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ABSTRACT 
The production and entrainment of bubbles in ship wakes 
is not completely understood despite the fact that it has 
many practical applications. For example, bubbles trapped 
in the large vortical structures in the ship wake can form 
clusters that are able to persist for large distances leaving 
a long trail of bubbles, which increases the ship’s 
signature; an important consideration in the defence 
environment. This work presents numerical results on the 
effect of a hydrofoil on a population of bubbles as they 
pass over it, and the resulting distribution of bubbles 
downstream for a range of angles of attack and Reynolds 
numbers. Direct numerical simulation (DNS) is used with 
a Lagrangian particle tracking method, which is more 
suited for fundamental investigations of the bubbly flow. 
It is seen that the effect of the angle of attack on the 
downstream bubble distribution is small at low Reynolds 
number but the effect increases at higher Reynolds 
number. Our data also shows that the effect of angle of 
attack on downstream bubble distribution is more 
significant for α = 20° rather than for α ≤ 10°. 

NOMENCLATURE 
c  chord length of the hydrofoil 
db  bubble diameter 
h  time step 
np number of Lagrange knot points along the side of 

each element 
p  pressure 
rb  bubble radius 
t  dimensional time 
(u, v, w) streamwise, vertical and spanwise velocity 

component 
u  freestream velocity 
(x, y, z) streamwise, vertical and spanwise directions in 

the Cartesian coordinate system 
Aa  acceleration due to added mass 
Ab  acceleration due to buoyancy 
Ad  acceleration due to drag 
Al  acceleration due to lift 
Ca  coefficient of added mass 
Cb  coefficient of buoyancy 
Cd  coefficient of drag 
Cl  coefficient of lift 
Cp  pressure coefficient 
N(u) nonlinear advection terms 
Re  Reynolds number 
Reb Reynolds number based on bubble relative 

velocity 
T  total bubble tracking integration time 

U  freestream velocity 
Ub  bubble velocity  
Uf  fluid velocity 
Urel  relative velocity between bubble and fluid 
Xb  bubble position  
Xf  fluid element position  
 
α  angle of attack 
ν  kinematic viscosity  
ρ  density 
ω  vorticity 
ωz  vorticity in the spanwise direction 
C   arc of the simulation domain 
N  dimension between the simulation object and the 

out boundary of the simulation domain 

INTRODUCTION 
The production and entrainment of bubbles in ship wakes 
is not completely understood despite the fact that it affects 
the signature of the ship in military scenarios. Bubbles 
trapped in the large vortical structures in the ship wake 
can form clusters that are able to persist for large distances 
leaving a field signature. The bubbly wakes provide an 
excellent opportunity for wake homing torpedoes, to find 
their target because of the large acoustic cross section and 
high acoustic response of bubbles to acoustic waves. 
Bubbles can be produced by various mechanisms. 
According to Peltzer (1984) there are three major sources, 
including breaking or folding over of the bow wave, 
entrainment of air into the vessel’s turbulent hull 
boundary layer at the surface and propeller rotation by 
drawing in air from the surface, racing in rough seaway or 
cavitation. Propeller plays a major part in the formation of 
bubbles and similar conclusions have also been made by 
Hsiao et al. (2006). With recent development of computer 
capability, understanding the behavior of bubbly flows by 
numerical simulation is becoming more common. The 
complicated behavior of bubbly propeller flow can be 
understood in a more fundamental manner by studying 
flow physics in hydrofoil wakes using direct numerical 
simulation (DNS). DNS can provide detailed information 
without the use of a turbulence model but at the expense 
of large amount of computation time and memory storage 
requirements. Thus, flows at Reynolds number (Re = 
Uc/ν) 200, 450 and 800 will be investigated. The 
Reynolds number is based on freestream velocity (U) and 
hydrofoil chord length (c), and hence time scales are made 
dimensionless by c/U. 
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In dispersed bubbly flow, two types of models are 
prevalent, the Eulerian-Lagrangian (particle tracking) and 
the Eulerian-Eulerian (two-fluid) models. In the Eulerian-
Lagrangian model, liquid is treated as a continuous phase 
that is described in the Eulerian mode, and bubbles are 
treated as a dispersed phase that is tracked in the 
Lagrangian mode. In the Eulerian-Eulerian model, the 
dispersed bubbles are treated as a second continuous phase 
intermingled and interacting with the continuous liquid 
phase based on the concept of volume averaging with 
different velocities and volume fractions for each phase. 
 
