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ABSTRACT 
Spurred by the growing interest in utilising electro-
osmotic flow for microfluidic applications, a finite volume 
computational fluid dynamics (CFD) method is used to 
investigate steady electro-osmotic flows through a planar 
microfluidic contraction-expansion at low Reynolds 
number. The axial concentration profiles and pressure and 
potential changes occurring over the flow domain are 
compared with the results of two variants of a network 
theory that assumes that the flow within each distinct 
channel segment is fully developed. It is found that a 
model based on the matching of ‘ion currents’ (currents 
associated with the fluxes of individual ion species) 
exhibits better agreement with the CFD simulations than 
the alternative concentration-matching approach 
previously described in the electrokinetics literature. 
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NOMENCLATURE 
A  cross-sectional area, m2 
B  dimensionless parameter 
D  diffusivity, m2 s−1 or dimensionless 
e  elementary charge, C  
Gi,±  dimensionless coefficients in Eqs. (13) and (14) 
I  electric current, A or dimensionless 
K  dimensionless inverse Debye length 
kB  Boltzmann constant, J K−1 
L  channel length, m 
Nk j  concentration ratio, dimensionless 
n̂   dimensionless outward normal to channel wall 
n  ionic number concentration, m−3 or dimensionless 
n0  bulk ionic number concentration, m−3 
P  pressure, Pa or dimensionless 
ΔP  pressure difference, Pa or dimensionless 
Q  volumetric flow rate, m3 s−1 
Re  Reynolds number, dimensionless 
S  dimensionless surface charge density 
Sc  Schmidt number, dimensionless 
T  temperature, K 
t  time, s or dimensionless 
U  total electrical potential, V or dimensionless 
ΔU  potential difference, V or dimensionless 
v  liquid velocity, m s−1 or dimensionless 
V  mean inlet velocity, m s−1 
Wk j  half-width ratio, dimensionless 
w  half-width of inlet or outlet section of channel, m 
x  axial coordinate, m or dimensionless 
δx  dimensionless axial mesh spacing 

y  transverse coordinate, m or dimensionless 
δy  dimensionless transverse mesh spacing 
z  valency, dimensionless 
 
Greek letters 
ε  liquid dielectric constant, dimensionless 
ε0  permittivity of free space, C V−1 m−1 
μ  liquid viscosity, Pa s 
ρ  liquid density, kg m−3 
σ  surface charge density, C m−2 
φ  streaming potential, V or dimensionless 
Δφ  potential difference, V 
 
Superscript 
(j)  denotes condition within channel j 
 
Subscripts 
c  property of contracted section of channel 
e  excess pressure or potential difference 
i  property of inlet section of channel 
o  property of outlet section of channel 
t  total pressure or potential difference 
+  property of cation 
−  property of anion 
 
Note that dimensionless variables are denoted either by a 
circumflex (CFD variables) or an overbar (network model 
variables) (see text). 

INTRODUCTION 
Over recent years, there has been a surge of interest in 
microfluidic technology, which promises to revolutionise 
chemical and biological analyses through the 
miniaturisation of complex processes onto small 
microchips. Such devices allow fluids to be manipulated 
with a very high degree of precision, which is essential for 
many separation, analysis, and manufacturing processes. 
The ever-broadening range of applications includes 
devices for protein crystallisation (Hansen et al., 2002; 
Sauter et al., 2007) and DNA analysis (Lagally et al., 
2000; Ugaz et al., 2004).  

Central to the efficient design and optimisation of 
microfluidic circuits is an understanding of the forces that 
govern transport phenomena in these systems. At the 
microscale, the influence of body forces is greatly 
diminished, while surface-based effects, such as surface 
tension and electrokinetic effects, become significant (Ho 
and Tai, 1998; Stone and Kim, 2001). 

Electrokinetic phenomena arise when a charged solid 
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surface (e.g. channel wall) is brought into contact with an 
electrolyte (Hunter, 1981). The surface charges attract 
counter-ions in the liquid, and the interplay between 
electrostatics and diffusion leads to the formation of a thin 
charged region (the electrical double layer, or EDL) 
adjacent to the surface. The presence of the EDL gives 
rise to flow when an external electric field is applied 
across the channel. The field exerts a force on the charged 
fluid, which induces flow in the liquid bulk due to viscous 
drag. This phenomenon is known as electro-osmosis. 

