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ABSTRACT 
The computational cost associated with the use of high-
fidelity Computational Fluid Dynamics (CFD) models 
poses a serious impediment to the successful application 
of formal sensitivity analysis in engineering design.  Even 
though advances in computing hardware and parallel 
processing have reduced costs by orders of magnitude 
over the last few decades, the fidelity with which 
engineers desire to model engineering systems has also 
increased considerably.  Evaluation of such high-fidelity 
models may take significant computational time for 
complex geometries. 
 
In many engineering design problems, thousands of 
function evaluations may be required to undertake a 
sensitivity analysis.  As a result, CFD models are often 
impractical to use for design sensitivity analyses.  In 
contrast, surrogate models are compact and cheap to 
evaluate (order of seconds or less) and can therefore be 
easily used for such tasks.  
 
This paper discusses and demonstrates the application of 
several common surrogate modelling techniques to a CFD 
model of flocculant adsorption in an industrial thickener.  
Results from conducting sensitivity analyses on the 
surrogates are also presented.  

NOMENCLATURE 
A  radial angle between flocculant sparge and feed 

pipe 
jA  Fourier coefficients 

b  LS-SVM model parameter 
l
jb  neuron bias 

B  vertical location of flocculant sparge 
jB  Fourier coefficients 

C  distance from feedwell wall to flocculant sparge 
D  variance 

ke  acceptable error 
( )E y  expectation of y 

F  ANN activation function 
iG  transformation functions 

K  RBF kernel function 
N  number of sample points or number of neurons in 

ANN 
p  integer number 
s  real number 
S  main effect 
ST  total effect 

u  input to neuron 
( )V y  variance of y 

w  LS-SVM model parameter 
ijw  ANN weights 

x  input sample points 
y  true model output 
y  mean true model output 
y%  predicted model output 

kα  LS-SVM model parameters 
β  RBF model parameters 
ϕ  input to output mapping function 
γ  LS-SVM regularization constant 
ω  Frequency 
 
Subscripts 
, ,i j k  indices 

 
Superscript 
l   neuron layer 

INTRODUCTION 
For many industrial fluid dynamics problems, it is 
impractical to perform experiments on the physical world 
directly.  Instead, complex, physics-based simulation 
codes are used to run experiments on computer hardware.  
Accurate, high-fidelity Computational Fluid Dynamics 
(CFD) models are typically time consuming and 
computationally expensive, this poses a serious 
impediment to the successful application of formal 
sensitivity analysis in engineering design.  While 
advances in High Performance Computing and multi-core 
architectures have helped, routine tasks such as 
visualisation, design space exploration, sensitivity analysis 
and optimisation quickly become impractical (Simpson et 
al., 2008; Forrester et al., 2008).  As a result, researchers 
have turned to various methods to mimic the behaviour of 
the simulation model as closely as possible, while being 
computationally cheaper to evaluate.  This work 
concentrates on the use of data-driven, global 
approximations using compact surrogate models in the 
context of computer experiments.  The objective is to 
construct a surrogate model that is as accurate as possible 
over the complete design space of interest using as few 
simulation points as possible.  Once constructed, the 
global surrogate model is reused in other stages of the 
computational engineering pipeline, such as sensitivity 
analysis. 
 



 
 

Copyright © 2009 CSIRO Australia 2 

Sensitivity analysis of model output aims to quantify how 
a model depends on its input factors.  Global sensitivity 
determines the effect on model output of all the input 
parameters acting simultaneously over their ranges.  Most 
global sensitivity techniques are variance-based methods 
and determine the fractional contribution of each input 
factor to the variance of a model output.  The main 
difficulty with global sensitivity analysis is that the 
number of model evaluations required is often large.  As a 
result, CFD models are often impractical to use for design 
sensitivity analyses. 
 
The objective of this paper is to discuss and demonstrate 
the application of several common surrogate modelling 
techniques to a case study of a CFD model of flocculant 
adsorption in an industrial thickener.  A sensitivity 
analysis is then conducted on the produced surrogate 
models. 

