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ABSTRACT 
In liquid/liquid extraction processes, e.g. in ternary 
systems, where the transfer of a solute between a 
dispersed and a continuous phase is considered, reliable 
predictions of mass transfer coefficients and retention 
times are indispensable. Especially in the case, where 
interfacial instabilities like drop deformation and 
Marangoni-convection occur, the influencing factors and 
their quantitative nature are not yet fully understood. 

In our numerical model we consider a Newtonian viscous 
two phase flow, representing a single deformable drop. 
Simulations are performed using the academic code 
NAVIER, which features a sharp interface model and a 
variational formulation of the curvature. This approach 
provides an effective method for a consistent, very exact 
description of discrete surface stresses.  

Results of drop rise velocities and mass transfer rates in 
the 2D case of spherical as well as deformable drops are 
presented (diameters varying from 1 mm to 5 mm). 

The simulations are compared to experimental results in 
the system water/toluene and to numerical results of non-
deformable drops obtained by STAR-CD. Especially with 
the onset of drop deformation, the system is excellently 
reflected by the simulations, i.e. the terminal velocities 
calculated with NAVIER show a deviation of no more 
than 4% to the experimental results. 

NOMENCLATURE 

dA   reference area      [ ]2m  

c   concentration      [ ]3/mmol  

DC   drag coefficient     [ ]−  

pd   diameter of drop      [ ]m   

D   diffusion coefficient     [ ]sm /2  

I   identity matrix     [ ]−  

AF / DF  buoyancy/drag force     [ ]N  
g   gravity constant      [ ]2/sm  

H   partition coefficient    [ ]−  
m   mass of drop       [ ]kg  
p   pressure       [ ]2/mN  

Pe   Peclet number     [ ]−  

Re   Reynolds number     [ ]−  
t   time        [ ]s  

u / ∞u  velocity/ terminal velocity   [ ]sm/  

U   velocity scale      [ ]sm/  

bcx   barycenter of drop     [ ]m  

bcx
⋅

/ bcx
⋅⋅

 velocity/acceleration at bcx    [ ]sm/  

0γ   interfacial tension      [ ]mN/  

Γ   interface of drop     [ ]−  
κ   mean curvature      [ ]m/1  
ν   outer unit normal on surface  [ ]−  
ρ  density       [ ]3/mkg  
μ  dynamic viscosity     [ ]mskg /  
Ω  domain       [ ]−  
σ  Newtonian stress tensor   [ ]2/mN  

Subscripts 
c/d  continuous/ dispersed phase 

INTRODUCTION 
Liquid/liquid extraction processes play an important rôle 
in the process industries. In industrial applications 
knowledge of small scale behaviour of single drops can be 
used to improve the design of extraction columns. 
Thus the complex mechanisms that dominate retention 
times, terminal velocities, and mass transfer rates of single 
drops are an area of active research, both experimentally 
and numerically. 

The direct numerical simulation of single drops in a 
continuous liquid phase with mass transfer and a 
deformable interface is a challenging task. Due to steep 
gradients and nonlinear interactions the interface in 
particular has to be resolved with sufficient accuracy. 
There are several possible methods of tracking the 
location of a deformable interface:  

One approach is the widely used VoF (Volume of Fluid) 
method (Hirt & Nichols, 1981; Bothe, 2005; Davidson & 
Rudman, 2002). In this approach an additional time-
dependent transport equation for the volume fraction of 
the dispersed phase is solved. The level-set method (Osher 
& Sethian, 1988; Wang et al., 2008; Bertakis et al., 2008) 
is another successful and popular method of obtaining an 
implicit representation of the interface.  

These implicit methods have the advantage of being able 
to capture drop coalescence or breakup, as they can deal 
with topological changes. However, if applicable, mesh 
moving or front tracking methods have the potential to be 
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much more accurate (Bänsch, 2002; Tryggvason et al., 
2002; Dijkhuizen et al., 2005).  

In a finite-element mesh-moving method the interface 
always coincides with an (interior) boundary of the 
underlying mesh and is thus perfectly aligned. Since the 
triangulation is deformed in each time step, mesh 
distortion has to be avoided by appropriate grid 
smoothing. 

