previous work, the fluid-phase 

mass flow rate is chosen such that the fluid Reynolds 

number is below the transition to turbulence for a single-

phase flow. Whenever possible, results are compared with 

the predictions of the two-fluid model in MFIX. 

MODEL DESCRIPTION 

Fluid-phase equations 

In the MFIX-QMOM code, the fluid-phase equations are 

the conventional two-fluid equations for the continuous 

phase: 

 

    0ggggg =ρ+ρ
t

U 




 

    gsgggggggggg MgτUUU +ρ+=ρ+ρ
t

 

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where Mgs is the momentum transfer term. Details on how 

the fluid-phase equations are coupled to the particle-phase 

description can be found in Passalacqua et al. (2009). 

Particle-phase moment transport equations 

The moment transport equations used in the MFIX-

QMOM code are obtained by applying the definition of 

velocity moments of the particle velocity number density 

function:  

vvxv dtf=m ),,(


,
 

 

where γ is the order of the moment, to both sides of the 

kinetic equation: 
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where v is the particle velocity, F the force acting on each 

particle, mp the particle mass and C is the rate of change of 

f due to collisions. The drag term is modelled according to 

Schiller and Neumann (1935), with the correction 

proposed by Wen and Yu (1966) to account for the effect 

of the gas-phase volume fraction:  
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The collision term is closed using the linearized model 

proposed by Bahatnagar et al. (1954): 

 ff= *

c

1
C


, 

where the collision time τc  has been modified to include 

the radial distribution function, which makes the collision 

frequency increase for increasing particle-phase volume 

fraction.
 

If the set of moments considered to approximate the 

solution of the kinetic equation is truncated at third order 

(Fox, 2008), the resulting twenty (one equation for M0 

(continuity), three for M1 (mean momentum), six for M2 

(particle stress tensor) and ten for M3) moment transport 

equations are given by 
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where the spatial derivatives represent the moment spatial 

fluxes, g is gravitational acceleration, D are the source 

terms due to the drag force, and C are the source terms 

due to collisions. The moment spatial fluxes are computed 

in terms of the quadrature weights and abscissas, relying 

on their kinetic definition (Desjardin et al., 2008).  Details 

on the derivation of the quadrature-based closures are 

reported in Fox (2008), their implementation can be found 

in Passalacqua et al. (2009), and is not repeated here. 
  

 

The two-fluid model simulations were performed using 

the kinetic theory closures obtained by Gidaspow (1994) 

and implemented in MFIX (Syamlal, 1998). In the MFIX 

code, the complete transport equation for the granular 

energy is solved, neglecting only the term due to the fluid-

particle velocity correlation. 

DESCRIPTION OF THE PROBLEM 

A gas-particle flow in a two-dimensional vertical channel 

(0.1 x 1 m) with monodisperse particles was considered. 

The mass flow rate of the fluid-phase (ρg = 1.2 kg/m3) was 

fixed so that the fluid-phase Reynolds number is 1380, 

well below the transition to turbulence in a single-phase 

flow. This choice was made to remove the direct effect of 

the fluid turbulence on the formation of segregated 

structures from the system. The desired fluid-phase 

Reynolds number was obtained by setting the viscosity of 

the fluid phase to μg = 1.74 x 10-4 Pa s.  

For the particle phase, a range of volume fractions 

between 0.0001 and 0.01 was considered, with a particle 

density of 1500 kg/m3. The particle diameter was set to 

252 μm, and the restitution coefficients for both particle-

particle and particle-wall collisions were set to ep = ew = 1, 

which corresponds to perfectly elastic collisions. 
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Wall boundary conditions were set to be specularly 

reflective. This condition is equivalent, in the two-fluid 

model, to a free-slip condition for the particle phase. No-

slip conditions were used at the walls for the fluid phase. 

Periodic conditions with constant mass flow rates were 

adopted in the flow direction for both phases. A uniform 

field for all the properties was used as the initial 

conditions.  

RESULTS 

Results of a channel-flow simulation with particle-phase 

volume fraction of 0.01 obtained with MFIX-QMOM are 

reported in Figure 1, where snapshots of the time 

evolution of the particle-phase volume fraction are shown. 

