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ABSTRACT 
Micro and nano-fluidic mixing is now an important area 
of scientific research because of its applications in 
significant areas such as electrophoresis systems, chemical 
and bio-chemical synthesis.  Fluid flow at these small 
dimensions is necessarily laminar and, as such, dominated 
by diffusion which is extremely slow.  Furthermore, more 
realistic applications deal with viscoelastic fluids where it 
is well known dynamics are significantly slower than for 
simple fluids.  In this study we consider how mixing can 
be enhanced by using some clever techniques such as 
chemical patterning of the micro-fluidic tube walls for 
non-Newtonian and viscoelastic fluids. We use both 
continuum modelling and molecular dynamics simulations 
to describe these slow flows and outline some important 
ways in which fluid mixing can be promoted in these 
devices. 

NOMENCLATURE 
L characteristic length 
p pressure 
u  velocity field 
ρ fluid density 

INTRODUCTION 
Micro and nano-fluidics is a rapidly growing area of fluid 
mechanics with potential applications in chemical, 
biomedical and biochemical processes (Nguyen and Wu, 
2005, Ottino and Wiggins, 2004). In general, one deals 
with small amounts of reagents and rapid mixing of fluids 
is vital to efficiency of the process. However, when one 
gets down to the micro and nano length scales, it is well 
known that fluid flow becomes laminar and thus mixing is 
diffusion dominated. This is an extremely slow process 
and hence the future of this field depends on developing 
new and novel techniques to enhance fluid mixing.  
Most of the fluids one deals with in practice are not 
described by simple (Newtonian) fluid models. In general, 
most applications deal with so called “complex fluids” 
which are usually polymeric in nature. In this case, it is 
well known that fluid flow (and hence mixing) is slowed 
down even further due to the complex motion of these 
molecules (Doi and Edwards, 1999, Bird et al. 1987). In 
this study we therefore consider techniques to enhance 
mixing for complex fluids which have both a non-
Newtonian viscosity behaviour and an elastic response, 
hence the name viscoelastic fluids. 

In this study we will implement a continuum fluid 
mechanics model and consider a couple of methods to 
enhance mixing in narrow channels. The first method we 

use is to use chemically patterned boundary conditions 
with alternating regions of high and low slip. Hendy 
(2005) has shown these boundary conditions can induce 
transverse flows in Newtonian fluids and thus we question 
if similar flows are induced for viscoelastic fluids. Since 
these fluids are also elastic in nature we propose, in 
addition, to use an oscillating pressure gradient to drive 
the fluid along the channel.  The continuum model is valid 
as long as the width of the channel is large in comparison 
to molecule size, however when one gets down to small 
length scales, it is not clear when this model breaks down. 
To answer this question and also validate the continuum 
theory predictions we therefore carry out particle based 
simulations, which bypass any assumptions of the 
continuum theory. 

CONTINUUM THEORY 
We outline the continuum theory which is used to model 
flow of inelastic fluid in a channel. For simplicity, we 
restrict ourselves to two-dimensions so that we effectively 
have flow between plates. The channel is aligned so that 
its axis runs along the x-axis and is of length L and width 
2w (in the y-direction). Thus the fluid flows in the region 

wyw <<− and Ly ≤≤0 . A pressure difference, pΔ , 
is applied along the length of the channel so that 

Lpxpxp /)( 0 Δ−= . The Navier-Stokes equations for an 
incompressible fluid in the absence of gravity is 
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where τ+=Π Ip , u  is the velocity field given by 

[u,v,0], ρ is the fluid density, τ  is the stress tensor and 

I is the unit tensor. Since we are dealing with non-

Newtonian fluids we specify the relationship between 
stress and strain-rate. We use the Ostwald-de Waele 
power-law model (Bird, 1987) 