As has been noted by many researchers, flow structures 
can be significantly altered by the existence of bubbles 
due to the interaction between the bubble motion and the 
fluid dynamics (Serizawa et al., 1975; Lance and Bataille, 
1991). Johnson and Hsieh (1966) conducted a pioneering 
study of bubble trajectories in the early 1960s. Sridhar and 
Katz (1995) performed a more recent study to exam drag 
and lift forces on microscopic bubbles entrained by a 
vortex. The forces that act on bubbles as they are 
entrained by a vortex are measured using particle image 
velocimetry (PIV). The buoyancy, pressure and inertia 
forces were computed from the data, while the drag and 
lift forces are determined from a force balance on each 
bubble. Computed bubble trajectories compare well with 
experimental observations based on the measured lift and 
drag coefficients. Climent and Magnaudet (2006) 
investigated bubble dispersion in a two-dimensional 
upflowing mixing layer with Lagrangian tracking. The 
one-way coupling approach showed that characteristics of 
bubble dispersion are dominated by the capture of small 
bubbles within vortex cores due to the action of inertial 
forces. Two-way coupling simulations were carried out to 
study the effects by bubble induced disturbances on the 
motion of the flow field. Eulerian-Lagrangian models 
were used in the study of bubble columns (Vivek, 
Dhanannjay and Vivek, 2006; Hu and Celik, 2008) and 
the predicted data showed good agreement with classical 
experimental data. Smirnov et al. (2005) carried out 
simulation of bubble dynamics in wake flows with the 
Lagrangian particle dynamics (LPD) method. It was found 
that the method of LPD is most appropriate for computing 
bubble distributions in the ship wake due to relatively 
small volume fractions of bubble phase (Elghobashi, 
1994; Crowe, 1998; Smirnov et al., 2005). The results of 
the calculations showed that the bubbles tended to cluster 
in regions of high vorticity, which in turn could cause 
bubble coalescence and influence the flow itself. Hsiao et 
al. (2006) investigated effect of gas diffusion on bubble 
entrainment and dynamics around a propeller by the 
method of numerical simulation with Lagrangian particle 
tracking. Computations found that bubbles were seen to 
cluster in the vortices and blade wake regions, which is 
similar to the conclusions of Smirnov et al. (2005). It was 
also concluded that gas diffusion has important effect on 
bubble dynamics, especially the downstream bubble size 
distribution.  
 
Besides the large body of work done on the Eulerian-
Lagrangian models, Eulerian-Eulerian models have also 
been studied by other researchers. Cook and Harlow 
(1986) examined the properties of the von Karman vortex 
street for bubbly two-phase flow, assuming the density of 
gas in a bubble to be constant. Nishikawa et al. (1991) 
proposed a two-phase bubbly flow model. The two-phase 

flow around an airfoil was calculated and it was reported 
that bubbles migrate from higher-pressure zone near the 
leading edge towards the lower-pressure zone near the 
trailing edge. Significant amount of work have been done 
on the Eulerian-Eulerian models with DNS for bubble-
laden turbulent flows (Elghobashi, 1994; Druzhinin and 
Elghobashi, 1998; Druzhinin and Elghobashi, 1999). The 
motivation is that Eulerian-Lagrangian approach requires 
considerable computational resources when the 
instantaneous trajectories of a large number of individual 
bubbles need to be calculated, where using Eulerian-
Eulerian reduces significantly the required computation 
expenses. Sugiyama et al. (2001) demonstrated the three-
dimensional numerical analysis of two-phase bubbly flow 
over a circular cylinder under laminar flow conditions for 
Reynolds number from 100 to 2000. Bubbles 
accumulation in the Karman vortex and three-dimensional 
structures were observed. Uchiyama and Degawa (2007) 
conducted numerical simulation of air-water bubbly flow 
around a hydrofoil by vortex method with two-fluid flow 
approach. The computed results were in good agreement 
with the trend of experiment measurement. The same 
approach was applied to the air-water bubbly flow around 
two tandem square-section cylinder by Degawa and 
Uchiyama (2008). The strength of the Karman vortex was 
reduced due to the bubble entrainment. The simulation 
could predict the reduction of the drag force acting on the 
first cylinder that was clarified by the experimental study 
and results demonstrated that the vortex method with two-
fluid approach is applicable to the bubbly flow analysis 
around a hydrofoil.  
 