The predictions of the two-fluid model for the same case 

are show in Figure 2. At the beginning of the simulation, 

the particles, initially distributed uniformly in the channel, 

are accelerated towards the walls due to the mean fluid 

velocity gradient, where they are reflected and move 

towards the centre of the channel. This process leads to 

the formation of preferential particle-depleted vertical 

paths for the fluid phase, where it can accelerate. This 

separation however is unstable, due to the velocity 

gradient between the zone at low particle concentration 

and the one at higher particle concentration, as observed 

in Passalacqua et al. (2009). This leads to chaotic flow 

behaviour, where particles tend to segregate towards the 

walls, originating the characteristic core-annular flow, 

with particles falling along the channel walls, with an 

oscillating upward flow in the centre. 

A similar behaviour is observed in the initial stages of the 

two-fluid model prediction, where particles are reflected 

by the walls and give origin to the preferential paths for 

the fluid phase (Figure 2, t = 1.45 s). However, the 

evolution of the system from this point on proceeds with 

the formation of two unstable structures on the sides of the 

flow, which leads to particle segregation. The main 

difference between the MFIX-QMOM and two-fluid 

model predictions is, however, the abundance of fine 

structures at high particle concentration in the two-fluid 

prediction (i.e., delta-shocks), which are not predicted by 

the QMOM model. As mentioned earlier, the formation of 

these structures in two-fluid models can be explained by 

the fact that when particle trajectory crossing occurs, 

models tracking only the mean momentum are unable to 

predict correctly all the velocity moments. In such a 

situation, hydrodynamic models predict a delta-shock, 

since they cannot represent a situation where multiple 

distinct local particle velocities are present. Also, as noted 

earlier, further grid refinement will exacerbate the 

segregation in the two-fluid model, whereas the MFIX-

QMOM results are essentially grid independent.   

Although not as easily distinguished in the snapshots in 

Figures 1 and 2 as in flow-field animations, there are also 

clear differences between the MFIX-QMOM and the two-

fluid predictions in the regions near the walls. In the 

MFIX-QMOM simulations, the falling particles form 

larger „blobs‟ that cover several grids cells away from the 

wall, while in the two-fluid predictions the falling 

particles remain much closer to the wall.  We believe that 

these differences can be attributed to the differences in the 

boundary conditions for the granular temperature. 

 

 

 

Figure 1: Particle-phase volume-fraction evolution 

predicted by MFIX-QMOM with an average particle-

phase volume fraction of 0.01. 

 

Figure 2: Particle-phase volume-fraction evolution 

predicted by the two-fluid model with an average particle-

phase volume fraction of 0.01. 
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Figure 3: Particle-phase volume-fraction evolution 

predicted by MFIX-QMOM with an average particle-

phase volume fraction of 0.005. 

 

 

Figure 4: Particle-phase volume-fraction evolution 

predicted by the two-fluid model with an average particle-

phase volume fraction of 0.005. 

 

Figure 5: Particle-phase volume-fraction evolution 

predicted by MFIX-QMOM with an average particle-

phase volume fraction of 0.001. 

 

 

 

 

Figure 6: Particle-phase volume-fraction evolution 

predicted by the two-fluid model with an average particle-

phase volume fraction of 0.001. 
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Similar results were observed in the case of an average 

particle-phase volume fraction of 0.005, reported in 

Figure 3 (MFIX-QMOM) and Figure 4 (two-fluid 

model). The agreement between the two predictions is 

consistent during the initial stages of the simulations. 

However, the two-fluid model still shows a tendency to 

predict fine structures at high particle concentration, as 

observed in the previous case. The effect of the particle 

concentration on the development of the instability that 

leads to particle segregation was further investigated by 

considering two cases with lower mass loading. Figure 5 

shows the evolution of the flow predicted by MFIX-

QMOM in the case of an initial mean volume fraction of 

0.001, while Figure 6 reports the prediction of the two-

fluid model in the same case. The mechanism that leads to 

the formation of an unstable flow is similar to that 

observed in the densest cases. However the transition to an 

unstable flow, and the consequent particle segregation 

phenomena, are slower and less evident, since the particle 

concentration is lower. The two-fluid model predicts a 

similar behaviour to the one observed in Figure 2, with 

the formation of small structures not observed in the 

MFIX-QMOM prediction. 

 

 

Figure 7: Particle-phase volume fraction and granular 

temperature at 5 s predicted by MFIX-QMOM with an 

average particle-phase volume fraction of 0.0001. 