( ) ,)()(;
2
1;)( 1

2/1
−=⎥⎦

⎤
⎢⎣
⎡ ⋅=−= nmTr γγηγγγγγητ &&&&&&&

        (3) 
where γ&  is the rate-of-strain tensor and γ&  is related to 

the second invariant of the rate-of-strain tensor. In Eq.(3) 
the exponent n defines the nature of the fluid. For n<1 we 
have a shear-thinning fluid (which corresponds to most 
macromolecular type fluids) while for n>1 we have a 
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shear-thickening fluid (which usually involves some kind 
of molecular network). To solve these two equations we 
impose slip boundary conditions at .wy ±=  The slip 

boundary condition is wyyuwu ±=∂∂=± )/()( δ  

where δ  is the slip length (Hendy et al, 2005). If there is 
no variation in the boundary condition in the x direction 
then the steady-state, laminar flow solution is 
straightforward (and Pouseille-like), i.e.,  
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   (4) 
which is valid for 0≥y (for negative y,  yy −→ ).  
The flow is purely in the axial direction. To obtain mixing 
(due to fluid flow) we need to induce transverse flow into 
the channel. As discussed above, this is done by using 
patterned boundary conditions (alternating regions of high 
and low slip). Thus we model this by a sinusoidal 
variation in the slip boundary condition (with wave-
number, k and small amplitude α) i.e. 
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With a variation in the slip boundary conditions, one 
would expect the fluid flow would involve both 
longitudinal and transverse flow. In addition each of these 
components would be a function of both x and y. In Eq. 
(5), α is assumed to be small so that a perturbation 
expansion is valid,  
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Note that 0u is given by Eq. (4) so that we now need to 

solve at )(αO which requires some algebra. Doing this 

one can show 1u  and 1v are separable and of the form  

)(),()(),( 11 yfikeyxvyfeyxu ikxikx −=′= ,   (7) 

where the prime denotes a derivative with respect to y. 
The presence of an imaginary number in the solution for 

1v indicates this velocity is out of phase with 1u . 
Completing the necessary algebra one finds f satisfies a 
fourth-order linear ordinary differential equation: 
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where n/11−≡ℵ  and n/21−≡ℜ . There are 
correspondingly four boundary conditions: 

0)0()()0( =′′== fwff and 
nUwfwf /1)()( δδ =′′+′  where ./ LmpwU Δ≡  

Numerical solutions for a variety of n values are shown in 
Fig. 1 and indicate that larger transverse velocities are 
generated for shear-thickening fluids in comparison to a 
Newtonian fluid, while the shear-thinning fluids have the 
smallest transverse velocity. We also find the largest 
transverse velocities are generated for values of kw=3, 
i.e., the length of a patterned region should be roughly 
similar to the channel width. 

  

 

 

Figure 1: Function nwUkfF /1/≡  as a function of y/w 
for various n obtained by solving Eq. (8) (top) and n=0.5 
but various values of kw (bottom). 

Time varying pressure head 
We have seen that the transverse flows can be generated 
by using a variation in the boundary conditions. However, 
we would like to increase the magnitude of these 
velocities, especially for shear thinning fluids. We suggest 
this can be done by using the elastic property of the 
complex fluids.  The idea here is that by imposing a 
sinusoidal pressure gradient the magnitude of the fluid 
flow velocity will increase due to a resonance-like effect.  
We use the same theory as has just been described but 
now the imposed pressure head is given by 
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where ε  is a small parameter and ω is the frequency of 
the sinusoidal oscillation. We now need to supply a 
suitable constitutive equation for the visco-elastic fluid 
and we use a relatively simple linear model which will 
demonstrate the general strategy behind this idea. The 
constitutive model we use is the linearized White-Metzner 
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model, with a power law viscosity function (Tanner, 2002, 
Barnes et al, 1989): 

γγη
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t
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where λ is a typical “relaxation time” for the polymeric 
fluid. We follow the same procedure as before, except 
now we make a perturbation expansion for α  and ε . In 
addition to the terms given in Eq. (6), there are now order 
ε  terms. However, these terms will not contribute to the 
transverse flow (only flow in the axial direction). Hence to 
obtain the next correction to the transverse flow we need 
to consider order αε  terms which are time dependent. 
One can show the important corrections for longitudinal 
and transverse flow are then 