In summary, the Eulerian-Lagrangian models are 
sufficient if the bubble volume fraction is small, whereas 
Eulerian-Eulerian models are needed when the volume 
fraction is significant. Thus, the Eulerian-Lagrangian 
models are more suited for fundamental investigations of 
the bubbly flow (Pan et al., 1999) while Eulerian-Eulerian 
models are usually preferred in industrial simulations 
(Portela and Oliemans, 2006). Despite considerable efforts 
for both models, accurate modelling of the two-phase flow 
remains an open question even for simple dispersed 
bubbly flow. The main objective of the study is to 
investigate the accuracy of current-state-of-art numerical 
models for simulating bubbly flows. The spectral element-
Fourier code Semtex (Blackburn and Sherwin, 2004) will 
be used to solve the two-dimensional incompressible 
Navier-Stokes equations with Lagrangian particle tracking 
to investigate the effect of a hydrofoil on a population of 
bubbles as they pass over it, and the resulting distribution 
of bubbles downstream for a range of angles of attack and 
Reynolds numbers. 

MODEL DESCRIPTION 

Numerical Methods for Incompressible Flow 

Governing Equations 
The analytical techniques applied in this numerical study 
are associated with time-integration of the incompressible 
unsteady Navier-Stokes equations 

∂tu = −N(u) −
1
ρ

∇p + ν∇2u         (1) 

                      ∇⋅ u = 0                                                   (2) 
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where u = u(x, y, z, t) = (u, v, w)(t) is the velocity field, 
N(u) represents nonlinear advection terms, p, ρ, ν are 
respectively the fluid pressure, density and kinematic 
viscosity. The variable x, y, z and t are respectively the 
streamwise, vertical, spanwise and time coordinates and u, 
v, w are the velocity components in the streamwise, 
vertical and spanwise directions. The nonlinear terms are 
considered in skew-symmetric form N(u) = (u·∇u + ∇·u 
u)/2. 
 
The velocity is assumed to be 2π-periodic in the spanwise 
direction (z), hence the velocity field can be projected 
exactly onto a set of two-dimensional complex Fourier 
modes 

ˆ u k (x, y, t) =
1

2π
u(x, y,z, t) exp(−ikθ )dθ

0

2π

∫     (3) 

where k is an integer wavenumber. The velocity field can 
be recovered from these complex modes through Fourier 
series reconstruction 

        u(x, y,z, t) = ˆ u k (x, y, t) exp(ikθ )
k =−∞

∞

∑               (4) 

In practice, only a finite number of modes are retained in 
the calculation, and the conjugate-symmetric property of 
the Fourier transforms of real variables is exploited, so 
that the negative-k modes are not required (Canuto et al., 
1988). 

Equation (1) is subject to no-slip boundary conditions at 
the wall, a prescribed steady velocity at the inflow, 
conditions of zero pressure and zero outward normal 
derivatives of velocity at the outflow. 

Spatial Discretization and Time Integration 
Spatial discretization is carried out in a Cartesian 
coordinate system (Figure 1), using standard nodal-Gauss-
Lobatto-Legendre spectral element in the streamwise and 
vertical directions (x, y), and Fourier expansions in the 
spanwise direction (z) if required. This spatial 
discretization is coupled with a second-order-time velocity 
correction time-integration scheme. 
 

 
Figure 1: Simulation domain and coordinate system. 
 