SURROGATE MODELLING 

Radial Basis Functions 
Radial basis function (RBF) models use linear 
combinations of radially symmetric functions to 
interpolate samples data points.  The simplest form of 
these models is 

 ( ) 0
1

N

i i
i

y x x xβ β
=

= + −∑%  (1) 

Where •  is the Euclidean distance, N is the total number 
of sample points, ix is the ith sample point, and the β’s are 
model parameters found solving a linear system of N 
equations.  RBF models are shown to produce a good fit 
for arbitrary contours (Powell, 1987).   

Artificial Neural Networks 
Artificial neural networks (ANN) are massively parallel 
highly interconnected simple processors (neurons).  A 
typical ANN structure consists of an input layer into 
which the independent variables are fed, the output layer 
that produces the dependent variables and one or more 
hidden layers.  The hidden layers link the input and output 
layers together and allow for complex, nonlinear mapping 
from the input to the output.  The mapping is not specified 
but is learned.  An artificial neural network can be 
described in terms of the individual neurons, the network 
connectivity, the weights associated with the 
interconnections between neurons, and the activation 
function of each neuron. 
 
A typical architecture, known as the multilayer feed-
forward network, is shown in Figure 1 and is used in the 
simulations in this work.  In this figure the lines represent 
the unidirectional feed-forward communication links 
between the neurons.  A weight associated with each of 
these connections controls the output passing through a 
connection.  The output of a neuron for the feed-forward 
network shown in Figure 1 may be represented as 
(Mahajan, 1999): 
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where l
jy%  is the output of the jth neuron in the lth layer, 

l
ijw  is the weight on the connection from the ith neuron in 

the (l-1)th layer to the jth neuron in the jth layer, l
jb  is the 

bias connected to the jth neuron in the lth layer and 1lN − is 
the number of neurons in the (l-1) layer.  The activation 
function F is typically given by the sigmoid function: 

 
( )

1( )
1 u

F u
e−

=
+

 (3) 

It serves to bound the output from any neuron in the 
network and allows the network to handle both small and 
large inputs. 
 
The network is trained by minimising the mean-squared 
error between the output of the output layer and the target 
output for all the input patterns.  An artificial neural 
network starts out with random weights, and the weights 
are adjusted until the required degree of accuracy is 
obtained, this process is called learning.  A number of 
learning schemes are available to train an ANN (Møller 
1993).  These schemes govern how the weights are to be 
varied to minimize the error at the output nodes.  In this 
study the training is done using Levenberg Marquard back 
propagation with Bayesian regularization (MacKay, 1992; 
Foresee and Hagan, 1997). 
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Figure 1: Multilayer feed-forward Artificial Neural 
Network (ANN). 

Least Squares-Support Vector Machines 
The theoretical background of support vector machines 
(SVM) is mainly inspired from statistical learning theory 
(Vapnik, 1999).  Major advantages of SVM over other 
machine learning models (such as neural networks) are 
that there is no local minima during learning and the 
generalization error does not depend on the dimension of 
the space.  The core attraction of support vector methods 
is the promise of a global solution.  Only the solution of 
linear equations is needed in the optimisation process, 
which not only simplifies the process, but also avoids the 
problem of local minima in SVM.  The LS-SVM model 
(Sundaram et al., 2005) is defined in its primal weight 
space by: 
 ( ) ( )Ty x w x bϕ= +%  (4) 
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where ( )xϕ  is a function which maps the input space into 
a higher dimensional feature space, x is the M-
dimensional vector of inputs jx , and w and b the 
parameters of the model.  Given N input-output training 
pairs ( ) ( ) ( ){ }1 1 2 2, , , ,..., ,n nx y x y x y , LS-SVM for function 
estimation formulate the following optimisation: 

