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ABSTRACT 
A two-dimensional computational model is used to 
simulate the motion of red blood cells (RBCs) in diverging 
microvessel bifurcations.  The RBC is represented as a set 
of interconnected viscoelastic elements suspended in a 
viscous fluid.  The equations of equilibrium and fluid 
motion are solved using a finite-element method.  Centre-
of-mass trajectories deviate from background flow 
streamlines due to migration of the cells toward the vessel 
centre-line upstream of the bifurcation and due to cell 
obstruction of the flow near the bifurcation.  RBCs tend to 
enter the higher-flow branch, leading to unequal cell 
fractions in the downstream branches (phase separation).  
This effect is increased by migration toward the centre-
line but decreased by the effects of obstruction.  When 
two closely spaced cells pass through a bifurcation, if the 
first cell enters the high-flow branch, the second cell tends 
to enter the low-flow branch.  Therefore, phase separation 
behaviour decreases with increasing cell fraction. 
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INTRODUCTION 
The microvessels, with diameters as small as 4 μm, are the 
terminal branches of the circulatory system.  Blood is a 
concentrated suspension, containing 40-45% by volume of 
red blood cells (erythrocytes) suspended in plasma.  The 
mechanical properties of human RBCs have been studied 
extensively (Skalak, 1976;Hochmuth and Waugh, 1987).  
The unstressed shape of a normal human RBC is a 
biconcave disc with a diameter of 8 μm and a thickness of 
2 μm.  The interior of the cell behaves as a viscous 
incompressible fluid.  The cell membrane consists of a 
lipid bilayer and a cytoskeleton which consists of a 
network of protein molecules.  The membrane strongly 
resists area changes, and its elastic modulus of isotropic 
dilation is ~500 dyn/cm, whereas its modulus of shear 
deformation is about 0.006 dyn/cm.  The lipid molecules 
that comprise the lipid bilayer can slide past each other 
relatively easily, but resist being pulled apart.  The cell 
membrane has a relatively small bending modulus, about 
1.8 × 10−12 dyn·cm (Evans, 1983).  The membrane also 
possesses a viscous resistance to transient in-plane shear 
deformations.  The viscoelastic behaviour of the 
membrane in shear can be represented by a Kelvin solid 
model, in which the total shear stress is represented as the 
sum of viscous and elastic contributions (Evans and 
Hochmuth, 1976).  The viscous component arises from the 
fluid-like behaviour of the lipid bilayer, and the elastic 
component arises from the stretching of the cytoskeleton. 
 When blood passes through diverging bifurcations in 
the microcirculation, the fraction of RBCs entering a given 

daughter branch is generally not equal to the fraction of 
the total flow entering that branch.  This non-uniform 
partitioning of haematocrit is responsible for the 
heterogeneous haematocrit distribution that is observed in 
the microvasculature.  In experimental studies (Schmid-
Schonbein et al., 1980), blood flow was observed in rabbit 
ear capillary bifurcations with diameters ~ 5-15 μm.  The 
dependence of the fractions of RBC flux in the two 
daughter branches on the fractions of bulk blood flux into 
those branches was determined.  The results suggested that 
the upstream haematocrit distribution significantly 
influences RBC partitioning at a diverging bifurcation. 
 Observations (Pries et al., 1989) of arteriolar 
bifurcations in rat mesentery indicated several parameters 
that affect the fraction of RBC flux entering a branch:  the 
fraction of bulk blood flux entering that branch, the ratio 
of the two daughter vessel diameters, the size of the 
mother vessel, and the upstream haematocrit distribution.  
A function of those parameters was constructed that gives 
an estimate of the RBC flux into the two daughter 
branches of a bifurcation.  This function was later refined 
(Pries and Secomb, 2005). 
 Here, the motion of RBCs in microvessel bifurcations 
is examined using a computational model of flexible two-
dimensional RBCs (Secomb et al., 2007).  Mechanical 
effects underlying the tendency of RBCs to drift, or 
migrate, across underlying fluid streamlines in small 
vessel bifurcations (6-13 μm) are analysed.  Effects of 
particle deformability are examined by comparing the 
results with those obtained in corresponding simulations 
using rigid particles.  Effects of cell-to-cell interaction are 
examined by comparing simulations of a cell passing 
through a bifurcation alone with simulations of two cells 
passing through a bifurcation at the same time.  The 
results are used to predict RBC partitioning in small vessel 
bifurcations and its dependence on mother vessel size, 
ratio of daughter diameters, daughter branching angles, 
and cell deformability. 

