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ABSTRACT 
Numerical solutions for the flow past stationary and rotat-
ing spheres at Re = 250, 1,000 and 10,000 are presented. 
Calculations are performed using the finite volume solver 
CDP developed at Stanford University. The solver is veri-
fied by simulating the uniform flow past a rotating sphere 
at Re = 250. The numerical results show good agreement 
with numerical data available in the open literature. 
Computations are also conducted to study the turbulent 
flow past a stationary and rotating sphere at Re = 1,000 
and 10,000. The axis of rotation is orientated in two of the 
major axis directions, α = 0 (streamwise rotation) and α = 
π/2 (transverse rotation). Non-dimensional rotation rate Ω* 

= 1 (maximum surface velocity normalized by the 
freestream velocity) is considered. The effect of rotating 
the sphere in either the streamwise or transverse direction 
on the wake structures and hydrodynamic forces are ana-
lysed. A complete picture of the physics associated with a 
rotating sphere can therefore be revealed.  

NOMENCLATURE 
d   diameter of the sphere 
e   unit vector 
m   computer memory 
n   face normal direction 
p   pressure 
u    velocity 
(ux, uy, uz) Cartesian velocity non-dimensionalised by 

U∞ 
i   index variables 
(x, y, z)  Cartesian coordinates non-dimensional by d 
(r, θ, )φ   Spherical coordinates non-dimensional by d 
A   face area of the control volume 
V   volume of the control volume 
Cs   Smagorinsky model coefficient  
Cd   dynamic Smagorinsky model coefficient 
CD   drag coefficient 
CL   lift coefficient 
N   number of grid points 
Re   Reynolds number based on sphere diameter 
St1   vortex shedding Strouhal number 
St2   shear layer Strouhal number 
U∞   freestream velocity magnitude 
 
α   rotation axis angle 
λ2 intermediate eigenvalue of the tensor SkjSik 

+ΩkjΩik 
ω   vorticity 
∆t   dimensional timestep 
Ω   dimensional rotational speed 

Ω*   non-dimensional rotation rate, Ω* = Ωd/2 
 
CDP finite volume code named after Charles 

David Pierce, Stanford University 
DNS  direct numerical simulation 
LES   large eddy simulation 
SGS   subgrid-scale 
 
[    ]p  a value associated with the control volume 
[    ]nbr an adjacent control volume sharing the same 

face 
[    ]f common face of two control volume 
|     |  magnitude of a term 

INTRODUCTION 
In industrial applications such as engine combustion and, 
mineral and chemical processing the transport of particu-
late can be considered as a solid spherical body 
submerged in an incompressible Newtonian fluid. In order 
to predict and study the trajectory of the particulate, it is 
important to understand the flow structures and how they 
influence the hydrodynamic forces on the particulate.  
 
Significant research effort has been made into studying 
the flow past a stationary sphere over a wide range of 
Reynolds numbers both experimentally (Achenbach, 1973; 
Taneda 1956; Taneda, 1998) and numerically 
(Constantinescu and Squires, 2004; Johnson and Patel, 
1999; Mittal, 1999; Tomboulides and Orszag, 2000; 
Ploumhans et. al. (2002); Yun et. al., 2006). However, 
numerical studies for a rotating sphere have only consid-
ered low Reynolds numbers (Re ≤ 500) situations. The 
flow past a rotating sphere has been studied previously 
with the sphere rotating in either the streamwise or trans-
verse directions. A streamwise rotating sphere was ob-
served to bring forward the separation point in the laminar 
boundary layer regime (Hoskin, 1955). This is due to the 
additional adverse pressure gradient introduced by the 
rotating surface of the sphere. Luthander and Rydberg 
(1935) also observed a change in critical Reynolds 
number where the drag coefficient sharply decreases. Kim 
and Choi (2002) performed direct numerical simulations 
of flow past a streamwise rotating sphere for Re = 100, 
250 and 300. They discovered that at Re = 250 and 300, 
the flow structures become “frozen” for certain rotation 
rates. In this regime the flow structures appear to be 
stationary if the coordinate system is rotating at the same 
angular velocity as the flow structures.  
 