 ( ) 2

, , 1

1 1min ,
2 2

N
T

p kw b e k
J w e w w eγ

=

= + ∑  (5) 

subject to ( ) for 1,...,T
k k ky w x b e k Nϕ= + + =%  

The parameter set consists of vector w and scalar b.  
Solving this optimisation problem in dual space leads to 
finding the kα  and b coefficients in the following LS-
SVM regression model: 

 ( ) ( )
1

,
N

k k
k

y x K x x bα
=

= +∑%  (6) 

The function ( ), kK x x is the dot product between the 

( )Txϕ and ( )xϕ function mappings.  K is called the 
kernel function in the SVM formulation and there are a 
number of possible choices for kernels, each with its own 
advantages and disadvantages.  The most common kernels 
used are RBF, Sigmoid and Linear.  We have used the 
RBF kernel in our simulations. 

MODEL ACCURACY ASSESSMENT AND CROSS-
VALIDATION 
It is essential to assess the accuracy of a surrogate for 
prediction before it can be used for sensitivity analysis 
studies.  Model accuracy is usually assessed by comparing 
some response data produced by the analysis code (CFD 
output) with corresponding response data predicted by the 
model.  An error measure is calculated based on these two 
sets of values to quantify the degree of accuracy. 
 
After a model is built, a straightforward way to assess its 
accuracy is to run the analysis code at a large additional 
set of sample points and compare the output with those 
predicted by the model (Wang and Lowther, 2006).  
However, this comes at a high cost, as CFD simulations 
may take significant computational time.  Cross-validation 
is a model assessment method that can estimate the 
accuracy of a model without requiring any additional 
sample points.  In general, the data is divided into k 
subsets (k-fold cross-validation) of approximately equal 
size.  A surrogate model is constructed k times, each time 
leaving out one of the subsets from training, and using the 
omitted subset to compute the error measure of interest.  
The average of the error measure is calculated from the 
result in each of the k iterations.  The average is then the 
cross-validation’s estimate of the model accuracy. 
 
Cross-validation works by estimating a model accuracy 
measure with only a limited number of samples points.  
The computational cost of cross-validation (i.e. generating 
k surrogates) is justified by the fact that model fitting and 
assessment usually takes only seconds to minutes, while a 
single run of the CFD code could last hours to days, if not 
longer. 
 
While cross-validation almost always performs very well 
(Bengio and Chapados, 2003), Gorissen et al. (2009a) 
showed that it is not always efficient at preventing 

unwanted ripples or bumps in the final model response.  A 
new measure called Linear Reference Model (LRM) has 
been developed by Gorissen et al. (2009b) that helps 
reduce this problem.  Any visible behavioural complexity 
(bumps, ripples, etc) should be explainable by data points 
at (or in the vicinity of) those locations.  Thus, intuitively, 
if there is no such evidence nearby, the bump should be 
regarded as an artefact of the model.  The LRM metric is 
based upon the core assumption that if nothing else is 
known, the model behaviour between two neighbouring 
points should be linear.  This is achieved by penalising a 
model proportional to how much it deviates from a linear 
fit.  For a more detailed description of the LRM algorithm 
see Gorissen et al. (2009b). 

SENSITIVITY ANALYSIS 
Sensitivity, in this context, is a measure of the 
contribution of an independent variable to the total 
variance of the dependent data.  Sensitivity analysis 
allows addressing questions such as (Queipo et al., 2005): 
• Can we safely fix one or more of the input variables 

without significantly affecting the output 
variability? 

• How can we rank a set of input variables according 
to their contribution to the output variability? 

• If and which parameters interact with each other? 
• Does the model reproduce well know behaviour of 

the process of interest? 
There are alternative approaches for sensitivity analysis, 
differing, for example, in scope (local versus global), 
nature (qualitative versus quantitative), and in whether 
they assume a particular model.  In this paper we discuss 
the application of the Fourier amplitude sensitivity test 
(FAST), a variance-based non-parametric approach for 
analysis applications. 