An even more dilute case, with an average particle volume 

fraction of 0.0001 (mass loading 0.13), was also 

considered. The results of the MFIX-QMOM predictions 

are reported in Figure 7. We did not obtain a convergent 

solution using the two-fluid model with the required 

convergence criteria used in the other cases; as a 

consequence results from two-fluid models are not 

reported. For this case, after 5 s of simulation time, 

particles are still distributed almost uniformly across the 

channel, with the exception of near the walls, since in the 

wall zone the particle temperature is highest.  Although 

we cannot confirm it directly due to the finite duration of 

our simulation, it appears that the case shown in Figure 7 

reaches a time-independent state where only gradients in 

the wall-normal direction are present. 

As noted earlier, in the zone next to walls the net particle 

flux is zero, and, as a consequence the mean particle 

velocity is zero, but the velocity variance is high due to 

specular reflections. As observed in Passalacqua et al. 

(2009), this means that the local particle Mach number of 

the flow, defined using of the mean particle velocity and 

the granular temperature (Kogan, 1969), and the local 

Knudsen number, are large and well outside the range of 

validity of hydrodynamic models (Kn < 0.1), even with 

the addition of partial-slip boundary conditions (Bird, 

1994; Struchtrup, 2005) like those proposed by Johnson 

and Jackson (1987). In the cases considered in this work, 

the Johnson and Jackson boundary conditions degenerate 

into free-slip conditions, since the walls are assumed to be 

frictionless. It is worth noting that the Johnson and 

Jackson boundary conditions imply a zero granular 

temperature flux at the wall, when perfectly specular 

conditions are imposed. This implies that the two-fluid 

models cannot convert the velocity of particles impinging 

on the wall into granular temperature, even though the 

velocity component normal to the wall is zero. As a 

consequence, the maximum in the granular temperature at 

the walls that is observed in Figure 7 is not captured by 

the two-fluid model. 

 

Figure 8: Phase velocities predicted by MFIX-QMOM at 

5 sec with an average particle-phase volume fraction of 

0.0001. 

The vertical velocity profiles for the case in Figure 7 are 

reported in Figure 8, and show that the flow has the 

typical profile of a stable channel flow. For this case, the 

particle mass loading is small enough to not have a 

destabilizing effect on the fluid phase. However, it is 

worth noting that the velocity profiles are not perfectly 

parabolic, due to the presence of the particles and the 

momentum coupling with the particle phase. Nonetheless, 

no instabilities develop and both phases attain a steady 

state. 

CONCLUSIONS 

A set of simulations of particle-laden channel flow with 

finite Stokes number particles at different average 
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concentrations were performed. A third-order quadrature-

based moment method was used to describe the particle 

phase by approximating its kinetic equation. 

The formation of small local structures at higher particle 

concentration in the two-fluid model was discussed. It has 

been shown that, at the same operating conditions, local 

intense segregation phenomena are not predicted by a 

higher-order approximation of the kinetic equation that 

allows multiple local velocities. It was also shown how the 

particle-phase average volume fraction influences the 

development of flow instabilities, which lead to particle 

segregation. In a sufficiently dilute case, these instabilities 

did not appear in the MFIX-QMOM simulations. 

The relative computational cost of MFIX-QMOM with 

respect to the two-fluid model in MFIX is in the range of 

1.5–1.9. The longest simulation was the one with the 

highest particle-phase volume fraction, which required 

25.37 hours with the two-fluid model and 48.2 hours with 

MFIX-QMOM on a single core of an Intel Xeon CPU at 

3.0GHz. It is worth noting that the hyperbolic nature of 

the QMOM model should make the MFIX-QMOM code 

highly scalable. In the dilute limit, the time step is limited 

only by the CFL number and the kinetic-based fluxes are 

stable for relatively large CFL number (e.g., CFL=1 for 

the first-order scheme). 

Work is in progress to extend the MFIX-QMOM code 

discussed in this work to denser flows, in order to create 

an efficient and versatile tool, able to describe gas-particle 

flow over the full range of particle-phase volume 

fractions. Although not discussed here, the same approach 

for approximating the kinetic equation is applicable to 

polydisperse gas-particle flows by coupling a multi-

component kinetic equation with the fluid solver. Such as 

approach naturally accounts for particle-particle collisions 

between like and unlike particles, as well as differences in 

the fluid drag depending on the particle type.  