)(')( ygeu tkxi ω
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and g(y) is given by ( ) )(1)exp()( 2/1221 yinyg ζωλφ +≡ −  

and ).(tan 1 λωφ −≡  In this solution for g,ζ is given by 
the solution of the fourth order linear differential equation: 

[ ]

[ ] ),(/2

/22

2222

2

2
22

3

3

2

2
2

ynykk
dy
dyk

dy
dnky

dy
dy

dy
dy

ξζζ

ζζζ

=ℵ−+ℵℜ

+ℵ−ℜ+ℵ+
     (12) 

where  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ℵ++

+′′+−
ℵ=

dy
dfy

dy
fd

n
yk

fkfnn
y

2

22
2

2

2

))(/11)(1/3(
2)(ξ       (13) 

and the boundary conditions for ζ  are the same as the 
boundary conditions for f. The most important thing to 
note about the solution for g is that it involves the 
multiplicative factor ( ) 2/1221 ωλ+ . Recall λ  depends on 
the particular material being considered and so cannot be 
controlled but the driving frequency can be changed. Thus 
by increasing ω we can effectively increase the 
magnitude of the transverse velocity. All we require to do 
now is to make sure that ζ  is of similar order in 
magnitude to f.  Once again we can solve for ζ  
numerically and Fig. 2 shows the solution for various 
shear thinning cases.  It is quite clear that ζ  is of similar 
order to f.  

Summary of continuum predictions 
The continuum model has shown that the basic flow of a 
non-Newtonian viscous fluid in a narrow channel, subject 
to variable slip boundary conditions, results in flows 

[ ] ).(ˆ)()(ˆ )2/(
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  (14) 
Mixing will be beneficial (compared to a Newtonian fluid) 
for shear-thickening fluids but will be suppressed for 
shear-thinning fluids. To understand the flow patterns 
created by these patterned boundaries we present a 
schematic of the streamlines for the velocity profile in Fig. 
3. (Note, the 0u term is not included, as this is constant 
along the channel length.)  The points of zero flow are 

given by .../2,/,0,/,/2... kkkkx ππππ −−=  and 

0yy = where 0y  satisfies .0)( 0 =′ yf  All flows 
circulate about these points either in the clockwise or anti-  

 

Figure 2: Function nwUkZ /1/ζ≡ for various n 
obtained by solving Eqs. (12) and (13).  

clockwise sense depending on whether )(xδ  is greater or 
less than the average slip length.  At x values such that 

...2/3,2/,2/,2/3... kkkkx ππππ −−=  the axial 
component of the velocity is zero so that at these values of 
x there is only a transverse component. To induce larger 
transverse flows for shear-thinning fluids we suggest the 
elastic property of these fluids can be exploited to increase 
the transverse flow. This can be done by applying a 
sinusoidal time varying pressure profile.  

Figure 3: Schematic of streamlines at O(α) velocity flow 
for the Ostwalde de Waale model (for n=0.5). The flow 
circulates in a clockwise manner around the zero flow 
point at x=0 and y/w=0.76, which is the solution 
of 0)( =′ yf . In the adjacent regions -3<x/w<-1 and 
1<x/w<3 the streamline pattern is the same except the flow 
is anti-clockwise about the zero flow point. This 
streamline pattern is replicated along the entire channel 
length. 

MOLECULAR  MODEL  

So far we have given theoretical predictions based on a 
continuum model of the polymeric fluid. We would like to 
now implement a completely independent validation of 
these predictions. In the absence of experiments, the next 
best method to validate these predictions is first principle 
computer simulation.  Here we input the important 
molecular interactions into the problem and then let the 
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system evolve naturally.  The computer simulation 
method we use is molecular dynamics (MD) and this 
method is implemented for two main reasons. Firstly, the 
MD method is a particle-based method and hence does not 
make any assumptions regarding the continuum nature of 
the problem.  Since we are dealing with small dimensions, 
this is an important consideration and our MD results will 
show that in fact the continuum assumptions are indeed 
valid.  Secondly, the MD method is appropriate because 
by simulating at a particle level we will gain extra insights 
into the problem which are not addressed in the continuum 
model. 