Fourier Amplitude Sensitivity Test (FAST) 
FAST is a sensitivity analysis method which works 
irrespective of the degree of linearity or additivity of the 
model (Cukier et al., 1973; Schaibly et al., 1973; Cukier et 
al., 1975; Cukier et al., 1978; Koda et al., 1979a; Koda et 
al., 1979b; Pierce et al., 1981; McRae et al., 1982).  This 
procedure provides a way to estimate the expected value 
and variance of the output variable and contribution of 
individual input parameters to this variance.  An 
advantage of FAST is that the evaluation of sensitivity 
estimates can be carried out independently for each 
parameter using just one simulation, because all the terms 
in a Fourier expansion are mutually orthogonal. 
 
The main idea of the FAST method is to convert the n-
dimensional integral required for the sensitivity 
calculation into one-dimensional integral in s by using the 
transformation ( )sini i iX G sω= for i=1,…,n.  For properly 

chosen iω  and Gi, the expectation of y can be 
approximated by: 

 ( ) ( )1
2

E y f s ds
π

ππ −
= ∫  (7) 

where ( ) ( ) ( )( )1 1sin ,... sink kf s f G s G sω ω= . 
Using the properties of Fourier series (Saltelli et al., 
1998), an approximation to the variance of y is given by: 
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Where Aj and Bj are the Fourier coefficients.  The 
expressions in (7) and (8) provided a means to estimate 
the expected value and variance associated with y.   
 
Saltelli et al. (2000) proposed Extended FAST to not only 
calculate the main effects but also total effects to allow 
full quantification of the importance of each variable.  
Consider the frequencies that do not belong to the set 

ipω .  These frequencies contain information about 
interactions among factors at all orders not accounted for 
by the main effect indices.  To calculate the total effects, 
we assign a high frequency iω  for the ith variable and 
different low frequency iω−  to the remaining variables.  
By evaluating the spectrum at iω−  frequency and its 
harmonic, we can calculate the partial variance iD− .  This 
is the total effect of any order that does not include the ith 
variable and is complementary to the variance of the ith 
variable.  Similar to Sobol’ indices, the total variance due 
to the ith variable is Ti iD D D−= −  and the total effect is: 
 ( , 1)i i iST S S −= +  (9) 
 
Where iS− is the sum of all 1i ikS L  terms which do not 
include the term i. 
 
The indices from Extended FAST are used within this 
paper and were calculated using the MATLAB version of 
SimLab distributed freely by the Joint Research Centre 
(http://simlab.jrc.cec.eu.int). 

CASE STUDY 

Problem description 
CFD modelling of process unit operations is a tool that is 
being used increasingly within the minerals processing 
industry to reduce operating and capital costs and increase 
throughputs, one such unit operation where CFD has been 
applied is gravity thickening (Kahane et al., 1997; 
Johnston et al., 1998; Fawell et al., 2009; Kahane et al., 
2002; White et al., 2003; Owen et al., 2009).  The 
principle is simple – adding flocculant to aggregate the 
fine particles and allowing them to settle to produce clear 
overflow liquor and concentrated underflow slurry. 
 
Understanding the flows within a feedwell is of critical 
importance to the overall thickener performance, as this is 
where most flocculation is induced, with the degree of 
turbulence a major factor in determining the structure and 
size of aggregates formed (Owen et al., 2009).  Predictions 
of the solids distribution, liquid velocity vectors, shear 
rate and flocculant adsorption throughout a feedwell may 
be obtained from detailed knowledge of its geometry and 
the physical properties of the incoming feeds (Kahane et 
al., 2002).  Attempts to optimise the performance of 
thickeners or clarifiers have usually depended on feedwell 
modification and positioning of the flocculant sparge 
being done on a trail and error basis.  Owen et al. (2009) 
presented details of a multi-phase CFD model developed 
specifically for the analysis of the flow within feedwells 

of industrial thickeners including the prediction of the 
adsorption of flocculant onto the feed solids.  Such a 
model can be used to investigate the effect of flocculant 
sparge location on the flocculant particle coverage. 
 