The induced “Robins-Magnus” lift force associated with 
transversely rotating sphere has attracted more attention 
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than a streamwise rotating sphere. Experiments and 
numerical studies have been performed in the laminar 
Reynolds numbers regime (0 < Re ≤ 300), and several 
different lift and drag correlations were derived by differ-
ent researchers. Recently, Giacobello et. al. (2009) per-
formed DNS at moderate Reynolds number using a 
Fourier-Chebyshev spectral collocation method. Their 
results are in good agreement with the experimental result 
by Rubinow and Keller (1961) and You et. al. (2003), but 
the lift coefficient was observed to be higher than Kurose 
and Komori (1999) and Niazmand and Renksizbukut 
(2003). As Reynolds number increases (Ο(104)), Maccoll 
(1928) observed a negative “Robins-Magnus” lift force for 
low rotational rates. The effect vanishes as the rotational 
rate increases. The negative “Robins-Magnus” lift force 
was also observed by Davies (1949) which he attributed 
this behaviour to the laminar-turbulent boundary transition. 
 
In order to extend the understanding of a sphere’s trajec-
tory due to rotation, the flow past a stationary sphere and 
rotating sphere is investigated in the turbulence regime at 
Re = 1,000 and 10,000. 

NUMERICAL METHOD 

Governing Equations 
The finite volume solver CDP used in this study is devel-
oped at Stanford University and is named after its original 
creator Charles David Pierce (Mahesh et. al., 2004; Ham 
and Iaccarino, 2004). The fluids motion is described by 
incompressible Navier-Stokes equations 

uuuu 21
∇+−∇=∇⋅+

Re
p

t∂
∂ , (1) 

0=⋅∇ u . (2) 
The primitive variables in these equations are the velocity 
vector, u, and the pressure scalar, p. Jiménez (2003) esti-
mated that in order to numerically solve (1) and (2) with-
out any approximation using a finite volume solver, the 
number of grid points needed are  

3/2ReN ≈ , (3) 
with the associated computer memory 

3Nm 40≈ (byte) . (4) 
It is therefore computationally expensive to directly com-
pute (1) and (2) as Reynolds number increases. The pre-
sent study performed a Direct Numerical Simulation 
(DNS) at Re = 250 and 1,000. The computations at Re = 
10,000 are carried out using a Large Eddy Simulation 
(LES) modelling approach in order to minimize 
computation cost.  

LES Governing Equations 
Although the LES methodology was developed in the 
early 60’s by Smagorinsky (1963), it only became a truly 
engineering tool in the early 90’s (Blazek, 2005). The idea 
behind LES is to capture the large eddies which contribute 
to the momentum and energy transfer, while the effects of 
the more homogenous small-scale motions are approxi-
mated using a mathematical model. This is achieved by 
spatially filtering the primitive variables into a large-scale 
(resolved) and small-scale (unresolved) component. The 
governing equations are solved for the resolved scale only. 
This approach significantly reduces computational cost as 
fewer grid points are required as compared to DNS.  
 

The original Smagorinsky model (Smagorinsky, 1963) 
uses a constant model coefficient, Cs, to assume the 
anisotropic part of the subgrid-scale (SGS) tensor. This 
model has several drawbacks and thus in this study, the 
dynamic Smagorinsky model proposed by Germano et. al. 
(1991) was employed. The dynamic Smagorinsky model 
adjusts the model coefficient, Cd, in space and time based 
on the energy content of the smallest scale eddies. The 
model constant was evaluated using the least-square 
minimisation (Lily, 1992).  

Numerical algorithm 
A brief description of the numerical algorithm is presented 
in this section. More details of the numerical method can 
be obtained in Mahesh et. al. (2004) and Ham and 
Iaccarino (2004). In CDP, the Cartesian flow variables (ui, 
p) are stored at the centre of the control volume. The face-
normal component of the velocity (uf) is stored at the 
internal face centre. The solution is time-advanced via a 
second-order time accurate fractional step semi-discretiza-
tion of the incompressible Navier-Stokes equations (Kim 
and Moin, 1985; Zang et. al., 1994; Kim and Choi, 2000),  
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which ensures conservation of discrete kinetic energy. For 
simplicity, the above equation has excluded both the vis-
cous and SGS tensor, which are included in the actual 
simulation. Details of the discretization form of these two 
terms can be found in Mahesh et. al. (2004). 
 
On a non-staggered grid, the present collocated formula-
tion will lead to a velocity/pressure decoupling of (5). 
This decoupling can be overcome by interpolating the 
Cartesian velocity into the face-normal velocity in the 
face-normal direction 
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A Poisson system for pressure can be obtained by taking 
the divergence of (6) and enforcing the continuity condi-
tion (1). This yields a divergence-free face-normal 
velocity component 
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Here, the discrete form of the pressure gradient is obtained 
from the Green-Gauss reconstruction 
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The discretized momentum and Poisson equations are then 
solved using the HYPRE library and BommerAMG 
library.  