The MD method we use is well known and we will not go 
too much into the details of the technique. The interested 
reader is referred to relevant literature (Allen and 
Tildesley, 1987). We mention here only the important 
points for our study.  The essentials of the technique (for 
us) are as follows. For each particle we solve Newton’s 
equation of motion where the force is due to the spatial 
gradient of the intermolecular potential and any externally 
applied force. Recall, we are dealing with polymeric 
molecules which are modelled as bonded chains. Bonds 
(between adjacent monomers) are modelled by a finite 
extensible nonlinear elastic (FENE) potential - essentially 
a Hookean spring for small extension and for large 
extension a much larger restoring force (Grest and 
Kremer, 1986). Each polymeric chain is made up of 20 
monomers. There is also a Lennard-Jones potential 
between any monomers and between wall atoms and 
monomers. It is of the form 
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where r is the separation between any two particles and 
κ and σ are the energy and length scales in the simulation. 
The first term in the square brackets prevents particles 
overlapping in space while the second term represents an 
attraction between particles. κ  varies according to the 
type of particles that are involved in the binary interaction 
and is tuned for the particular pair of particles being 
considered. It is the important parameter in setting the 
boundary (slip) conditions.  The channel is set-up in the 
same way as outlined in the “Continuum theory” section 
with the only change being that we implement periodic 
boundary conditions in the x and z directions. This is 
required since as we are modelling at the particle scale we 
cannot simulate too many stripes (which would require an 
enormous number of particles and hence enormous 
computational times).  The equations of motion were 
integrated using the Verlet algorithm (Allen and 
Tilldesley, 1987). Polymeric chains completely fill the 

domain to a monomer number density of 39.0 −σ . 

Fluid characterisation 

The first thing we need to do is fully characterize our 
polymeric fluid and relate it to the continuum theory. To 
do this we first ran a set of Couette simulations. This 
involves moving one of the walls at a prescribed velocity, 
V, and then calculating the resulting shear stress in the 
fluid. The fluid viscosity is then given by 

w
Vxy

2where == γγ
τη &

&
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and the shear stress is calculated according to standard 
methods (Jabbarzadeh et al, 2003). Doing this for a 
number for a number of different shear rates, we 
determined our polymeric fluid to be have an n value 
of 0138.06076.0 ± . Thus we have a shear-thinning 
fluid. By doing a set of Pouseille simulations 
(homogenous boundary conditions) we were then able to 
determine the relationship between κ (between wall atoms 
and monomers) and the slip length, δ. 

 

Figure 4: Slip length, δ  as a function of interaction 
energy parameter between wall atoms and monomers from 
the molecular dynamics simulations. The dots represent 
values of interaction parameter which were simulated. 

Figure 4 shows the results for these simulations and 
indicates that as we increase the magnitude of the 
interaction between the wall atoms and monomers the slip 
length correspondingly decreases. Intuitively, this makes 
sense since by increasing this interaction monomers are 
attracted more strongly by the walls atoms and hence tend 
to stick to these atoms. Hence the flow velocity of these 
monomers must decrease and hence the slip length 
correspondingly decreases. In the remainder of the 
simulations where we pattern the walls we will use two 
different values of the wall-monomer interaction and 
create regions of different slip. In contrast to the 
theoretical pattern which had a sinusoidal profile, the 
pattern in the MD simulations has a square wave profile. 
However, as long as the difference in slip length between 
the two patterned regions is relatively small previous work 
on Newtonian fluids (Hendy et al, 2005) has shown that 
the square-wave profile gives similar flows to a sinusoidal 
patterned profile.   