Liquid flow in microchannels can be driven either by an 
applied pressure gradient or electro-osmosis (or a 
combination of both). Electro-osmosis is particularly 
useful in narrow channels, where the pumping 
requirements for pressure-driven flow can become 
prohibitively large (Prakash et al., 2008). Electro-osmosis 
has the advantages that the flow rate is proportional to the 
imposed potential gradient (Stone and Kim, 2001) and the 
velocity profile is uniform across the majority of the 
channel width (Park et al., 2006). As such, electro-
osmosis is frequently utilised for flow control in 
microfluidic devices (Bayraktar and Pidugu, 2006). 

Electro-osmosis has been studied for channels of slowly 
varying cross-section (Ghosal, 2002; Park et al., 2006), 
and also in more complex geometries including cross-flow 
and T-junctions (Dutta et al., 2002a, 2002b). The aim of 
the present work is to investigate electro-osmotic effects 
in another non-uniform geometry: a two-dimensional 
planar 4:1:4 contraction-expansion. 

COMPUTATIONAL FLUID DYNAMICS MODEL 
We consider the steady flow of an incompressible, 
Newtonian binary electrolyte solution through a 4:1:4 
planar contraction-expansion as shown in Fig. 1. Each 
section of the channel has the geometry of a thin Cartesian 
slit. The inlet and outlet sections have the same half-
width, denoted by w. The lengths of the inlet, contraction, 
and outlet sections are taken to be equal, with 
Li = Lc = Lo = 10w. The mean inflow velocity is V. We 
assume that the channel wall carries a net immobile 
charge of surface density σ. The dielectric constant of the 
wall material is taken to be much less than that of the 
liquid. We further assume that the liquid contains 
symmetric and equidiffusive cations and anions (denoted 
+ and – respectively) with local (number) concentrations 
n+ and n− respectively. The bulk ionic concentration of the 
solution is n0. 

Governing Equations 
Electrokinetic flows of ionic liquids are governed by a 
system of equations that includes momentum and 
continuity equations for the fluid, Nernst-Planck and 
conservation equations for each ion species, and a Poisson 
equation relating the total electrical potential to the local 
charge distribution. In dimensionless terms (where length, 
velocity, time, concentration, and electrical potential are 
scaled by w, V, w/V, n0 and kBT/ze respectively), these 
equations are 
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where circumflexes denote dimensionless variables. The 
non-linear term on the left side of Eq. (1) is retained for 
completeness, although it is negligible for the low 
Reynolds number flows considered herein. The 
dimensionless numbers arising are 
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where Re is the Reynolds number, Sc is the Schmidt 
number, B is a material property of the liquid (constant at 
fixed temperature), and K is the dimensionless inverse 
Debye length (i.e. the ratio of the channel width to the 
EDL thickness). 

Boundary Conditions 
The boundary conditions at the entrance of the channel are 
chosen to be consistent with fully developed electrokinetic 
flow. The inlet velocity and ion concentrations are based 
upon the analytical solution of Burgreen and Nakache 
(1964) for steady electrokinetic flow in a uniform two-
dimensional Cartesian slit having the same width as the 
inlet. The axial potential gradient (electric field) at the 
inlet is chosen such that zero pressure gradient would be 
achieved in the equivalent uniform slit at steady state (i.e. 
the flow would be purely electro-osmotic). 

The axial potential gradient at the outlet is assumed to be 
uniform and is chosen to satisfy Gauss’s law applied over 
the flow domain (volume integral of Eq. (5) followed by 
application of the divergence theorem). The total current 
passing through the channel is non-zero in general. The 
lengths of the inlet and outlet segments are chosen such 
that flow at the entrance and exit of the domain is fully 
developed. Hence, axial gradients in velocity and the ion 
concentrations are taken to be zero at the outlet. The axial 
pressure gradient is chosen to ensure global mass 
conservation. 