The aim of this study was to build a surrogate utilising the 
outputs from the CFD model detailed in Owen et al. 
(2009).  Once built, the surrogate can be used to 
investigate the sensitivity of the model output to the 
various model inputs. 
 
The feedwell geometry investigated in this study is a 
“generic” open feedwell with an attached shelf and a 
single feed inlet system entering the feedwell tangentially 
clockwise.  The feedwell is 4.0 m in diameter with 3 m 
side-wall below the liquor surface and the feed inlet is 
0.5 m in diameter, centred at 1 m below the liquor surface.  
The shelf is located 0.1 m below the base of the feed inlet.  
The model thickener has a diameter of 20 m, side-wall 
height of 5 m and is feed at 1000 m3 h-1.  The solids 
concentration is set 10 w/w%, the solids density to 2710 
kg m-3 and the liquid density to 1000 kg m-3.  For 
modelling purposes, no specific flocculant chemistry is 
required, but a flocculant dosage (in this case 20 g t-1) 
needs to be specified. 
 
The parameters relating to the flocculant sparge location 
(Figure 2) evaluated for their influence on feedwell 
flocculant mixing and adsorption were as follows: 

• Radial angle between flocculant sparge and feed 
pipe (A), 

• Vertical location of flocculant sparge (B), 
• Distance from feedwell wall to flocculant sparge 

(C). 

A

C B

 
Figure 2: Flocculant sparge location parameters used in 
surrogate building. 

CFD computations were performed with the CFD software 
package PHOENICS (CHAM, London, UK) using the 
model described in Owen et al. (2009) with a mesh of  
about 155,000 grid cells.  The information produced by 
the CFD thickener model is presented in terms of CFD 
images and calculated parameters.  An example of the 
graphical output from the model is shown in Figure 3, 
where a series of horizontal slice planes through the 
feedwell are presented displaying the unadsorbed 
flocculant.  In this figure, the feedwell is not plotted to 
scale, but stretched in the vertical direction to adequately 
display all slices. 
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Figure 3: Plan view of unadsorbed flocculant 
concentration in the feedwell for one flocculant sparge 
position. 

 
The approach detailed in Owen et al. (2009) was used for 
the simulations, where the time-dependent flocculant 
adsorption simulations were started from a converged 
steady-state flow solution and each took approximately 30 
minutes.  The flocculant solution was introduced into the 
feedwell with no actual velocity and hence the same 
steady-state flow solution could be used for each of the 
transient flocculant adsorption simulations.  The output 
quantity from the CFD used for the surrogate building was 
the ‘flocculant loss’.  The flocculant loss is the steady-
state value of the amount of unadsorbed flocculant leaving 
the feedwell divided by the incoming amount of flocculant 
through the sparge.  Therefore, a value of zero represents 
complete adsorption of the flocculant onto the solid phase 
within the feedwell and a value of one represents all 
flocculant having left the feedwell without any adsorption 
onto the solids.  

Sampling strategy 
Each of the input variables, A, B, and C were scaled in the 
range 0-1 to simplify the sampling strategy.  To select the 
set of N sample points with which to build a surrogate 
model, we use Latin hypercube sampling (Santner et al., 
2003).  This strategy samples all regions of the design 
space equally, making it especially suitable for modelling 
with computer analysis code (Santner et al., 2003).  For 
this case study we used 200 sample points in the Latin 
hypercube, these samples are illustrated in Figure 4. 
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Figure 4: Samples of the input parameters used to build 
the surrogate models. 