Patterned boundaries (constant pressure) 
We now proceed to reporting on simulations where we 
used the patterned boundary conditions. Recall the main 
aim here is to determine whether these patterned boundary 
conditions can induce significant transverse flows. A 
constant pressure gradient is applied between the channel 
ends (and this is done in the MD simulation by applying a 
constant external force in the positive x-direction on each 
monomer). The patterned regions we used corresponded to 
interaction parameters between wall atoms and monomers 
of 0.9 and 0.5 (see Fig. 4 for corresponding slip-length). 
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Figure 5: (Top) Contour plot of the transverse velocity 
profile ),( yxu y

 for 2/π=kw , which corresponds to 

two stripes along the channel length. The blue regions 
indicate the negative velocity regions and the red regions 
show the positive velocity regions. The intensity of a color 
is proportional to the magnitude of the transverse velocity.  
(Bottom) A snap-shot of chain conformations in the center 
of the channel and near the wall. Note, the chain in center 
is more extended compared to the chain near the wall. 

Figure 5 (top) shows the average transverse velocity in the 
channel for a case where there are two stripes along the 
channel length (corresponding to 2/π=kw ).  We have 
also run simulations for a variety of kw values.  Alternate 
circular regions of high positive and negative transverse 
velocities were observed in the both upper and lower 
halves of the x-y-cross section about the channel axis. The 
transverse velocity is close to zero along the center of the 
tube and near the walls with a maximum in between. The 
transverse velocity profiles are anti-symmetric about the 
center of the channel. Thus if the upper half has a positive 
transverse velocity region then the lower half has a 
negative transverse velocity region.  This creates fluid 
flow in the transverse direction in such a way that good 
mixing is achieved. However, we have observed that these 
transverse velocity regions do not exactly align with the 
wall pattern. This observation is consistent with 
continuum theory which suggests that there is a phase lag 
of π/2 between the actual pattern and the transverse 
velocity response (Hendy et al, 2005). 

To get a clear picture of what is happening on the 
molecular level we have taken a snapshot of two polymer 
chains at different times (Fig. 5, bottom). The polymer 
molecules are found to change their conformations 
depending on their position in the channel. In contrast to 
previous studies (Khare et al, 1996) the chains here do not 
only stretch in the direction of the flow but also appear 
more compressed when closer to the walls. This might be 
a direct consequence of using periodic wettable and non-
wettable regions. The polymer molecules would like to 
wet the surface in some regions therefore prefer a more 
closely bound conformations whereas in the nonwettable 
regions they would like to get away from the walls and 
hence take up more elongated conformations.  Well 
developed transverse flows were observed when the radius 
of gyration of polymers ( gR ) is smaller than the pattern 

length. The average radius of gyration of the polymer 
chains used in our Poiseuille flow simulations under 
constant slip boundary condition was gR  = 5.369σ . 

However, in the case of kw = 2π  the pattern length was 

4.8σ  which is less than the radius of gyration of the 
polymers. In this case the transverse flows were 
suppressed. The ratio of the length of the patterned region 
to the radius of gyration of polymer chains seems to be an 
important factor in determining the amount of transverse 
flow that can be achieved. When the length of a patterned 
region is comparable with the radius of gyration of the 
polymer chains then, on average, a polymer chain spans 
two different wettable wall regions simultaneously. Hence 
these chains start interacting with the wall as if it is a 
homogeneous continuum and thus decreasing the 
transverse flow. In our simulations for kw = 2π, the length 
of a patterned region was less than the radius of gyration 
of polymer chains and we have noticed a significant drop 
in the transverse velocity. The magnitude of the maximum 
transverse velocity in this case decreased by a factor of 2 
compared to the magnitude of the maximum transverse 
velocity for kw = π/2. We have also observed that the 
transverse flow was not as well developed as in the other 
cases where gR was less than the pattern length. This 

indicates that the length of the patterned regions should be 
longer than radius of gyration to enhance transverse flows. 
This is an important result which is not captured by the 
continuum modelling since it does not contain information 
about individual chains and hence does not include the 
length-scale gR . Simulations with off-set patterning of 