We set a potential boundary condition at the walls based 
on a uniform surface charge density. In dimensionless 
form, this boundary condition is 
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Figure 1: Schematic diagram of the 4:1:4 contraction-
expansion flow geometry. 
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where n̂  denotes the outward unit normal at the channel 
wall, and S is the dimensionless surface charge density. In 
deriving Eq. (7), we have neglected the dielectric constant 
of the wall material, which is small compared to that of 
the liquid in many microfluidic systems. The other 
conditions at the wall are zero flux of ions normal to the 
wall and the no-slip velocity condition. 

NETWORK MODELS 
Several authors have described an analysis framework for 
microfluidic pipe networks based on fully developed flow 
in uniform channels (Ajdari, 2004; Berli, 2007; Xuan and 
Li, 2004). This framework consists of volume and charge 
conservation laws that must be satisfied around each node 
(or pipe junction) within the circuit: 
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For a particular node, ( )jQ  and ( )jI  are the volumetric 
fluid flow rate and electric current respectively moving 
along channel j towards the node, and J is the number of 
channels that intersect at the node. The conservation laws 
apply to incompressible fluids in the absence of chemical 
reactions. A third equation is required to solve for the flow 
conditions within each channel. Several previous studies 
(Ajdari, 2004; Berli, 2007; Xuan and Li, 2004) have 
implicitly assumed that the bulk ionic concentration is 
constant throughout the network: 

  ( ) ( )kj nn 00 =  (10) 

for any two channels j and k. Harvie and Davidson (2009) 
have instead proposed that since electrical charge is 
carried by multiple ionic species in microfluidic systems, 
Eq. (10) should be replaced by a constraint on the current 
due to the motion of each individual ion species within the 
circuit. Defining ( )j

mI  as the current flowing along 
channel j in the direction of a specified node and due 
solely to the movement of ion species m, one may write 
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for each species m = 1, 2, …, M present within the fluid. 
Note that  
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so that Eqs. (9) and (11) are consistent with each other. 

Using Eqs. (8), (9), and (11), the pressure and potential 
differences along a microfluidic channel conveying a 
binary electrolyte solution can be related to the flow rate 
and ion currents within it (Harvie and Davidson, 2009): 
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are the dimensionless pressure and potential changes over 
the length of the channel, the dimensionless ion currents, 
and the dimensionless diffusivities respectively. Eqs. (13) 
and (14) depend upon seven dimensionless G coefficients. 
Methods for evaluating these coefficients are presented by 
Harvie and Davidson (2009). 

For a given set of inlet conditions, the preceding equations 
can be used to calculate idealised pressure and potential 
profiles for flow in a pipe network (such as a contraction-
expansion). For a simple circuit in which several pipe 
segments are connected in series, each node represents the 
junction between coaxial segments, and Eqs. (6), (7), and 
(15) can be employed to derive the following relationships 
for any two segments j and k:  
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It also follows from Eqs. (12) and (16) that 
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To solve for the pressure and potential conditions in pipe k 
under the matched current constraints of Eq. (11), an 
iterative procedure is adopted to determine a value of Nk j 
that satisfies Eqs. (8), (9), (11), (13), (14), (16), and (18). 
Alternatively, the (simpler) matched concentration 
condition of previous workers can be applied by noting 
that Eqs. (16) and (18) are consistent with Eq. (10) when 
Nk j = 1. In this circumstance, Eq. (11) will not be satisfied 
in general, so that it is not possible to match ion currents 
and concentrations simultaneously. Thus, the two different 
matching conditions characterise two mutually exclusive 
network flow models. Hereinafter, we shall use the terms 
‘matched current model’ and ‘matched concentration 
model’ to distinguish between the respective solution 
methods (we continue to use ‘network models’ to refer to 
these collectively). For a contraction-expansion having the 
geometry described previously, both models will give 
identical predictions for the inlet and outlet sections, but 
different predictions (in general) for the contraction. We 
compare these model results with the results of the CFD 
simulations to examine the validity of the two matching 
conditions.  