MODEL DESCRIPTION 
A two-dimensional model is used to describe the motion 
of one or more RBCs in a surrounding Stokes flow as it 
moves in a rigid vessel.  The constraint of constant cell 
volume that would apply in the three-dimensional case is 
represented by an effective internal pressure (Secomb et 
al., 2007).  Nodes are located along the perimeter of the 
RBC, with an additional internal node, as shown in Fig. 
1A.  The outer line segments (external elements) are 
viscoelastic, and represent a planar cross-section of a RBC 
membrane that possesses shear elasticity, bending 
elasticity, and in-plane viscosity.  The segments 
connecting the central node to the outer nodes (internal 
elements) are viscous and are included to represent effects 



 
 

Copyright © 2009 CSIRO Australia 2 

of viscous resistance to cytoplasmic flow and out-of-plane 
membrane deformation. 
 

Figure 1.   A.  Two-
dimensional model for 
RBC.  Rectangles rep-
resent viscoelastic ele-
ments.  B, C. Relation-
ship between internal 
viscous elements and 
membrane deformation 
in tank-treading.  Bands 
of membrane (a,b) 
alternately shorten and 
elongate during tank-
treading. 
 The outer nodes 
are numbered from 1 to 
n and the ith node has 
coordinates xi = (xi,yi).  
The central node has 
coordinates x0 = (x0,y0).  
An external element 
and the quantities 
associated with it are 
denoted by i when the 
element’s endpoints are 

(xi,yi) and (xi+1,yi+1).  The ith internal element has as its 
endpoints (x0,y0) and (xi,yi).  
 The average tension in external element i is given by 
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where li is the length of the ith external element, l0 = 0.97 
μm is a reference length, kt = 0.012 dyn/cm is the elastic 
modulus, and μm = 2×10-4 dyn s/cm is the viscosity of the 
external elements.  The bending moment acting on the ith 
node (xi,yi) is 
 

mi = – kbαi/l0.   (2) 
 
Here kb = 9 × 10-12 dyn cm is the assumed bending 
modulus at the nodes and αi is the angle between two 
consecutive external elements.  The internal elements are 
assumed to have viscous resistance to changes in length, 
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where Li is the length of the ith internal element, μ′m = 
1×10-4 dyn s/cm is the viscosity of the internal elements 
(Secomb et al., 2007) and Ti is the tension in internal 
element i. 
 The fluid inside of the cell is assumed to exert a 
constant internal pressure on the membrane, 
 

pint = kp(1 – A/Aref),   (4) 
 
where A is the area of the cell cross-section, Aref = 22.2 
μm2 is a reference area and kp = 50 dyn/cm2.  RBC volume 
preservation and surface area preservation lead to 
approximately constant cross-sectional area in three-
dimensional RBCs, and a relatively large value of kp is 
assumed, to represent that property.  Aref and l0 are chosen 

so that cells develop non-circular shapes with area Aref and 
perimeter nl0. 
 Balancing the tensions and moments acting at each 
node with the fluid forces acting on the external elements 
and balancing all viscous forces at the central node yields 
a system of 2(n+1) linear equations in the nodal velocities 
ui = (ui,vi) and u0 = (u0,v0).  This system includes unknown 
terms dependent on the surrounding flow. 
 The plasma is assumed to be a viscous, incom-
pressible fluid governed by the Stokes equations:   
   

.)(;0;0 Iuuσσu pT −∇+∇==⋅∇=⋅∇ μ  (5) 
 

Here p is the pressure, u is the velocity, σ is the stress 
tensor, and μ = 10-2 dyn s/cm2 is the viscosity.  The 
incompressibility condition is replaced by the equation 
 