The spectral element methods can deal with arbitrary 
geometric complexity, and are capable of local mesh 
adaption by either increasing the number of elements or 
increasing the polynomial order with elements 
(Henderson, 1999). It takes advantage of the favourable 
convergence properties of interpolation using families of 
orthogonal polynomials and the Chebyshev and the 
Legendre polynomials are more commonly used among 
all. In the spectral element method, it uses the Gauss 
quadrature nodes and weights associated with the 
orthogonal polynomials that provide the linkage, and 
maintain the exponential convergence property 

(Blackburn and Schmidt, 2003). Gauss-Lobatto quadrature 
nodes and weights are used in this case.  
 
The use of Fourier expansion in the spanwise direction 
means that there is a one-to-one correspondence between 
wave number and Fourier mode index. Solutions can 
retain the option of projecting back to full set of Fourier 
modes if required. One single cell is used in the spanwise 
direction, as only the two-dimensional simulations will be 
conducted for the current study. 
 
The time integration used is a projection scheme that is 
based on backwards differencing in time. As originally 
described (Karniadakis et al., 1991), this was 
characterized as an operator-splitting scheme, but more 
recently it has been shown that the method is one of a 
class of velocity-correction projection scheme (Guermond 
and Shen, 2003). To keep the overall account here 
reasonably brief, the reader is referred elsewhere 
(Blackburn and Sherwin, 2004) for a detailed description 
of the method and resolution studies as applied to DNS. 

Simulation Conditions 
The flow field around a NACA 0012 hydrofoil with chord 
length (c = 1) at an angle of attack (α) is modelled in two 
dimensions. The circular inlet and outlet boundaries are 
located 5c upstream and 10c downstream. The width of 
the flow domain is 10c.  
 

 
Figure 2: Simulation domain and the grid in proximity to 
the hydrofoil. 
 
A C-type grid is used around the hydrofoil and 
summarized by the arc (C), the dimension between the 
hydrofoil and the outer boundary (N). The cell counts are 
218 × 35 in these directions and a total of 7,630 elements 
in the two-dimensional domain are created. In each 
element, two-dimensional mapped tensor-product 
Lagrange-interpolant shape functions based on the Gauss-
Lobatto-Legendre nodes are applied. At np = 5 this 
elemental discretization corresponding to approximately 
190,000 local degrees of freedom in the two-dimensional 
domain. The simulation domain and the grid in proximity 
to the hydrofoil are illustrated in Figure 2. A Dirichlet 
boundary condition of u = (1, 0) is applied at the inlet, top 
and bottom boundaries. A Neumann boundary condition 
of ∂u/∂n = 0 is applied at the outlet. The numerical 
artifacts such as domain and grid independence are 
ascertained for the present mesh by comparing the mean 
lift and drag coefficients with the literature values. 
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Bubble Tracking Formulation 
Considering relatively small amounts of bubble phase in 
the ship wakes, the method of Lagrangian particle tracking 
is most suitable for computing bubble distributions. It has 
advantages over the two-fluid model in the case of dilute 
suspensions or when large concentration variability of the 
discrete phase is present (Elghobashi, 1994; Crowe, 1998). 
This situation is true for bubbly wake flows, such as those 
in ship wakes, where bubbles may experience preferential 
concentration and clustering effects in the near wake 
region but are rather dilute in the far wake (Smirnov et al., 
2005).  

Massless Particle Tracking 
The first step towards the complex bubble tracking is the 
massless particle tracking. Bubbles are treated as massless 
particle so that the bubble dynamics are simply defined by 
the flow dynamics 

          dXb

dt
=

dX f

dt
= U f                                      (5) 

where Xb and Xf are the bubble position and fluid element 
position. Uf is the fluid velocity. 
 