the walls were also conducted to study their effect on the 
transverse flow. The off-setting was done by moving the 
upper wall patterning by 3.2σ  to the right and keeping the 
lower wall’s position unchanged. We refer to the earlier 
case where the patterns were exactly parallel to each other 
as parallel patterning. Results of the simulations with off-
setting in the pattern have shown no significant deviations 
in the magnitude of the maximum transverse velocity 
compared to that of parallel patterning.  However, the 
transverse velocity regions in the upper and lower halves 
of the cross-section do not align parallel to each other as 
in the case of parallel patterning but they are off-set.  This 
was expected since the off-setting in the patterning leads 
to different flow behavior on the either side of the channel 
axis and hence off-setting of transverse flow regions 
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occurs. An interesting observation from these simulations 
is that the transverse velocity is non-zero, in certain 
regions, at the center of the channel. Hence, with this 
patterning set-up fluid elements in the center of the 
channel can flow towards the boundaries. In contrast, in 
the parallel patterning case, the transverse fluid velocity in 
the center of the channel is always zero and thus these 
fluid elements would never mix (except through 
diffusion). Therefore we suggest to obtain good mixing 
throughout the channel, it is better to have off-set 
patterned regions on opposite sides of the channel. 

Patterned boundaries (time varying pressure) 
To simulate a sinusoidal time varying pressure we applied 
a body force of the form ( ))sin(10 tFF ωε+=  and 
ran simulations for a number of different angular 
velocities. When we apply a sinusoidal body force we 
expect an elastic fluid will also respond with a sinusoidal 
longitudinal velocity. However, because of viscous 
dissipation, the fluid will be out of phase with the body 
force by ).(tan 1 λωφ −≡  Indeed this is what we found, 
indicating our fluid was indeed viscoelastic. However, we 
did not find a single (unique) relaxation constant but a 
number of relaxation constants, indicating the simple 
continuum theory presented above is an adequate starting 
point but is not entirely correct. Instead we require 
number of relaxation constants (Bird et al, 1987) to fully 
describe the fluid.  
We continued on to carry out simulations with coupled 
patterned boundaries and time varying pressure gradients. 
With oscillatory body force, as shown in Fig. 6, the 
maximum value of the transverse velocity has increased to 
0.0288 (compared to a maximum value of 0.0236 in the 
constant body force case). This represents a 22% increase 
in the transverse velocity. Results of simulations for other 
values of ω gave similar increases. In general, we find the 
increase is on average 20%, compared to a constant body 
force, and given we have applied a maximum 10% 
increase in the body force this represents a reasonable 
increase. We see that the maximum transverse velocity 
does not change appreciably with increasing frequency. 
Thus although our simulations agrees with the continuum 
theory in that a sinusoidally varying body force will 
increase the transverse velocity, the simulations do not 
show transverse velocities which increase as ω increases. 
We believe the reason for this is that the simplified 
continuum model includes only a single relaxation 
constant while the fluid modelled is characterised by 
several relaxation constants. Instead the transverse 
velocity is a superposition of velocities corresponding to 
each relaxation constant.  

CONCLUSION 
In this study we have used both continuum theory and first 
principle particle simulations to suggest methods to 
enhance mixing in complex fluids. We have considered a 
combination of methods, firstly using patterned boundary 
conditions (with alternating boundary regions of high and 
low slip) and secondly using a sinusoidally varying 
pressure gradient.  In general both the continuum theory 
and particle simulations show that using patterned 
boundary conditions can induce transverse flows in a long 
channel (which normally would have a simple Pouseille 
profile).  For shear thinning fluids this transverse flow is 

smaller than what one would obtain for a Newtonian fluid, 
but we suggest that coupling the patterned boundaries with 
a sinusoidally varying pressure gradient can increase the 
transverse flow significantly. 

 
Figure 6: Transverse velocity profile for the time 
dependent body force case for the frequency 

10/2πω = . 
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