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ABSTRACT 
Hopper discharge is one of the oldest and most widely 
studied problems in granular flow owing to the simple set-
up and geometry of the system. It has been extensively 
investigated both experimentally and computationally, and 
many granular flow theories use hopper discharge as a 
benchmark for validation. Most simulations neglect the 
effect of the interstitial gas, as the gas phase is assumed to 
have little influence on the dynamics of the particles. 
However, at small length scales drag forces significantly 
alter flow rates. We investigate these gas flow effects at 
different hopper size scalings using a coupled Discrete 
Element Method and pressure-gradient-force Navier 
Stokes solution method. We show excellent agreement 
between our results and various hopper flow theories, and 
demonstrate the strong influence of the gas flow on the 
discharge rate of the hopper at small length scales. We 
show that granular dilation occurs which is consistent with 
the granular free-fall arch theory at the hopper outlet, 
accompanied by a sharp gas pressure gradient opposing 
the particle motion. We also find a pre-dilation region 
prior to the granular arch corresponding to a granular 
dilatancy point. Our findings enable both an improved 
understanding of the fluid-gas flow interaction and the 
evaluation of strategies for specific industrial installations. 

NOMENCLATURE 
A  Particle cross sectional area 
AW  Mass flow area 
CD  particle drag coefficient 
C  flow rate coefficient 
C0  Beverloo flow rate coefficient 
d  particle diameter 
D  hopper diameter 
D0  hopper outlet orifice diameter 
fg  gas volume flow rate = |u|AW 
fs  particle volume flow rate = |v|AW 
f  particle to gas coupling body force  
g  gravitational acceleration 
H  hopper fill height 
k  Beverloo annulus constant 
K  Carman-Kozeny constant 
p  pressure 
F  particle force 
T  particle torque 
u   gas velocity 
ur   particle slip velocity 
v   particle velocity 
V  particle volume 
W  mass flow rate 
δx  particle overlap 
α  gas to solid flow speed ratio 
ε  voidage fraction 
χ  hopper stagnant region angle from horizontal 

μ  particle friction 
ρf  gas density 
ρp  particle density 
ρb  bulk particle density = (1-ε)ρp 
η  viscosity 
ω  particle spin vector 

INTRODUCTION 
Effective handling of granular materials is of significant 
importance to many industrial processes. Large-scale 
hoppers are used for storage and transportation of coarse 
feed stocks in chemical and food manufacture while the 
flow characteristics of fine powders affect process design 
in the pharmaceuticals industry. The flow rate of solids 
from a hopper has been known to be independent of the 
fill height, H, since Janssen’s results derived in 1895. The 
flow rate is also known to be independent of the hopper 
diameter, D, given the respective restrictions H > 2.5D 
and D > 2.5D0, where D0 is the outlet diameter (Ketchum 
1929; Brown and Richards, 1960). Beverloo et al. (1961) 
used the restriction of constant Froude number along with 
experimental data to give an expression for flow rate as a 
function of particle and orifice diameter, although a 
relation of this type had been suggested as early as 1852 
(Seville, 1997, p332). This expression was later modified 
to take into account gas effects by Crewdson et al. (1977) 
by incorporating a pressure gradient as a body force. 

The hopper mass flow rate is determined by granular 
dynamics within the vicinity of the orifice (Nedderman et 
al., 1982). Brown (1960, 1961) used this local effect to 
introduce the concept of the ‘free fall arch’. This is 
assumed to be a spherical section spanning the hopper 
outlet where the granular flow transforms from dense 
phase flow, with long lasting frictional collisions, to dilute 
phase flow, with intermittent instantaneous collisions. In 
the dilute region friction can be neglected and forces due 
to interstitial pressure gradients become important. Using 
this concept Brown postulated that the total mechanical 
energy per unit mass decreases along a flow streamline 
until it is minimised at the free-fall arch. Although 
inconsistencies with Brown’s theory have been stated 
(Wieghardt, 1975; Kaza and Jackson 1984) the theory has 
been successfully applied and extended by Altenkirch et 
al. (1981) to incorporate the interaction between solids 
and interstitial fluid. Barletta et al. (2004), later expanded 
the theory further to include the effects of solids dilation. 