The key ingredient for a feasible and highly effective 
mesh-moving method for the present problem is to work 
in a co-moving frame of reference (Maxey & Riley, 1983; 
Wang et al., 2008). The interfacial conditions are 
implemented using a Subspace Projection Method (SPM) 
(Bänsch & Bäumler, 2009).  
The numerical results are compared to simulation results 
of spherical drops using the commercial code STAR-CD, 
and with experimental data from the system water/toluene 
(Wegener et al., 2007).  
The aim of this paper is to gain further insight into 
interfacial phenomena like drop deformation, and in future 
studies of Marangoni effects, and study their influence on 
mass transport. 

MODEL DESCRIPTION OF 2 PHASE FLOW 
We split the continuous and dispersed phase into 

dc Ω∪Ω=Ω . The interface Γ  is given as 

dc Ω∩Ω=Γ , compare Figure 1.  

                  
Figure 1: Indication of domain. 

Fluid Dynamics and mass transport in bulk phase 
We assume the following restrictions on the fluids: 

• incompressible, Newtonian fluids, 
• mutually immiscible fluids,  
• constant temperature,  
• rotational symmetric flow,  
• constant parameters.  

For simplification of the mass transfer, we assume: 
• no reaction of solute and the bulk phases,  
• negligible mass of solute, 
• no breakup or coalescence of drops, 
• no Marangoni effects. 

Under these assumptions, the governing equations of the 
two phase flow in the bulk phases are the incompressible 
Navier-Stokes equations with a Newtonian stress tensor: 

)( T
iiii uu ∇+∇= μσ  pI− in iΩ .  

ii in Ω=⋅∇ ,0u   (1) 

iiiiii
ii ing

t
Ω=⋅∇−∇⋅+ ρσρ

∂
∂ρ uuu )( (2) 

The mass transport is described by a convection-diffusion 
equation in each phase. 

iiiii
i incDc

t
c

Ω=Δ−∇⋅+ ,0)(u
∂
∂  (3) 

The subscript },{ dci∈ indicates the respective phase. 
(1) to (3) are subject to appropriate initial conditions. 

Interface conditions 
For further information on fluid mechanics and mass 
transfer at interfaces we refer to Deen, 1998, and Clift et 
al., 1978. 
We introduce the notation  

  [ ] )(lim)(lim
00

xfxff
dc x

xx
x

xx
Ω∈
→

Ω∈
→

−=      

for a jump of a quantity (scalar or vector valued) across 
the interface. 

Fluid dynamics 
Due to the no-slip condition the tangential velocities are 
continuous across the interface. Moreover, since we 
consider no bulk flow across the interface, the normal 
components are also continuous. 
With the above notation the no-slip condition reads: 

[ ] 0=u .     (4) 
The stress balance at the interface is given for every point 
on the interface by: 

[ ] )(0 cSγκνγνσ ∇−=⋅ .  (5) 

Here, κ denotes the mean curvature of the interface, 0γ  is 
the interfacial tension of the pure system (without added 
solute). S∇  denotes the surface gradient (the projection of 
the gradient on the tangential plane).  
In neglecting Marangoni-convection, equation (5) 
simplifies to 

[ ] κνγνσ 0=⋅    (5*) 
In the simplified equation (5*) there is no back coupling 
of solute concentration to the velocity field. Thus the fluid 
field can be solved independently of the concentration. 

Mass transfer 
Assuming Fick’s law, the conservation of mass leads to 
the balance relation at the interface: 

[ ] 0)( =∂ Dcν ,     (6) 
and using Henry’s law we get  

H
c
c

c

d = ,     (7) 

with the partition coefficient H  depending on the 
involved fluids. 

Force balance  
The force balance of the drop is given by Newton’s 
second law, see equation (8), and Figure 2. 

DAbc FFxm +=
⋅⋅

     (8) 

Here AF  is the buoyancy force, given by: 

gmF
c

d
A )1(

ρ
ρ

−= ,and DF  is the drag force due to the 

flow field given by ∫ ⋅−= dSF cD νσ . 
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Figure 2: Virtual 
node doubling. 

NUMERICAL METHOD IN NAVIER 
Simulations of spherical and deformable drops have been 
realized with the academic code NAVIER. This code 
consists of a finite-element scheme with the ability of 

free-surface treatment 
(Bänsch, 1998, 2001). 