Velocity Boundary Condition 
Figures 1 and 2 present the coordinate system and compu-
tational domain. The freestream flow is aligned with the z-
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axis and the sphere rotation axis is varied between the 
limits of the x- and z-axis, where the rotation angle, α, is 
measured from the positive z-axis. The dimensions of the 
computation domain in this study are: 
 

 
Figure 1: Problem geometry and coordinate system.  
 

 
Figure 2: Unstructured-grid Computation domain. (a) Iso-
metric view and (b) plane (x-z) view. 
 

[ ] [ ] [ ]20,15,15,15,15,15 −∈−∈−∈ zyx . 
Here, (x, y, z) are non-dimensionalized by the sphere 
diameter, d and the sphere centre is located at (x, y, z) = (0, 
0, 0). In total the grid presented in figure 2 comprises 6.94 
million control volumes. There are 280 control volumes 
located in both x- and y-direction, and about 500 control 
volumes are located downstream of the sphere. The grid is 
clustered towards the sphere ensuring that there are at 
least 10 to 15 control volumes located within the boundary 
layer before separation and enough resolution in the near-
wake. At the inlet (z < 0), a Dirichlet boundary condition 
is prescribed, whereas the boundary condition at the outlet 
is convective. A no-slip and no-penetration boundary 
conditions are employed at the sphere surface. For a rotat-
ing sphere, the surface velocity distribution is 
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RESULT 
The numerical results are presented in ascending Reynolds 
numbers order. The flow structures are identified using 
Jeong and Hussain (1995) λ2 vortex identification method 
and are presented for all Reynolds numbers considered. 
Time-averaged quantities of a rotating sphere at Re = 250 
and a stationary sphere at Re = 1,000 are presented in their 
non-dimensional form. Whereas the flow past a rotating 
sphere at Re = 1,000 and 10,000 are discussed qualita-
tively.  

Re = 250 (DNS) 
Figures 3 and 4 present the flow past a streamwise and 
transversely rotating sphere, respectively, for Re = 250. 
The flow field is unsteady for these simulation parameters. 
The flow structures calculated using CDP are in good 
agreement with those calculated by Kim and Choi (2002), 
Poon et. al. (2007) and Giacobello et. al. (2009). Table 1 
presents the time-averaged force coefficients and Strouhal 
numbers from this study together with data in the open 
literature. 

 
Figure 3: Isosurfaces plot of wake structures at Re = 250, 
Ω* = 1.00, α = 0 (streamwise rotation) coloured by the 
vorticity magnitude. 
 

 
Figure 4: Isosurfaces plot of wake structures at Re = 250, 
Ω* = 0.20, α = π/2 (transverse rotation) coloured by the 
vorticity magnitude.  
 

CFD Run CD CL St 
Ω* = 1.00, α = 0    
CDP (present study) 0.85 0.07 0.10 
Kim and Choi (2002) 0.85 0.06 0.09 
Poon et. al. (2007) 0.85 0.06 0.09 
Ω* = 0.20, α = π/2    
CDP (present study) 0.76 0.27 0.18 
Giacobello et. al. (2009) 0.76 0.26 0.18 

Table 1: Time-averaged force coefficients and Strouhal 
number comparison. 
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Overall, this section demonstrates that CDP can ade-
quately capture the flow physics for a rotating sphere at 
Re = 250. The discrepancy between CDP and data in the 
open literature can be attributed to the difference between 
numerical methods.  

Re = 1,000 (DNS) 

Ω* = 0.00 
The flow past a stationary sphere at Re = 1,000 is pre-
sented in figure 5. The isosurfaces plot resembles the 
sketch made by Achenbach (1973) for Re = 1,000. In his 
experimental observation, he noted that the large-scale 
vortex loops are formed from the separated shear layer in 
the turbulence regime. As they travel downstream, the 
loops roll up and then dissipate. On the other hand, the 
small-scale eddies can be characterized by the presence of 
a higher frequency component associated with the shear 
layer instability (Tomboulides and Orszag, 2000). It is 
also evident that the flow structures become asymmetric at 
Re = 1,000. This is consistent with Sakamoto and Haniu 
(1990) and Tomboulides and Orszag (2000) who reported 
a loss of symmetric at Re ~ 420 and Re = 500, respectively. 

Figure 5: Isosurfaces plot of wake structures at Re = 
1,000 coloured by the vorticity magnitude. 
 

 
Figure 6: Reynolds stress 2

∞′′ Uzuxu . Contour levels are 
from -0.035 to 0.035. The dash lines represent negative 
Reynolds stresses. 
 

 
Figure 7: Energy spectrum of uy versus Strouhal number 
at (x, y, z) = (0.60, 0.00, 3.00). 
 