A review of other semi-theoretical approaches for the 
inclusion of interstitial fluid drag effects is presented by 
Nedderman et al. (1983). A further group of correlations 
include a macroscopic pressure difference term typically 
measured between the orifice and a tapping on the hopper 
wall (Resnick, 1972; Bulsara et al., 1964; McDougall and 
Evans, 1966; Leung et al., 1978). Seville et al., (1997) 
state that this approach cannot be used to derive an 
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expression for flat-bottomed hoppers, such as the ones 
used in this study, as evaluation of the pressure gradient 
requires a closed form solution of Laplace's equation. 
Nedderman et al. outline a possible solution method under 
the assumptions of constant voidage in the laminar 
regime. 

Hopper flow has been extensively computationally 
investigated using the Discrete Element Method (DEM). 
Recent papers include Zhu and Yu (2004), who 
investigated the dependency of solids mass flow rate on 
orifice diameter using a flat-bottomed cylindrical 
geometry scaled by a fixed particle diameter. Simulation 
results correlated well with the Beverloo equation. Anand 
et al. (2008) utilised DEM to investigate the dependence 
of mass flow rate on particle properties in a pseudo three-
dimensional angled hopper. Wu et al. (2009) extended this 
approach to investigate the effects of polydisperse particle 
size distributions. In comparison to mono-disperse 
systems, poly-dispersity resulted in a decrease in mass 
flow rate for small orifice diameters due to the presence of 
larger particles aiding an obstructive ‘bridging action’. 
The majority of DEM simulations assume spherical 
particle geometry, however Cleary and Sawley (2002) 
have shown that particle shape can significantly alter 
hopper mass flow rates. Using a superquadric formulation, 
it was found that particles of large aspect ratio give a flow 
rate reduction of up to 30% over spherical particles. 
Sphero-disks (Lia et al., 2004) and spherical clusters 
(Abou-Chakra, et al., 2004) have also been considered. 

The effect of gas flow on hopper discharge has, 
however, been largely neglected. Eulerian-Lagrangian 
coupling of gas and solid phases was introduced to DEM 
by Tsuji et al. (1993) in the context of two-dimensional 
fluidised beds. Langston et al. (1995) investigated the 
effects of drag on particle flow rate in a shallow angled 
hopper for closed-top air-retarded gravity flow and open-
top air-assisted discharge. For the air-retarded case solids 
flow rates were observed to decrease with decreasing 
effective particle density. For the air-assisted case an 
increase in the forcing over-pressure led to a steady 
increase in particle velocity magnitudes and increasing 
wall stresses. A solid discharge ratio from air-assisted 
simulation data was compared to a continuum result of 
Nedderman (1992), although no comparison to theoretical 
correlations concerning the effect of particle size scale on 
gas-drag effects was presented. The assumption of radial 
gas flow was used, and interstitial fluid effects were 
modelled by varying the effective particle density. 

More recently, Snider (2007) simulated sub 500μm 
particle flow in a cylindrical flat-bottomed hopper using 
the computational particle fluid dynamic method. 
Simulated mass flow rates agreed with corresponding 
experimental results for fine sands, although only one size 
scaling was investigated. Guo et al. (2009) used DEM to 
investigate the effects of interstitial gas drag on fine 
particles in die filling. A pseudo two-dimensional flat-
bottomed geometry was used and both particle diameter 
and density were systematically varied. For vacuum 
conditions, simulation results for mono-disperse particles 
were observed to have an average dimensionless flow rate 
agreeing well with an expression derived from 
dimensional analysis by Beverloo (1961). When gas 
modelling was included small particle diameters and low 
densities both gave a lower mass flow rate. 
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Figure 1: Parameters for flat-bottomed hopper geometry. 

In our simulations we systematically vary the length 
scaling of the hopper to ascertain the point at which gas 
effects become important. We use the same particle set-up 
at a range of different scalings with and without gas flow, 
so that any differences between the simulations are due 
only to the imposed scaling. 

THEORETICAL HOPPER FLOW RATES 
In the following section we provide a brief overview of 
theoretical hopper mass flow predictions which we will 
use to compare to our simulation results. The simpler case 
of granular flow without gas effects is presented first, 
followed by the outline of a derivation for mass flow 
based on Altenkirch et al. (1981), incorporating the effects 
of interstitial gas. 