For time discretization, a 
fractional-step-theta scheme 
(Bristeau et al., 1987) in a 
variant as operator splitting 
is used and the Taylor-Hood 
finite-element for space 
discretization. For a correct 
calculation of the flow field 
and thus of rise velocities, 
grid independence has to be 
assured. Grid dependency 
tests have been carried out 
for the setting of a rigid 
droplet. These tests were 
performed on different 
triangulations, varying in 
size and refinement level. 
Finally a triangulation was 
chosen, with a distance of 7 
radii from drop surface to the 
wall, consisting of 1300 
triangles, which inherits a 

relative error of less than 1% with respect to the terminal 
velocity.  

Interface handling in 
NAVIER 
The crucial part of a two-
phase flow implementation 
is the interface 
representation. As 
mentioned in the 
introduction, we use a 
mesh-moving method. The 
handling of the 
discontinuities of pressure 
and concentration is delicate 
and essential for the 
resulting accuracy of the 

overall method.  

This problem is solved within NAVIER by a (virtual) 
doubling of the interface nodes. Introducing parent and 
child nodes on the interface, there are two associated 
nodes of the finite element space jc  and jd  (see Figure 

3, note that in the figure the interface Γ  is pulled apart for 
better visualisation). 

Since deformations of the interface are caused only by 
normal velocities, the location of the new interface can be 
calculated by solely considering the normal component of 
the velocity, using the kinematic condition: 

Γ⋅=Γ onuuU ,)( ν .      
As mentioned in the introduction, the interfacial equations 
(4) and (7) are realized via a special Subspace Projection 
Method (SPM) (Bänsch & Bäumler, 2009).  

SPM operates directly on the nodal basis of the finite 
element representation. It consists of a local projection, 
operating on interface nodes only. It is thus easy to 

implement as well as computationally efficient. The 
momentum flux condition (5*) is implemented by 
variational curvature treatment. Flux condition (6) is a 
natural boundary condition in our formulation. 

Moving Reference Frame 
As mentioned above, the equations are solved in a moving 
reference frame. The reference frame is moved according 
to the position of the barycenter of the drop. This method 
allows us to compute the solutions in a significantly 
smaller computational domain and, even more 
importantly, to use a mesh moving method without facing 
severe mesh distortion. 

 
Figure 4: Schematic diagram of the transformation. 

If not stated otherwise, in the following, we denote by x̂  
the coordinates in the reference frame relative to a fixed 
observer. 
We use a coordinate transformation Φ  on the coordinates 
x̂  that keep the barycenter of the moving drop in the 
center of the transformed coordinate system x  for all 
times. 

0)ˆ( =Φ bcx  
This transformation is given for a known position of the 
barycenter of the drop by: 

);();ˆ(: txtx →Φ  

bcxxtx −=Φ ˆ);ˆ( . 
Note that the coordinates of the barycenter of the drop are 
a function of time. 
With the given transformation Φ , we define functions 

cpu ,,  in the moving reference frame.  
⋅

−= bcii xtxutxu );ˆ(ˆ:);( (t) 

xtxtxptxp bccii ⋅+=
⋅⋅

)();ˆ(ˆ);( ρ (t) 

);ˆ(ˆ);( txctxc ii = . 

Note that the function p  is chosen to be dependent on cρ  
in both fluid phases. 

These modified velocity and pressure fields yield again a 
Navier-Stokes like equation. One difference is an 
additional acceleration term, analogous to a volume force 
on the right hand side of the Navier-Stokes equations for 
the dispersed phase. Another consequence of this 
transformation is the occurrence of modified boundary 
conditions. 

Figure 3: Schematic 
diagram of forces 
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The new defined concentration c  fulfils a diffusion-
convection equation as in (3) in each phase.  

Nondimensionalization 
We obtain the following dimensionless groups by 
nondimensionalization. 

• Reynolds number 
i

cp
i

Ud
μ
ρ

=:Re  

• Peclet number 
i

p
i D

Ud
Pe =:  

Note that these numbers are discontinuous over the phase 
boundary.  

Determining the acceleration 
The acceleration in each time step is computed via the 
force balance (8), which in turn depends on the drag force. 
Thus, the pressure p̂  of the reference coordinate system is 
needed, which can be obtained from the modified pressure 
p  by subtracting a gradient field corresponding to the 

transformation Φ .  