.2 u⋅∇=∇ Kp    (6) 
 
Using the stiffness parameter K ≥ 100 ensures that 

0≈⋅∇ u . 
 Fig. 2 shows an example of an assumed vessel 
bifurcation geometry.  At the entrance to the mother 
vessel, constant pressure and Neumann conditions for u 
are specified.  At exits of the daughter branches, the 
gradients of p and the values of u are prescribed, 
corresponding to Poiseuille flow with the specified flow 
rates.  The fraction of bulk blood flow into daughter 
branch 1, Ψ1 = Q1/Q0, is held constant throughout a given 
simulation as the effect on flow rate of a RBC blocking a 
daughter vessel is assumed negligible.  The flow 
resistance created by a single cell in the daughter branch is 
small compared to the total resistance of the vessel 
downstream of the bifurcation.  On the vessel wall, 
Neumann conditions for p and no-slip conditions for u are 
imposed. 
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Figure 2.  Example of bifurcation geometry considered. 
 
 A particle path is represented by the trajectory of its 
centre of mass, referred to as a particle streamline.  For a 
given vessel geometry and Ψ1, a separating particle 
streamline, starting at y0 = yc(Ψ1), separates particle 
streamlines that enter branch 1 from those that enter 
branch 2.  The separating streamline of the underlying 
flow is also defined for each flow fraction.  The RBC flux 
into branch 1, as a fraction of the total RBC flux, is given 
by 
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Here s(y) is the density distribution of cell centres as they 
pass x = x0, assumed to be constant and ud(y) is the 
horizontal velocity distribution of the cell centres at x0. 

Figure 3.  (a) Example of centre-of-mass trajectory, 
computed cell shapes and individual nodal velocities 
(arrows) (Barber et al., 2008).  Here Q0 = 8 μm2/ms, w0 = 
8 μm and Ψ1 = 3/8.  Cell shapes are shown at t = 0, 10, and 
30 ms.  Dashed ellipse indicates cell in sandbag-like 
shape, adjacent to the flow divider.   (b) Photomicrograph 
of RBCs in a capillary bifurcation in the rat mesentery 
(Pries and Secomb, 2008).  Scale is as in (a).  One cell 
(indicated by dashed ellipse) is deformed into a sandbag-
like shape, corresponding to the computed shape in (a).  
(c) Computed cell (solid) and underlying fluid (dashed) 
streamlines for the same geometry and Ψ1 = ¼.  The 
dashed line that intersects the far wall of the bifurcation is 
the separating fluid streamline. 

RESULTS AND DISCUSSION 
Fig. 3(a) shows an example of predicted cell shapes in a 
symmetric bifurcation.  The initially circular cell is 
deformed into an asymmetric shape similar to observed 
shapes in capillaries (Secomb et al., 2007).  On reaching 
the flow divider between the two branches, the cell 
assumes a sandbag-like shape straddling the flow divider.  

Similar shapes are observed in vivo (Fig. 3(b)).  In Fig. 
3(c), particle streamlines (solid) are compared with fluid 
streamlines of the underlying flow field (dashed).  Particle 
streamlines deviate substantially from the corresponding 
streamlines of the underlying flow.  For example, consider 
the particle streamline closest to the upper boundary in 
Figure 3(c).  As the cell approaches the bifurcation, it 
migrates away from the wall towards the centreline.  Such 
migration is a characteristic feature of red blood cell 
motion in capillaries (Secomb et al., 2007).  However, 
after the cell enters and partially obstructs the bifurcation 
region, it moves in the opposite direction relative to the 
fluid streamline.  These two types of motion can affect the 
branch that the cell ultimately enters. 

Figure 4.  (a) Dependence of position of separating 
particle streamline on flow fraction entering branch 1.  (b) 
Resulting dependence of red blood cell fraction entering 
branch 1 on flow fraction entering branch 1. 