CFD Run CD CL St1 St2 
Ω* = 0.00     
CDP (present study) 
Ploumhans (2002) 

0.46 
0.48 

0.01 
0.00 

0.20 
- 

0.34 
- 

T & O (2000) - - 0.20 0.35 
S & H (1990) - - 0.21 0.34 
K & D (1988) - - 0.20 0.37 

Table 2: Time-averaged force coefficients and Strouhal 
numbers comparison. Sakamoto and Haniu (1972) and 
Kim and Durbin (1988) data are obtained experimentally. 
 

In the present study, the flow past a stationary sphere has 
been simulated until the flow fields have reached a statisti-
cally steady state. Figure 6 presents one of the six 
Reynolds stress components for Re = 1,000. In near-wake 
region, the Reynolds stress is close to 0 which suggests 
that the boundary layer before separation and the shear 
layer is laminar and steady. As the shear layer travels 
downstream, it rolls up and forms vortex loops and thus 
increases the Reynolds stress levels. The velocity where 
the shear layer begins to roll up is monitored. The power 
spectrum of the velocity versus Strouhal number is pre-
sented in figure 7. It shows a second higher frequency 
component at St2 = 0.34 associated with the shear layer 
instability (similar to the observation by Tomboulides and 
Orszag, 2000) together with a lower frequency component 
at St1 = 0.20 associated with the large-scale vortex shed-
ding motion. The time-averaged force coefficients and 
Strouhal numbers agree well with data available in the 
open literature and are presented in table 2. 

Ω* = 1.00, α = 0 
The flow structures for a streamwise rotating sphere at Re 
= 1,000 and Ω* = 1.00 are presented in figure 8. It is ob-
served that hairpin structures are shed from the sphere and 
rotate around the z-axis as they travel downstream. This 
behaviour was also observed by Kim and Choi (2002) at 
Re = 300 and Ω* = 0.10. They also showed that as Ω* in-
creases, the flow transits into a helical shape. The pres-
ence of the hairpin vortices at Ω* = 1.00 for Re = 1,000 
suggests that a higher Ω* is required to overcome the iner-
tia effect of the flow as Reynolds number increases. In 
addition, a streamwise rotating sphere slightly increases 
the vorticity magnitude of the flow over the sphere and in 
the near-wake region. Furthermore, the shear layer is 
shortened due to the increase adverse pressure gradient 
generated by the streamwise rotating sphere. 

 
Figure 8: Isosurfaces plot of wake structures at Re = 
1,000, Ω* = 1.00, α = 0 (streamwise rotation) coloured by 
the vorticity magnitude.  

Ω* = 1.00, α = π/2 
Figure 9 presents the flow past a transversely rotating 
sphere at Re = 1,000 and Ω* = 1.00. In general, the flow 
structures are tilted towards the advancing side (y < 0) of 
the sphere and are asymmetric. Vortex loops are formed in 
the wake region with many small-scale structures are pre-
sent. Furthermore, the transversely rotating sphere in-
creases the vorticity magnitude of the flow over the sphere. 
In the near-wake region the flow is found to wrap behind 
the sphere and forms 2 trailing vortices. This is due to the 
velocity difference between the sphere surface and the 
freestream. As the flow on the retreating side (y > 0) of the 
sphere is travelling faster than the advancing side, the 
separation on the retreating side of the sphere is delayed. 
A low pressure region is then formed behind the separa-
tion on the retreating side. The high pressure flow on the 
advancing side is thus forced into the low pressure region 
and forms 2 trailing vortices. The same mechanism can 
also be found at Re = 250 and Ω* = 0.20 where the 2 trail-
ing vortices form the “legs” behind the sphere and then 
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transform themselves into “Omega” shape vortex loops as 
they move downstream (see figure 4).  In contrast, at Re = 
1,000, the 2 trailing vortices transform into several stream-
wise threads. The treads then roll up and form vortex 
loops similar to those observed at Re = 250.  

 
Figure 9: Isosurfaces plot of wake structures at Re = 
1,000, Ω* = 1.00, α = π/2 (transverse rotation) coloured by 
the vorticity magnitude. 

Re = 10,000 (LES) 

Ω* = 0.00 
The simulation for Re = 10,000 was advanced using the 
flow field calculated at Re = 1,000. At Re = 10,000, a LES 
was performed in order to reduce computational cost. 
Again, data was analysed once the flow field reached a 
statistically steady state. The flow structures past a 
stationary sphere at Re = 10,000 are presented in figure 10. 
At this Reynolds number, the wake is completely 
turbulent. Unlike the simulation at Re = 1,000, vortex 
rings are observed in the near-wake region and the 
downstream wake comprises of many small-scale eddies. 
Furthermore, the wake structures do not show the forma-
tion of large-scale vortex loops as observed at lower 
Reynolds numbers. 