Stabilization of convection-dominated flow 
In finite-element simulations convection—dominated 
flows may lead to numerical instabilities, since the 
solution tends to oscillate at sharp fronts. These sharp 
fronts occur in the current setting at the interface of the 
droplet, where the data is discontinuous. Therefore a 
stabilization technique (the streamline diffusion method) 
was implemented (Johnson, 1995). Nevertheless the 
simulations reveal that further stabilization is necessary 
for a reliable prediction of mass transport in flows with 
higher Peclet numbers. In the future another method, 
shock capturing (Johnson, 1995), will be used 
additionally.  

RESULTS 
The results that we obtain in our simulations with the 
academic code NAVIER are validated with numerical 
results using the commercial software STAR-CD in 3D-
simulations, as well as with data obtained in experiments. 
 

25° ρ[kg/m³] D [m²/s] μ[kg/ms]  γ[N/m] H [-] 
water 998.2 1.140E-7 1.0E-3 

toluene 866.7 2.900E-7 0.586E-3 
3.5E-2 0.63 

Table 1: Material properties. 

In Table 1 material parameters for the ternary system 
water/toluene/acetone at 25°C are given. The diffusion 
coefficients are chosen two orders of magnitude higher 
than in reality. This simplification is assumed, since the 
mass transfer is a strongly convection-dominated problem 
(see above). However, we expect this modified setting to 
give first insights into the effects of drop deformation on 
mass transport of the original setting. The Peclet number 
considered for the calculations is of the order 310≈cPe . 
Therefore the simulations already reflect a convection 
dominated regime, and discussions by Clift et al. (1978) 
suggest only a quantitative change, considering the effect 
of shape change. Nevertheless future simulations with 

510≈cPe , using a shock capturing method, are currently 

prepared. For all data presented in this paper, material 
properties are chosen according to Table 1. Water is 
considered to be the continuous phase and acetone the 
transferring solute from the dispersed phase to the 
continuous phase. 

Velocity 
Since STAR-CD is limited to the case of spherical drops, 
we compare simulations of NAVIER of spherical drops 
(third column in Table 2) with 3D-simulations in STAR-
CD (fourth column in Table 2) and analytical results from 
Hamielec et al. (1963) (fifth column in Table 2) for the 
spherical case. The deviation of terminal velocities 
calculated with NAVIER to STAR-CD is less than 7% 
except for the 4 mm drop, where the deviation rises to 
16%. In comparison with results from Hamielec et al. our 
results show a growing deviation with increasing drop 
diameter, up to 33% for a 5 mm drop.  

 
Figure 5: Terminal velocities of rising deformable and 
spherical toluene drops in water for varying diameter. 

Results of NAVIER simulating deformable drops (first 
column in Table 2) are then compared to experiments 
(second column in Table 2). The agreement is excellent, 
since the comparison reveals a deviation of no more than 
3.5%. Since the terminal velocity of the 4.5mm drop is 
periodic in time (see Figure 7), we have calculated a mean 

 Navier 
deform  

Experiments Navier 
spherical 

STAR-CD 
spherical 

Hamielec 
et al. 

  Wegener et 
al. (2008) 

 Wegener 
et al. 

(2008) 
(1963) 

d_p 
in 

mm
terminal velocity [m/s] 

1 0.0412 0.0402 0.0412 0.0384 0.0406 
1.5 0.0731 0.0705 0.0731 0.0680 0.0710 
2 0.1124 0.1112 0.1129 0.1051 0.1057 

2.5 0.1542 0.1544 0.1607 0.1505 0.1438 
2.7 0.1678      
3.0 0.1790 0.1833 0.2160 0.2039 0.1850 
3.2 0.1810      
3.5 0.1780 0.1840 0.2750 0.2586 0.2289 
4.0 0.1758 0.1798 0.3732 0.3138 0.2752 
4.5 0.1700 0.1751 0.4607  0.3239 
5   0.1740 0.5567   0.3746 

Table 2: Terminal velocities of deformable and spherical 
drops in the setting water/toluene. 
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velocity over one period to determine the terminal 
velocity. 

In comparison to deformable drops, the higher terminal 
velocity of spherical drops is clearly reproduced in the 
simulations with NAVIER (see Figure 3).  