C.F.D. METHOD 
The electrokinetic flow equations are solved numerically 
using an adapted single phase version of the transient two-
fluid finite volume CFD method due to Rudman (1998). 
Details of the method as applied to electrokinetic flow are 
given by Davidson and Harvie (2007). Due to the axial 
symmetry of the flow, calculations are performed on one 
symmetric half of the domain ( 0ˆ ≥y ). A uniform 
staggered grid with δx = δy = 1/32 is utilised. Grid 
refinement test calculations in which δx and δy were 
simultaneously halved led to only minor differences in the 
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values of the key variables. The potential gradient at the 
inlet is determined iteratively to give a pressure gradient 
of approximately zero within the inlet segment. The 
resulting potential gradients are xU ˆ/ˆ ∂∂  ≈ 8.28 when 

K = 2 and xU ˆ/ˆ ∂∂  ≈ 9.50 when K = 4. These values are 
slightly different to those predicted using the network 
models owing to the finite resolution of the CFD method. 
The calculations are taken to be converged to a steady 
state when the value of each variable is effectively 
unchanging. 

RESULTS AND DISCUSSION 
Results are presented for a 1:1 electrolyte solution with 
Sc = 1000 and B = 2.34 × 10−4 (based on the properties of 
water at a temperature of 298 K) and Re = 0.01 (typical of 
laminar flows encountered in microchannels). We 
consider two dimensionless inverse Debye lengths, K = 2 
and K = 4, with dimensionless surface charge density 
S = 16. The EDLs are overlapping when K = 2. 

The results of the finite volume simulations are compared 
against the predictions of both network models. For the 
matched current model, the concentration ratios calculated 
for the contraction are Nci ≈ 1.26 for K = 2 and Nci ≈ 0.72 
for K = 4 (as explained above, Nk j = 1 in all cases when a 
matched concentration condition is used). Irrespective of 
the matching condition that is chosen, the model results 
are expected to differ from the CFD results to some 
extent. The network models neglect the effects of the 
converging/diverging flow fields at the entrance/exit of 
the contraction, and also neglect the influence of the 
rear/forward facing walls there on the electrostatics. 
Furthermore, diffusive fluxes due to axial concentration 
gradients are not accounted for. Nonetheless, any 
discrepancies are expected to be small within those 
regions in which the simulated flow is fully developed. 

Fig. 2 compares the numerical predictions of the 
dimensionless cation and anion concentrations at the 
channel centre-line to the corresponding values calculated 

using the network models. The CFD results (continuous 
curves in Fig. 2) for both values of K indicate that at any 
location along the channel, the cation concentration is 
lower than the anion concentration. Thus, the fluid bears a 
net negative charge, which is consistent with the 
requirement of electroneutrality for the entire solid-fluid 
system (the channel walls are positively charged). The 
cation concentration decreases within the contraction 
because of the positive wall charge and the narrower wall 
spacing there. The opposite effect occurs for the anions. 
With regard to the network model results (dashed/dotted 
lines in Fig. 2), it is clear that the choice of matching 
condition has a significant impact upon the predicted 
cation concentrations. The matched current model 
demonstrates excellent agreement with the fully 
developed CFD values throughout the domain. However, 
the matched concentration model produces significant 
errors within the contraction. For instance, the predicted 
cation concentration is almost double the simulated value 
for K = 4 when the matched concentration condition is 
applied. Conversely, the choice of matching condition has 
little impact on the anion concentrations, although it is 
again clear that the matched current model yields 
satisfactory predictions. 

Fig. 3a illustrates the dimensionless pressure variation at 
the centre-line of the channel, and the corresponding 
pressure gradients (derivatives of the curves in Fig. 3a 
with respect to the axial coordinate) are shown in Fig. 3b. 
As a consequence of the imposed electric field, the 
pressure difference across the entire domain is essentially 
equal to the pressure drop required to drive flow through 
the contracted segment alone. It is clear that the gradients 
determined by CFD are similar to those predicted by both 
network models when the flow is fully developed.  