The predictor-corrector method will be used to solve 
Equation (5) to compute the position of massless bubbles. 
Numerical integration methods can be either explicit or 
implicit. Explicit methods are easy to use, but in general, 
the stability characteristics are not very good and as a 
result implicit methods may be preferred. However, for 
implicit methods, numerical solutions can only be 
calculated iteratively. The iteration will converge rapidly 
if a good initial guess can be provided. In order to reduce 
the iteration time and maintain stability, the explicit 
Adams-Bashforth predictor is used to predict a good initial 
guess, which can be used as the starting value for the 
iteration on the implicit Adams-Moulton corrector.  

Lagrangian Particle Tracking 
In a more general model, bubbles in the flow field 
experience the combined effects of the carrying fluid flow 
and the buoyancy force. Thus, bubble trajectories are 
different from fluid element paths and precise force 
balance acting on the bubbles is required. Bubble 
trajectories are obtained using the bubble motion equation 
from Sridhar and Katz (1995) as shown in Equation (6). 
This is because the parameters of a single bubble 
dynamics in simple vortices were directly measured and 
these data represent the features of pure bubble dynamics. 

          dUb

dt
= Aa + Ab + Ad + Al                   (6) 

where Aa, Ab, Ad and Al are the accelerations due to added 
mass, buoyancy, drag and lift respectively, and they are 
given by the following expressions 
 
Added mass: The acceleration due to added mass is 

    Aa = Ca
∂U f

∂t
+ U f ⋅∇( )U f

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟                   (7) 

The coefficient of added mass (Ca) is found to be 3.0, 
provided the bubble is nearly spherical (Sridhar and Katz, 
1995). 
 
Buoyancy: The acceleration due to buoyancy is 

                  Ab = −Cbg                                              (8) 
The coefficient of added mass (Cb) is found to be 2.0 
(Sridhar and Katz, 1995). 
 
Drag: The acceleration due to drag is 

          Ad =
3

4rb
Cd Urel Urel                             (9) 

 
Lift: The acceleration due to lift is 

    Al =
3

4rb
Cd Urel

2 Urel × ω
Urel ω

                        (10) 

Both the coefficients of drag (Cd) and lift (Cl) are 
empirical function of Urel and bubble diameter (db), which 
are obtained from experiments.  
 
The drag coefficient (Cd) can be taken from the empirical 
drag relationship (Almedeij, 2008) 

Cd =
1

(ϕ1 + ϕ2)−1 + (ϕ3)−1 + ϕ4
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1/10

            (11) 

where 
ϕ1 = (24 Reb

−1)10 + (21Reb
−0.67)10 + (4 Reb

−0.33)10 + (0.4)10

ϕ2 =
1

(0.148 Reb
0.11)−10 + (0.5)−10

ϕ3 = (1.57 × 108 Reb
−1.625)10

ϕ4 =
1

(6 × 10−17 Reb
2.63)−10 + (0.2)−10

 

 (12) 
and Reb is the Reynolds number based on bubble relative 
velocity (Urel) and bubble diameter (db). 

     Reb =
Ureldb

ν
                                            ((13) 

The relationship is calibrated free of systematic error with 
experimental data available for Reb < 106. 
 
The coefficient of lifts (Cl) was derived to be 0.53 (Auton, 
1981). Sridhar and Katz (1995) calculated the magnitude 
of the lift coefficients that range from 0.1 to 0.3 and were 
found to be consistent with the study by Barkla and 
Auchterlonie (1971).  
 
Bassett force: The Bassett force term involves a history 
integral and it is expected to be much smaller than the 
other dominant forces acting on bubbles (Ranade, 2002). 
Sridhar and Katz (1995) concluded that the contribution of 
the Bassett force is less than 6% of the buoyancy force. 
Consequently this force is neglected in this study. 

RESULTS 
The results from massless particle tracking are presented 
in this paper, but the results from the model of Lagrangain 
particle tracking will be presented at the conference. 

Massless Particle Tracking 
Nine bubble tracking cases at three different angles of 
attack (α = 0°, 10° and 20°) and three different Reynolds 
numbers (Re = 200, 450 and 800) have been studied. 
Simulations start in the two-dimensional flow domain and 
bubbles are not initiated until the flow field reaches steady 
state or periodic shedding. A time step of h = 0.0005 is 
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used and a total of 150 bubbles are continuously released 
on each side of the hydrofoil surface with an interval of 
200 time steps. 