ACKNOWLEDGEMENTS 

This work has been supported by the National Energy 

Technology Laboratory of the US Department of Energy 

under award number DE-FC26-07NT43098. 

REFERENCES 

ANDREWS, M. J., O‟ROURKE, P. J. (1996) “The 

multiphase particle-in-cell (MP-PIC) method for dense 

particulate flows”, Int. J. Multiphase Flow, 22, 379–402. 

BHATNAGAR, P. L., GROSS, E. P., KROOK, M. 

(1954) “A model for collisional processes in gases. I. 

Small amplitude processes in charged and neutral one-

component systems”, Phys. Rev., 94, 511–525. 

BIRD, G. A. (1994) “Molecular gas dynamics and the 

direct simulation of gas flows”, Oxford University Press. 

DESJARDIN, O., FOX, R.O., VILLEDIEU, P. (2008) 

“A quadrature-based moment method for dilute fluid-

particle flows”, J. Comp. Phys., 227, 2524–2539. 

ENWALD, H., PEIRANO, E., ALMSTEDT, A. E. 

(1996) “Eulerian two-phase flow theory applied to 

fluidization”, Int. J. Multiphase Flow, 22, 21 – 66. 

FOX, R. O. (2008) “A quadrature-based third-order 

moment method for dilute gas-particle flows”, J. Comp. 

Phys., 227, 6313–6350. 

GIDASPOW, D. (1994) “Multiphase flow and 

fluidization”, Academic Press. 

GRAD, H. (1949) “On the kinetic theory of rarefied 

gases”, Communications on Pure and Applied 

Mathematics, 2, 331–407. 

HE, Y., DEEN, N. G., VAN SINT ANNALAND, M., 

KUIPERS, J. A. M. (2009) “Gas-solid turbulent flow in a 

circulating fluidized bed riser: Experimental and 

numerical study of monodisperse particle systems”, IEC 

Research, 48, 8091-8097. 

HOOMANS, B. P. B., KUIPERS, J. A. M., BRIELS, W. 

J., VAN SWAAIJ, W. P. M. (1996) “Discrete particle 

simulation of bubble and slug formation in a two-

dimensional gas-fluidized bed: A hard-sphere approach”, 

Chem. Eng. Sci., 62, 28-. 

JOHNSON, P.  C., JACKSON, R. (1987) “Frictional-

collisional constitutive relations for granular materials, 

with applications to plane shearing”, J. Fluid Mech., 176, 

67–93. 

KOGAN, M. N. (1969), “Rarefied gas dynamics”, 

Plenun Press, New York. 

PASSALACQUA A., FOX, R. O., GARG, R., 

SUBRAMANIAM, S. (2009) “A fully coupled 

quadrature-based moment method for dilute to moderately 

dilute fluid-particle flows”, Chem. Eng. Sci., DOI: 

10.1016/j.ces.2009.09.002. 

PATANKAR, N. A., JOSEPH, D. D. (2001) 

“Lagrangian numerical simulation of particulate flows”, 

Int. J. of Multiphase Flow, 27, 1685–1706. 

SAKIZ, M., SIMONIN, O. (1998) “Numerical 

experiements and modelling of non-equilibrium effect in 

dilute granular flows”, In: Brun, R., et al. (Eds.), Int. 

Symposium on Rarefied Gas Dynamics, Cépadduès 

editions, Toulouse, France. 

SCHILLER, L., NAUMANN, A. (1935) “A drag 

coefficient correlation”, V.D.I. Zeitung, 77, 318–320. 

SNIDER, D. M., (2001) “An incompressible three-

dimensional multiphase particle-in-cell model for dense 

particle flows”, J. Comp. Phys., 170, 523–549. 

STRUCHTRUP, H. (2005) “Macroscopic transport 

equations for rarefied gas flows”, Springer, Berlin. 

SYAMLAL, M. (1998) “MFIX Documentation 

Numerical Technique”, US-Department of Energy, Office 

of Fossil Energy, Morgantown, WV, USA. 

WEN, C. Y., YU, Y. H., (1966) “Mechanics of 

fluidization”, Chem. Eng. Progr. Symp. Series, 62, 100–

111. 