RESULTS 

Comparison of model types 
All of the surrogate models were built using the SUrogate 
MOdeling (SUMO) MATLAB toolbox (Gorissen et al., 
2009c), a plug-in based adaptive tool that automatically 
generates a surrogate model within the predefined 
accuracy and time limits set by the user.  Different plug-
ins are supported: model types (ANN, LS-SVM, RBF, 
Kriging, etc), model parameter optimization algorithms 
(BFGS, EGO, Genetic Algorithm, etc), sample selection 
(random, error based, etc), and sample evaluation methods 
(data file, local, cluster, etc).  For the LS-SVM models 
SUMO uses the implementation from the LS-SVMlab 
toolbox (http://www.esat.kuleuven.be/sista/lssvmlab) from 
Katholeke Universiteit Leuven (Suykens et al., 2002) 
 
For the work described in this paper the toolbox was used 
with the following control flow: a set of samples were 
chosen as described in the Sampling strategy section.  The 
simulator (CFD model) was run for each of the chosen 
sample points to generate the model output for each of 
these input points.  Based upon this set, one or more 
surrogate models of the chosen type (e.g. ANN, LS-SVM 
and RBF) are constructed and their parameters optimized 
using a Genetic Algorithm (GA).  Models are assigned a 
score based on an equal weighting of two measures (e.g. 
cross-validation and LRM).  The score for each model is 
used as the fitness to drive the GA to a good optimum in 
the model parameter optimization landscape.  The 
optimization continues until one of the following three 
conditions is satisfied: (1) no further improvement is 
possible, (2) the maximum allowed time has been reached, 
or (3) the user required accuracy has been met.  The 
maximum time allowed for the GA was 1 hour.  In all 
cases this was longer than necessary since the best 
solution was found quite fast.   
 
The GA as implemented in the MATLAB GADS toolbox 
was used to search the parameter space of possible 
models.  Each model type has a set of hyper-parameters, 
the parameter space searched by the GA for each of the 
model types was: 

• RBF – optimal basis function combination and 
the parameters of each selected basis function. 

• ANN – the initial weights (from which to start 
the back propagation training) and the network 
topology (number of neurons per hidden layer 
and number of hidden layers). 

• LS-SVM – the regularization constant ( γ ) and 
the spread of the RBF kernel. 

The population size of each model type is set to 10 as is 
the maximum number of generations. The cross over 
fraction was set to 0.7. 
 
The error function used to measure the fitness of each 
model is defined as: 

 ( ) 1

1

,

N

i i
i
N

i
i

y y

Error y y

y y

=

=

−

=

−

∑

∑

%

%  (10) 

where iy , iy% , y  are the true, predicted and mean true 
response values respectively.  For the RBF and LS-SVM 
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models the metric used to drive the hyper-parameter 
optimisation was an equally weighted combination of the 
error function in (10) on a 5-fold cross-validation and the 
LRM measure.  Cross-validation is very expensive for 
Neural Networks as it requires the model to be re-trained 
for each fold.  Therefore, the ANN used an equally 
weighted combination of the error function in (10) 
calculated on the provided training samples and the LRM 
measure to drive the hyper-parameter optimisation.   
 
The plots in Figure 5 show that the predictions tend to be 
poorest when the flocculant loss is largest.  This is 
possibly due to insufficient sample points with a high 
value of flocculant loss to build the models.  This is a 
drawback of using a fixed number of sample points to 
build the surrogate models.  Future work will look at using 
a small number of initial sample points followed by an 
adaptive sampling strategy.   
 
From Figure 5 it can also been seen that the RBF and LS-
SVM models have a similar level of accuracy at predicting 
the flocculant loss when the value of flocculant loss is 
high.  Compared to the RBF and LS-SVM models the 
ANN model does the best job at predicting the flocculant 
loss for high values.   
 
Once the surrogate models have been created they can be 
used for many purposes, including visualisation of the 
relationship of models inputs to output.  One such method 
of visualisation is the generation of 2D contour slice plots.  
In these plots the contour variable is the model output and 
the axes represent different model inputs.  Figure 6 shows 
a comparison of the contour slice plots for each of the 
surrogate model types for the input parameters A and C.  
The third input parameter B is held at a constant value for 
each of the slices shown in the figure.  At low values of B 
(i.e. high in the feedwell) all three models show output.  
As the slice plane moves closer to the feedwell outlet the 
response (magnitude) of the ANN model deviates from the 
other two models.  The contours of the flocculant loss 
remain similar just the magnitude of the ANN output 
becomes higher.  Expert knowledge of the underlying 
application allows us to judge that the ANN model is 
giving a more accurate response at high B values than the 
RBF and LS-SVM models.  It is assumed that the 
deviation between the three models at higher values of 
input variable B result from a low number of sample 
points in this region. 
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(c) 

Figure 5: Cross-validated predictions versus actual values 
for (a) RBF, (b) ANN and (c) LS-SVM models. 