Sisavath et al. (2002) have shown that the overall pressure 
difference in non-electroviscous creeping flow through a 
contraction-expansion can be reasonably well 
approximated by summing the contributions due to fully 
developed flow in each segment of the channel plus an 

 

 
 

Figure 2: Comparison of predicted concentrations of (a) cations and (b) anions at the channel centre-line ( 0ˆ =y ) for K = 2 
(black curves) and K = 4 (red curves). Results of the CFD simulations are shown as continuous curves. Appropriately re-
scaled solutions derived using the matched current model (dashed lines) and matched concentration model (dotted lines) are
also shown. Note that the different matching methods give identical predictions for the inlet and outlet regions, and almost 
coincident predictions for the anion concentration in the contraction. 
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additional (or excess) pressure difference ΔPe due to the 
contraction-expansion: 
  ( ) .eocit PPPPP Δ+Δ+Δ+Δ=Δ  (19) 

Following the same approach and using the matched 
current model to calculate the fully developed pressure 
drops for each section of the channel, we find that the 
excess pressure difference accounts for approximately 1% 
of the total pressure difference for both cases considered 
herein. Thus, for these particular sets of physical 
parameters, the matched current model provides a very 
good approximation of the true pressure changes 
occurring over the device.  

Fig. 4a shows the variation of the dimensionless total 
electrical potential at the channel centre-line, and the 
corresponding potential gradients are shown in Fig. 4b. 
The potential rises in the inlet and outlet sections of the 
channel as a result of the imposed electric field. Since this 
field is such that the pressure gradient is (approximately) 

zero in the inlet and outlet regions, the fluid flows solely 
under the influence of the potential gradient there. The 
potential rises sharply near the entrance of the contraction, 
which can be understood in terms of the opposing effects 
of conduction and diffusion. Cations in the inlet region 
will tend to diffuse into the contraction where their 
concentration is lower (Fig. 2a), while the opposite is true 
for anions, which will tend to diffuse out of the 
contraction (Fig. 2b). The abrupt rise in potential at the 
entrance of the contraction applies an electrostatic force 
on both ions that counteracts these diffusive processes, 
thus maintaining steady-state concentrations within the 
channel. 

Analogous to the excess pressure difference described 
above, one may define an excess potential difference:  
  ( ) .eocit UUUUU Δ+Δ+Δ+Δ=Δ  (20) 

In contrast to the pressure results, however, it is apparent 
that the excess potential difference is quite large, 

 
 

Figure 3:  Comparison of predicted (a) pressures and (b) pressure gradients at the channel centre-line. Curve colours and line 
styles are as in Fig. 2. Note that the matched concentration results are similar to the matched current results and have been
omitted for clarity.  
 

 
 

Figure 4:  Comparison of predicted (a) potentials and (b) potential gradients at the channel centre-line. Curve colours and 
line styles are as in Fig. 2. Note that the matched concentration results are similar to the matched current results and have
been omitted for clarity. 
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predominantly due to the diffusive effects addressed 
above. For instance, for the case of K = 2, the overall 
potential differences predicted by the network models and 
the CFD simulation have different signs. As such, the 
models do not give an accurate account of the true 
potential changes occurring over the device for the cases 
considered herein. Nevertheless, both models do provide 
excellent predictions of the potential gradients in regions 
where the flow is fully developed.   

CONCLUSION 
Electro-osmotic effects in steady-state flow through a 
4:1:4 slit-like microfluidic contraction-expansion at low 
Reynolds number are investigated using CFD and two 
network models. The first network model is based on an 
ion current-matching condition proposed by two of the 
authors; the second employs a concentration-matching 
condition found in the literature. We find that the choice 
of matching condition can have a significant impact on the 
modelled cation concentrations in the contraction: the 
matched current model exhibits excellent agreement with 
the CFD predictions, while the matched concentration 
model displays sizeable errors. The two models give 
essentially comparable predictions for the other variables 
considered.  

The matched current model provides an approximate 
account of the pressure and potential changes that occur 
over the flow domain. Differences between the model and 
the true flow conditions (as determined using CFD) can be 
quantified in terms of excess pressure and potential 
differences. Correlations for the prediction of these 
quantities would be of significant benefit to the 
application of the model as a design tool for microfluidic 
systems. However, appropriate correlations have yet to be 
reported in the literature. Work is ongoing to extend the 
results presented herein to a wider parameter range, which 
it is hoped will facilitate the development of such 
relationships in the future.    
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