Flow Rates Without Gas Effects 
The dynamics of a particle falling in a fluid is governed 
by the ratio of drag force on the particle, ≈½Aρfur

2CD, to 
the gravitational force, ≈Vρpg. This ratio is proportional to 
the product of the ratio of fluid to solid density and the 
square root of the Froude number. For a spherical particle 
this gives: 

23 3
8 8

f fr
D D

p p

uk C C Fr
Lg

ρ ρ
ρ ρ

= =      (1) 

For a fixed density ratio the system is therefore 
governed by the Froude number, Fr. If Fr is assumed 
constant and the velocity is taken from the mass flow rate, 
W = ρb|ur|AW, then the following relation holds: 

5
2

0bW C g Dρ=         (2) 

where D0 is the characteristic length scale in the system. 
Beverloo et al. (1961) investigated this relation using a 
wide range of experimental data for flat bottomed 
hoppers. Although the slope was found to be correct, there 
was a non-zero intercept on the order of k×d, where k ≈ 
1.5. This was explained by an ‘empty annulus on the order 
of k particle diameters, through which no solids flow can 
occur’. Eq. (2) was therefore modified to: 

( )5
2

0bW C g D k dr= -         (3) 

where the parameter C = C0 ≈ 0.58.  

Flow Rates Incorporating Gas Effects 
Eq. (3) agrees well with experimental flow rates for 
particle diameters greater than 500 μm. However, for 
smaller sized particles interstitial pressure gradients 



 
 

Copyright © 2009 CSIRO Australia 3 

become important and the flow impeding effects of gas 
drag cannot be neglected. This leads to a significant 
deviation between the correlation and experimental 
results. Flow rates are observed to decrease with 
decreasing diameter, but the effect of decreasing d in Eq. 
(3) is to increase the predicted mass flow rate of solids. 

Brown (1961) approached the hopper flow problem 
by expressing the system in an equivalent thermodynamic 
context and applying a minimum energy argument. The 
system is divided into a frictional flow part and a dilute 
flow part, divided by a free fall arch spanning the orifice. 
The mechanical energy per unit mass is given by: 

21
2 cospe v gr θ

ρ
= + +       (4) 

This energy is assumed to be a minima on this arch. This 
argument was extended by Altenkirch et al. (1981) to both 
a solid and a gas phase, giving a total energy of the form: 

21
2 coss

b

pe v gr θ
ρ

= + +      (5) 

Assuming the energy is a minimum at the free-fall 
arch and this arch is at r = D0/2, along with the assumption 
of radial solids velocity: 

( ) ( )
2, s

s

f
v r

r
θ

θ =       (6) 

gives: 
( )

0

2

5
0

1 64 cos 0s

r Rb

fdp g
dr D

θ
θ

ρ =

+ + =     (7) 

where fs is some radial volume flow function to be 
determined. The assumption of the free-fall arch at D0/2 is 
the upper limit of the minimum energy surface (Brown, 
1961) and has been experimentally demonstrated to be a 
valid assumption for simplified flow theories, in which a 
sharp transition between the two flow regimes is assumed 
(Harmens, 1963; Donsi et al.,1997). The mass flow rate of 
solids can then be determined by integration of the radial 
flow field over a spherical surface of half-angle β: 

( )
0

2 sinb sW f d
β

πρ θ θ θ= ∫      (8) 

Altenkirch also makes the assumption of radial gas 
flow and that the gas and solid volume flow rates are 
linearly related by: 

( ) ( )1
g sf fεθ α θ

ε
−

=      (9) 

where fg is the gas radial flow function and α is the ratio 
of gas to solid flow rates. This allows the pressure 
gradient to be expressed from the Carman-Kozeny 
equation: 

2

2

1
r

p K u
r d

η ε
ε

∂ −⎛ ⎞= ⎜ ⎟∂ ⎝ ⎠
      (10) 

as: 

( ) ( )2

2 2

11 1 sfdp K
dr d r

α ε θη ε
ε ε

⎧ ⎫−−⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎩ ⎭

    (11) 

Substitution of this expression for the pressure gradient 
into Eq. (7) and applying the integration given in Eq. (8) 
gives the flow rate constant in Eq. (3) as: 

( ) ( ) ( )
3 3

2 22 2 3
2

5
2

1 cos cos 1

6 sin
C

γ γ β γ βπ

β

⎡ ⎤+ − + + −⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   (12) 

where: 
( )2

0
2

11 1
4 b

K D
d g

α εη εγ
ε ερ

⎧ ⎫−−⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎩ ⎭

    (13) 

For flat-bottomed hoppers, such as the ones used in 
this study, β is set to equal to χ = 45°, where χ is 
commonly assumed to be 45° in the absence of further 
information (Anand et al., 2008), resulting in: 

( ) ( )
35 22 3

2 22 3
4

2 21 2 2
6 22

C π γ γ γ
⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥= + − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

   

(14) 
The mass flow rate is therefore a function of 

empirical parameters K and α only. The flow ratio α can 
be measured, giving the only empirical constant as K, 
which is taken to be 180. Further assumptions can be 
applied to derive a value for α (Barletta et al., 2003), 
although in our simulations this value is measured from 
the relative flow rates. 