 Results for this bifurcation are summarized in Figure 
4.  If the flow fraction entering branch 1 is less than a 
minimum value, no red blood cells enter that branch.  This 
flow fraction corresponds approximately to the condition 
that the separating fluid streamline of the background flow 
coincides with the position of a cell centre when it is as 
close as possible to the wall.  For flow fractions in branch 
1 larger than this, the separating streamline for the 
particles (solid curve in upper panel) corresponds closely 
to the separating streamline of the background flow 
(dashed line).  However, it should be noted that this occurs 
despite the occurrence of significant particle migration 
across streamlines.  In this example, the two opposite 
tendencies mentioned in the previous paragraph 
approximately cancel each other. 
 Figure 4 also includes results of simulations for the 
motion of rigid circular particles with approximately the 
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same area as the flexible particles.  Figure 4(b) shows the 
resulting dependence of red cell fraction on flow fraction 
entering branch 1.  The dashed curve shows corresponding 
results from the experimentally based empirical formulas 
(Pries et al., 1989;Pries and Secomb, 2005), indicating 
close agreement with the result for flexible particles.  
However, rigid particles showed more uniform 
haematocrit partitioning, with Φ1 more nearly proportional 
to Ψ1. 
 In further simulations, the motion of two interacting 
cells was considered.  In this case, a three-dimensional 
space of initial configurations can be defined for a given 
geometry and flow partition, in which the transverse 
positions of the two cells and the time difference between 
their entries into the flow domain are variables.   Time 
lags of up to 20 ms were considered, corresponding to 
spatial separations ranging from about 6 μm to 20 μm. 
 In the majority of the cases within this range, the 
branch entered by a given cell was not altered by 
interactions with the other cell.  However, several types of 
interactions were identified leading to a change in branch.  
For the flow split of Ψ1 = 3/8, a 'trade-off' interaction 
occurred in about 13% of cases.  In such an interaction, 
the second cell entered the opposite branch to the first cell, 
although it would have entered the same branch in the 
absence of interaction.  This phenomenon can be under-
stood by considering the configuration shown in Figure 5.  
A control volume is defined with the separating streamline 
of the underlying flow as one of the boundaries, as 
indicated.  As the front cell is drawn into the lower 
branch, a balancing upward component of velocity is 
generated in the upstream region, which tends to draw the 
second cell into the upper branch. 
 Other types of interactions were identified in which 
the presence of one cell affected the branch entered by the 
other cell.  In the 'herding' effect, the trajectory of the 
leading cell is affected by the presence of the trailing cell, 
such that both cells enter the same branch.  In the 
'following' effect, the front cell influences the branch 
entered by the rear cell, again causing both to enter the 
same branch.  However, these other interactions occur in 
less than 2.5% of all cases considered.  The net result of 
all these interactions was that two-cell interactions led to 
more uniform distribution of haematocrit between the two 
branches, as observed experimentally (Pries et al., 1989). 

CONCLUSION 
A two-dimensional model has been developed to predict 
shapes and trajectories of individual RBCs flowing in 
capillary bifurcations.  The model predicts significant 
migration of RBCs across streamlines of the underlying 
flow.  Two distinct mechanisms of migration were 
identified:  migration of the cells toward the vessel centre-
line upstream of the bifurcation, and migration into a low-
flow branch due to obstruction of that branch by the cell in 
the neighbourhood of the bifurcation.  Effects of cell-to-
cell interactions were simulated.  When two closely 
spaced cells pass through a bifurcation, the first cell, by 
entering the high-flow branch, increases the tendency of 
the second cell to enter the low-flow branch.  Therefore, 
phase separation behaviour is predicted to decrease with 
increasing cell fraction.  Model predictions in are good 
agreement with experimental observations of haematocrit 
partition in diverging microvessel bifurcations.   

Supported by NIH Grant HL034555. 

Figure 5. Schematic explanation of the 'trade-off' effect.  
No fluid flux occurs across lines 1 and 2, which 
correspond to the vessel walls.  The fluid fluxes across 
lines 3 and 4 must sum to zero, if they are sufficiently far 
from the cells.  Therefore, no net fluid flux occurs across 
line 5, the background separating fluid streamline.  The 
downward fluid flux across line 5 generated by the leading 
cell as it enters the lower branch must generate an upward 
velocity in the upstream region, which affects the 
trajectory of the trailing cell.  
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