Angle of attack at α = 0°  

Figure 3 present the bubble tracking results at α = 0° with 
Re = 200, 450 and 800. The bubbles released from the 
upper surface of the hydrofoil are marked in red and those 
from the lower surface are in blue. For all three cases, 
bubbles flow along the hydrofoil surface, as the fluid flow 
is parallel to the surface. They flow almost straight into 
the wake of the hydrofoil. As the Reynolds number 
increases, the vortices on both side of the hydrofoil are 
stretched further downstream but no vortex shedding is 
observed at this angle of attack. 
 

(a) Re = 200 

(b) Re = 450 

(c) Re = 800  
 
Figure 3: Effect of Reynolds number on downstream 
bubble distribution with vorticity contour at α = 0°. 

Angle of attack at α = 10°  

Bubble tracking results at α = 10° are presented in Figure 
4. Flow separates from the upper surface of the rear half at 
Re = 200. As the Reynolds number increases, the 
separation point moves towards the leading edge. At Re = 
200 and 450, bubbles flow straight into the wake of the 
hydrofoil. At Re = 800, flow becomes unsteady and 
vortices developed from upper and lower surfaces shed 
alternatively and convect downstream. Bubbles are 
meandering in the wake behind the trailing edge of the 
hydrofoil. 
 

 
(a) Re = 200 

 
(b) Re = 450 

 
(c) Re = 800  

 
Figure 4: Effect of Reynolds number on downstream 
bubble distribution with vorticity contour at α = 10°. 

Angle of attack at α = 20°  

Bubble tracking results at α = 20° are presented in Figure 
5. The flow separation from the upper surface is 
confirmed in all three cases. For Re = 200, the bubbles 
released near the leading edge from the upper surface are 
entrained into the reverse flow region above the trailing 
edge of the hydrofoil. They clustered with the bubbles 
released from the lower surface at the trailing edge 
propagate downstream together with the vortices 
developed from the trailing edge of the hydrofoil. For Re 
= 450 and 800, strong vortex shedding from both upper 
and lower surfaces are observed. The bubbles released 
from the upper surface are entrained in the vortices 
developed from the leading edge of the upper surface and 
the bubbles released from the lower surface are entrained 
in the vortices developed from the trailing edge of the 
hydrofoil. Bubbles are meandering in the wake and 
forming clusters in the vortices behind the hydrofoil. 
 

 
(a) Re = 200 

 
(b) Re = 450 

 
(c) Re = 800  

 
Figure 5: Effect of Reynolds number on downstream 
bubble distribution with vorticity contour at α = 20°. 

CONCLUSION 
The bubbly flow around a NACA0012 hydrofoil is 
simulated with the massless particle tracking algorithm at 
three different angles of attack (α = 0°, 10° and 20°) and 
three different Reynolds numbers (Re = 200, 450 and 
800). When the angle of attack α is 0°, the flow is parallel 
to the hydrofoil surface and there is no vortex shedding 
behind the hydrofoil. Bubbles flow along the hydrofoil 
surface. When the angle of attack α is 10°, the flow 
separates from the upper-surface and the separation point 
moves towards the leading edge of the hydrofoil as the 
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Reynolds number increases. At Re = 800, vortex shedding 
is observed and bubbles meander in the wake. When the 
angle of attack α is 20°, the flow separates near the 
leading edge of the upper surface and large eddies are 
shed from both the upper and lower surfaces. The bubbles 
are entrained to form clusters in the vortices behind the 
hydrofoil. 
 
A more detailed and realistic Lagrangian particle tracking 
algorithm based on the bubble motion equation from 
Sridhar and Katz (1995) will be implemented and further 
studies will be conducted using this model. With the 
success of the massless particle tracking, the Lagrangian 
particle tracking will be carried out to perform the 
fundamental study of the bubbly flow over a hydrofoil. It 
provides a better model to study the effects of the 
hydrofoil, for a range of angles of attack and Reynolds 
numbers, on the downstream bubble distribution. 
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