COMPUTATIONAL MODEL 
We use a Lagrangian approach for particles called the 
Discrete Element Method (DEM), which was formulated 
by Cundall and Strack (1979). DEM has been applied to 
simulate a wide range of industrial processes (Cleary, 
2004, 2009). This is coupled to a Eulerian fluid model for 
gas flow through a porous bed. The first coupling of this 
type was originally carried out by Tsuji (1993), who 
investigated a two-dimensional gas-solid fluidised bed of 
spherical particles. We use a pressure gradient force 
(PGF) DEM-gas formulation shown by Kafui (2002) to 
give the best agreement with empirical pressure drop and 
gas velocity data. 

Drag Forces 
The drag force exerted by the gas on a particle in a multi-
particle system with corrections due to Di Felice (1994) is: 

21
2D d f r rC Aκρ ε −

⊥=F u u    (15) 

where χ is given by: 

( ){ }21
23.7 0.65exp 1.5 log Reκ = − − −   (16) 

We use the drag coefficient given by Holzer et al. (2008) 
for single spherical particles: 

27 0.42
RedC = +     (17) 

Particles are also subject to Stokesian rotational drag, 
given by: 

3
D rdπη=T ω      (18) 

Particle Motion Equations 
The particle-particle contact force, Fci, is determined by 
the particle overlap using a soft-sphere linear spring, 
dashpot and slider approximation. The linear and angular 
accelerations are numerically integrated for each particle i. 
These are given by: 

i
i ci D P i

dm m
dt

= + + +
v F F F g    (19) 

i
i ci D

dI
dt

= +
ω T T     (20) 
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The forces consist of a solid particle-particle contact 
force, Fci, as well as the fluid-particle interaction forces 
FD, the gradient of the fluid pressure, FP, and the 
gravitational force. The torque consists of the drag torque 
plus the particle-particle coupling torque, Tci. 

Fluid Equations 
The constitutive equations for the PGF gas flow model 
through a porous bed were derived by Anderson and 
Jackson (1967), and given by Kafui as: 

( ) ( ) 0f
ft

ερ
ερ

∂
+ ∇ ⋅ =

∂
u    (21) 

( ) ( ) ( )f
f fp fp

t
ερ

ερ ε ε ερ
∂

+ ∇ ⋅ = − ∇ − − ∇ ⋅ +
∂

u
uu f τ g  

 (22) 
 These can be re-formulated for the superficial gas 
velocity u′ = εu in the system by assuming the gas density 
is constant. This gives: 

t
ε∂ ′= −∇ ⋅

∂
u     (23) 

And expression (22) becomes: 

( )

( )

1

1
fp

f

t

p

ε ε

ε ε ε
ρ

′ ′∂ ′ ′ ′+ ⋅∇ + ∇ ⋅ =
∂

⎡ ⎤− ∇ − − ∇ ⋅ +⎣ ⎦

u uu u u

f τ g

   (24) 

The stress tensor is given by: 

2
3

T

η
ε ε ε

⎡ ⎤⎛ ⎞′ ′ ′⎛ ⎞= − ∇ + ∇ − ∇ ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

u u uτ I    (25) 

where I is the identity tensor. These expressions are 
discretised onto a Cartesian grid filling the simulation 
domain.  

The procedure for the numerical calculation is firstly 
to determine the porosity at the new time step by 
calculating the volume distribution from the DEM 
simulation. The velocity field is then calculated using Eq. 
(23), which gives the rate of change of porosity as 
divergence of the velocity, and Eq. (24) which gives the 
velocity field at the next timestep. Eq. (24) is solved using 
a variation of the pressure correction method.  

The porosity is explicitly calculated from the DEM 
simulation at each timestep. To simulate the effect of the 
hopper, zero velocity boundary conditions are imposed on 
cells within the domain intersecting the hopper walls.  