The simulations reflect the fact that deformable drops 
reach a maximum of terminal velocity at a diameter of 
about 3.2 mm to 3.5mm. With increasing diameter, there 
is no further increase of terminal velocities in simulations 
after 3.2mm, or experiments after 3.5mm. This can be 
observed in the simulation, presented in Figure 5. 

The change of shape regime from spherical to ellipsoidal 
drop shape is reproduced in the simulations, as shown in 
Figure 6. As stated by Clift et al., 1978, this onset of 
deformation starts at a diameter of approximately 3mm. In 
Figure 6, the interface of the simulated drops is printed at 
three different times. It is possible to validate that a drop 
with a diameter of 2mm still keeps its spherical shape, 
whereas a drop with diameter 3mm is already slightly 
ellipsoidally shaped. The larger the diameter, the more 
pronounced the ellipsoidal shape.  

At a diameter of 4.5mm the drops in the simulations start 
to wobble. This wobbling of the shape leads to a periodic 
change of the terminal velocity (see Figure 7).  

 
Figure 6: Shape of deformable drops at different times t = 
0s; t=0.2s;t=0.4s; simulations with NAVIER. 

Mass transfer 
Mass transfer simulations for deformable and spherical 
drops have been performed. In Figure 8 isolines of 
concentration are plotted for spherical and deformable 
simulations of drops with a diameter varying from 2 mm 
to 4mm. It can be observed that the shape of the isolines 
transforms, in the case of deformable drops, to a more 
circular torus, whereas in the case of spherical drops, 
naturally the shape remains more elliptic. The relative 
position of the maximum of concentration to axial drop 
diameter does not change significantly however, neither 
for varying drop diameters, nor in comparing spherical to 
deformable drops.  

Transient results of the dimensionless mean concentration 

0
* /: ccc =  are plotted in Figure 9. c  is the mean 

concentration in the droplet, and 0c is the initial solute 
concentration. No significant distinction can be made 
between runs of deformable and spherical drops.  

According to the lower rise velocity and the convection 
dominance of the concentration equation the drops with 
smaller diameter show a slower descent of mean 
concentration. For illustration of the convection 
dominance of the problem, Figure 10 shows the 
streamlines of the velocity field and the concentration.  

 
Figure 7: Transient rise velocities for different drop 
diameters in the system water/toluene for deformable 
drops. 

Figure 8: Isolines of concentration and shape of drops. 
Left column shows deformable drops, right column shows 
spherical drops.  

CONCLUSION AND OUTLOOK 
In the present paper, simulations of transient rise 
velocities and mass transfer for single spherical as well as 
deformable drops for varying diameters have been 
performed with the academic code NAVIER.  

Regarding onset of deformation and terminal rise velocity, 
the results are in very good agreement with experimental 
data. Furthermore, there is also good agreement of non-
deformable, spherical drops at least for small diameters. 
For larger drop diameters, 3D effects are no longer 
negligible, so that our 2D results deviate by up to 16% and 
33%, respectively, compared to results from the 
commercial code STAR-CD, and with analytic results, 
using the drag correlation of Hamielec et al. (1963).  

T = 0.4 s

T = 0.2 s

4 mm drop 2 mm drop 3mm drop

T = 0 s
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Thus, further investigations (i.e. 3D-simulations with 
NAVIER) are required for better results. 

Figure 9. Transient mean concentration for different drop 
diameters and spherical and deformable runs 

 
Figure 10: Spherical (left) and deformable (right) drop of 
4mm diameter; concentration and velocity magnitude with 
streamlines. Simulations performed with NAVIER. 
 
The significant role of drop deformation on the velocity is 
excellently represented in NAVIER. This could be shown 
by comparison to experimental data, obtained in the pure 
system water/toluene.  

Also changes in drop shapes show a good analogy to data 
presented by Clift et al. (1978). The simulations reveal 
that despite the significant differences of velocity regimes 
in deformable and spherical cases, the influence on mass 
transport due to drop deformation is negligible in our 
setting. 

However, when it comes to mass transport, we still face 
numerical instabilities due to the strong convection-
dominated character of the problem. We are currently 
working with stabilization techniques in order to be able 
to model the concentration effectively. A consequent next 
step is the research on systems with Marangoni-
convection. 
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