Global sensitivity analysis 
While it is well established that variations in flocculant 
sparge location can have a significant impact on feedwell 
flocculant mixing and adsorption (Kahane et al., 2002; 
Owen et al, 2009), these sensitivities are seldom well 
quantified.  Once a surrogate is available, these 
sensitivities can be computed using Extended FAST.  The 
computation of the terms in (8) for each input variable 
needs the evaluation of the surrogate model at a number of 
points (sample size).  Three sample sizes (2500, 5000 and 
12500) were used in Extended FAST for the evaluation of 
the indices.  Evaluation time for the large sample size took 
approximately 10 minutes for each of the model types.  
For each model type, very little variation in the calculated 
indices was found, with the mean values being reported in 
Table 1.  The sensitivity indices for each of the model 
types are very similar in value for both the main effect and 
total effect for each of the parameters.  This indicates that 
the global response for each of the models is very similar 
and therefore from a sensitivity analysis point of view any 
of the three surrogate models can be used. 
 
Let us take into account the results of Extended FAST.  
We can see that the most important factor is C, which has 
a main effect of approximately 35% and a total effect of 
82%.  The next most important parameter is B, with a 
main effect of 18% and a total effect of 59%.  The main 
effect of A is negligible at 0.39%, indicating A has only 



 
 

Copyright © 2009 CSIRO Australia 7 

interaction effects of the flocculant loss.  The total effect 
for A is also small at 5% indicating the interactions are not 
that important. 
 
Adding up the three sensitivity indices we can see their 
value is much less than 1.  This means the model is non-
additive with significant interactions between variables.  
The majority of interaction is occurring between 
parameters B and C. 

Table 1: Main effect and total sensitivity indices for each 
of the input variables and surrogate model types. 

 RBF ANN LS-SVM 
SA 0.0015 0.0082 0.0020 
SB 0.1821 0.1730 0.1898 
SC 0.3767 0.3575 0.3295 
STA 0.0375 0.0721 0.0528 
STB 0.5883 0.5739 0.6244 
STC 0.8241 0.8149 0.8048 

CONCLUSION 
Three types of surrogate models (RBF, ANN and LS-
SVM) have been described along with the approach to 
optimising their parameters.  The output from a CFD 
model of thickener feedwells that incorporates flocculant 
adsorption has been used to produce surrogate models of 
the adsorption process within thickener feedwells.  The 
produced surrogate models have been used to investigate 
the sensitivity of the model output (flocculant loss) to the 
various models inputs (A, B and C).  The calculated 
sensitivity indices for each of the model types were very 
similar in value for both the main and total effect for each 
of the parameters.  This indicates that the global response 
for each of the models is very similar despite their 
underlying architecture being very different.   
 
The sum of the main effects indicated the models are non-
additive with significant interactions between variables.  
The most important parameter is C (distance from 
feedwell wall to flocculant sparge), the next most 
important parameter is B (vertical location of flocculant 
sparge), with the effect of parameter A (radial angle 
between flocculant sparge and feed pipe) being negligible.  
The total sensitivity indices showed strong interaction 
effect for C followed by B and again minor interaction for 
A.  Therefore most of the model output can be explained 
by C and B with strong interaction between these two 
parameters.   
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Figure 6: Comparison of surrogate model output (flocculant loss) for the three model types tested for B values (a) 0, (b) 
0.25, (c) 0.5, (d) 0.75 and (e) 1. Left images are for RBF, centre for ANN and right for LS-SVM models. 