EFFECT OF SCALING 

A range of simulations was carried out at different length 
scalings of the same set-up. The base set up was H = 10.0 
m, D0 = 1.0 m, D = 3.0 m and d = 0.125 m (= D0/8), for a 
closed-top hopper. This was chosen to ensure that the bed 
filling height and the ratio of particle diameter to orifice 
diameter did not affect the particle outflow rate. The grid 
resolution was 15 × 120 × 15, giving a cell size of 200mm 
and a ratio of cell to particle diameter of 1.6. The mass 
flow was measured through the plane 1 m vertically below 
the orifice. The simulation was scaled by a factor s, given 
in table 1, which was applied to all parameters in the 
simulation that are dependant on length. The constants 
used in the simulation and theoretical models are given in 
table 2. The particle and gas volume flow rates just below 
the outlet for the scaling of s = 1.0 were measured as a gas 

flow rate of ∼1.0 m/s and particle flow rate of ∼1.5 m/s. 
This gives α = 2/3, which was assumed to hold for the 
other scalings. The average voidage fraction over the 
outlet was measured as 0.48, which was also assumed to 
hold for all scalings. 

Scaling factor, s d 
1.0 125 mm 

1.0 × 10-1 12.5 mm 
1.0 × 10-2 1.25 mm 
5.0 × 10-3 625 μm 
2.5 × 10-3 312.5 μm 
1.0 × 10-3 125 μm 
7.5 × 10-4 93.75 μm 
5.0 × 10-4 62.5 μm 

Table 1: Scaling factor and particle diameter. 

Both the particle velocity and gas velocity were 
found to be parallel at steady state in the centre of outlet 
with a thin annular gas backflow around the outlet. This is 
can be seen in Fig. 2, where a plot of the particles and a 
plot of the gas velocity field are shown at t = 2.0 s for a 
scale factor s = 1.0. The colours represent speed with red 
being 10 m/s in the plot of the particles and red being 1 
m/s in the plot of the velocity field. 

W

Gas flow parallel 
with granular flow 
at centre of outlet

Thin annular
backflow into

hopper

 
Figure 2: Particles (left) and gas velocity vectors (right) at 
time t = 2.0 s for a scale factor s = 1.0. 

Parameter Value 

Carman-Kozeny Coefficient, K 180 
Angle of Stagnant Region, χ  π/4 

Beverloo Constant, C0 0.58 
Beverloo Diameter Constant, k 1.5 

Gravity Magnitude, g 9.8 
Gas Viscosity, η 1.8×10-5 

Particle Friction,  μ 0.3 
Particle Density, ρp 2700 

Table 2: Configuration constants. 

Fig. 3 shows the predicted flow rates at different 
scalings. The Beverloo relation, Eq. (3), which does not 
incorporate gas effects, and the Altenkirch relation, Eq. 
(15), which includes gas effects are also plotted. There is 
an excellent correlation between the theoretical and 
simulated flow rates. For scale factors of 0.01 and greater 
the air has no effect on the flow rate and the Beverloo and 
Altenkirch relations give very close theoretical values 
which match with the simulations. The upper inset of Fig. 
3 shows a more detailed plot of the lowest three scaling 
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factors. Fig. 4 shows the percentage difference in flow 
rates, and it can be seen that the inclusion of gas effects in 
the system significantly affects the hopper discharge rate 
at small length scales. At the lowest scaling considered, s 
= 0.0005 with particle diameter 62.5 μm, there is a ~50% 
reduction in the particle mass flow rate with gas compared 
to the flow rate without gas. 
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Figure 3: Predicted flow rates vs Beverloo and Altenkirch 
theoretical relations. 
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Figure 4: Percentage difference in the flow rates with and 
without gas flow for different scaling factors. 

Fig. 5 shows the axial relative pressure and volume 
fraction for a closed hopper of scale factor of s = 1.0, at 
times 1.46, 1.82 and 2.19 s from the start-up of the 
simulation from the top of the bed, y = +10 m, through the 
outlet to y = -10 m below the outlet. The hydrostatic 
pressure, ρf g y, has been subtracted from the pressure, 
giving the dynamic pressure due only to the gas flow. 
Only a small amount of discharge occurs between these 
times, and the variation in the dilation over the outlet, as 
well as the volume fraction at the outlet, remains constant.   
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Figure 5: Axial relative pressure and volume fraction for s 
= 1.0 hopper simulation at 1.46, 1.82 and 2.19 s after start-
up. 

A packed bed region at the random close packing 
limit of around 0.64 can clearly be seen on the plot of 
volume fraction, corresponding to the bulk of the grains in 
the upper part of the hopper. It can also be seen that 
substantial dilation occurs over the outlet region with a 
corresponding sharp pressure gradient. The pressure inside 
the hopper is negative, which is expected as the particles 
exiting the hopper draw gas with them, leading to a 
reduction in the pressure within the hopper. This pressure 
gradient at the outlet acts against the motion of particles, 
leading to a reduction in the mass flow rate.  