 
Figure 10: Isosurfaces plot of wake structures at Re = 
10,000 coloured by the vorticity magnitude.  
 
The corresponding Reynolds stress shown in figure 11 
indicates that the boundary layer before separation and the 
shear layer is laminar and steady. However, the shear 
layer instability occurs further upstream compared to Re = 
1,000. It is also observed that the location of the maximum 
Reynolds stress is brought upstream as Reynolds number 
increases. 
 

 
Figure 11: Reynolds stress 2

∞′′ Uzuxu . Contour levels 
are from -0.035 to 0.035. The dash lines represent 
negative Reynolds stresses. 
 
At Re = 10,000, velocities are monitored at 2 separation 
locations: in the near-wake and the far-wake region. The 
Strouhal numbers correspond to the shear layer instability 
(St2) and vortices shedding (St1) are presented in figure 12 
and 13, respectively. The power spectrum reveals a wide 

range of energy content in the shear layer, which agrees 
with findings of Yun et. al. (2006). The frequency range is 
reduced as it reaches the far-wake region. In table 3, the 
time-averaged force coefficients and the Strouhal numbers 
are presented and all values are with good agreement with 
data available in the open literature.  

 
Figure 12: Energy spectrum of uy versus Strouhal number 
in the shear layer (x, y, z) = (0.25, 0.54, 1.00). 
 

 
Figure 13: Energy spectrum of uy versus Strouhal number 
in the wake region (x, y, z) = (-0.12, -0.59, 3.00). 
 

CFD Run CD CL St1 St2 
Ω* = 0.00     
CDP (present study) 
Achenbach (1972) 

0.39 
0.41 

0.00 
- 

0.18 
- 

1.94 
- 

Yun et. al. (2006) 0.39 0.00 0.18 1.78 
C & S (2004) 0.39 - 0.19 2.10 
K & D (1988) - - 0.15 2.02 

Table 3: Time-averaged force coefficients and Strouhal 
numbers comparison. Results from Achenbach (1972) and 
Kim and Durbin (1988) were obtained experimentally. 

Ω* = 1.00, α = π/2 
Figure 14 presents the flow past a transversely rotating 
sphere at Re = 10,000 and Ω* = 1.00. As mentioned, a 
transversely rotating sphere experiences a negative 
“Robins-Magnus” lift force at Re = O(104). Davies (1949) 
attributed this behaviour to the laminar-turbulent bound-
ary transition. At sufficient high Reynolds number, the 
addition effect of the rotating surface can trip the bound-
ary layer on the advancing side of the sphere to turbulent. 
This causes a delay in the separation point on the advanc-
ing side and affects the pressure recovery behind the 
sphere. Therefore, a negative “Robins-Magnus” lift force 
was observed. The flow visualisation in the present study 
confirms that the boundary layer on the advancing side is 
tripped at sufficient high Reynolds numbers. However, a 
more detail analysis must be performed to verify the pre-
sent simulation parameters indeed lead to a negative 
“Robins-Magnus” effect. 

 
Figure 14: Isosurfaces plot of wake structures at Re = 
10,000, Ω* = 1.00, α = π/2 (transverse rotation) coloured 
by the vorticity magnitude. 
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CONCLUSION 
Numerical studies for the flow past a stationary and rotat-
ing sphere were performed using the finite volume code 
CDP. CDP shows excellent agreement with the data avail-
able in the open literature for flow past a rotating sphere at 
Re = 250 and a stationary sphere at Re = 1,000 and 10,000. 
Flow visualization was presented for a rotating sphere at 
high Reynolds numbers. At Re = 1,000, Ω* = 1.00 and α = 
0, hairpin vortices were observed and they rotate around 
the streamwise axis as they convect downstream. The 
appearance of hairpin vortices at Ω* = 1.00 and Re = 1,000 
suggests that a higher Ω* is required to overcome the iner-
tia effect of the flow at higher Reynolds number in order 
to have a helical flow structure. At Re = 1,000, Ω* = 1.00 
and α = π/2, vortex loops with many small-scale structures 
were observed. The mechanism connecting the vortex 
loops is similar to those observed at Re = 250. The rotat-
ing sphere also increases the vorticity magnitude of the 
flow over the sphere. At Re = 10,000, Ω* = 1.00 and α = 
π/2, the boundary layer on the advancing side of the 
sphere is tripped and flow separation is thus delayed. This 
in turn affects the pressure recovery behind the sphere and 
thus affects the “Robins-Magnus” lift force. 
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