Interestingly, a plateau in the volume fraction occurs 
just before the free-fall arch, marked as ‘loose bed’ in Fig. 
5. This plateau is common to all scalings and appears to 
be an intrinsic property of the system. The value of the 
volume fraction at the plateau is slightly below 0.6 and it 
therefore seems likely that this point is the granular 
dilatancy point (Schröter et al., 2007). Most models 
assume a sharp interface between the bulk volume fraction 
and the free fall arch. Here, however, the volume fraction 
falls from the random loose packing limit of around 0.64 
to the dilatancy point, but then remains constant until the 
free fall arch, marked as the vertical R0 line. This 
behaviour of the volume fraction upstream from the free 
fall arch has not been reported before. 

GRANULAR DILATION AS A BODY FORCE 
It is worth considering the effect of particle dilation on the 
velocity field of the gas. Neglecting the viscous 
contribution, Eq. (25) gives: 

( )1 fp

f f

p
t

ε ε
ε ε ρ ρ

′ ′∂ ∇′ ′ ′+ ⋅∇ + ∇ ⋅ = − + +
∂

fu uu u u g  (26) 

If ε is constant with respect to both time and space, Eq. 
(24) gives ∇⋅u′ = 0 and Eq. (26) gives an expression very 
similar to the regular Navier Stokes equations. If, 
however, ε is not constant over space but is constant in 
time, Eq. (26) gives: 

( )1 1fp

f f

p
t

ε ε
ε ρ ρ ε

′∂ ∇ ⎛ ⎞′ ′ ′ ′+ ⋅∇ = − + + − ⋅∇⎜ ⎟∂ ⎝ ⎠

fu u u g u u  (27) 

The term on the far right hand side, -u′(u′⋅∇ε-1), 
arises from the variation of the voidage fraction in space. 
It can be considered as an extra body force, fε, in regions 
with non-zero gradient of voidage fraction. In our system, 
the dominant granular gradient component and gas 
velocity is in the y-direction, giving this term as: 

2

2
yu

y
ε ε
ρ ε

′ ∂
=

∂
f      (28) 

The magnitude of this force can be compared with 
gravity to give a measure of its influence on the system. 
For the system with s = 1, |u|  ≈ 1.0 m/s, and taking the 
gradient over the linear portion of the volume fraction 
from y = 1.2, where ε ≈ (1 - 0.6), to y = -0.5, where ε ≈ (1 
- 0.25), gives ∂ε/∂y ≈ -0.2 over the outlet, with an average 
ε ≈ 0.575. This gives fε/ρ ≈ -0.6 m/s2, compared to gravity, 
-εg ≈ -6.0 m/s2. The effect of this ‘dilationary force’ is 
therefore an increase in the effective gravitational force on 
the gas of around 10% over the outlet. This dilatancy 
effect significantly influences the gas and particle 
dynamics at the outlet. Both this force, as well as the sum 
of the individual drag forces from the particles on the gas 
ffp, gives rise to the sharp pressure gradient over the outlet. 
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CONCLUSION 
We have applied a coupled gas and DEM model to the 
simulation of a flat-bottomed granular hopper and shown 
that at small length scales gas flow strongly affects the 
discharge rates. The deviation from the predicted 
discharge rates in vacuum, given by the Beverloo relation, 
become important around 500 μm. We have shown that 
our measured discharge rates agree very closely with the 
Altenkirch relation.  

We have found that a sharp pressure gradient exists 
over the outlet which is created by the drag on the 
particles on the gas, as well as a granular dilationary 
effect. The gas outflow velocity was found to be in the 
same direction as the particle velocity in the centre of the 
outflow region, with a thin annular backflow around the 
outlet. It has previously been suggested that for closed 
top-hoppers (Altenkirch et al., 1981) the gas flow will be 
in the opposite direction to the particle flow, leading to α 
< 0, but we have found that the gas dynamics are more 
complex than this simple assumption. The gas is drawn 
back into the hopper by the pressure gradient, but takes 
the path of least resistance. This path is along the 
minimum volume fraction, which is the annular region 
between the particle bulk and the outlet plate.  

We have also observed a granular transition above the 
free fall arch which has not previously been taken into 
account in the granular flow theories applied to hopper 
discharge. Our model and findings will be of interest to 
industrial applications involving fine powders, such as bin 
discharge, feeding, and die filling, as well as a theoretical 
perspective for new models of the interaction of dense 
granular flows with gas effects. 
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