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ABSTRACT 
The limitation of constant concentration boundary 
condition (described by the penetration theory) at the 
liquid-solid boundary in evaluation of the critical 
threshold for Rayleigh and Marangoni instabilities in 
solute transfer between a gas phase and a liquid phase has 
been overcome by adopting a non-diffusing boundary 
condition.  Critical thresholds evaluated under this new 
boundary condition are consistent with penetration 
predictions within the region where penetration theory is 
valid. Investigation into the region where penetration 
theory is no longer valid shows that there is only a limited 
region within a gas-liquid contactor where convective 
instability is possible and within this region there is a local 
maximum of convective intensity, thereby opening up the 
possibility of enhancing gas-liquid mass transfer with 
respect to Rayleigh and Marangoni convection. 

NOMENCLATURE 
A surface convection number 
b thickness of gas layer (m) 
Bi  mass transfer Biot number 
C unperturbed concentration of solute in liquid phase  

(mol m-3) 
∆C concentration difference between gas-liquid interface 

and the bottom liquid-solid boundary (mol m-3) 
Dg diffusivity of solute in gas phase (m2 s-1) 
Dl diffusivity of solute in liquid phase (m2 s-1) 
Ds diffusivity of solute in the Gibbs adsorption layer  

(m2 s-1) 
g gravitational acceleration (m s-2) 
h thickness of liquid layer (m) 
k wave number (m-1) 
kcg gas-phase mass transfer coefficient (m s-1) 
kcl liquid-phase mass transfer coefficient (m s-1) 
H Henry law constant for solute (Pa m3 mol-1) 
P unperturbed partial pressure of solute in the gas phase 

(Pa) 
Pe Peclet number evaluated using interface velocity 
R ideal gas law constant (N m mol-1 K-1) 
Ra Rayleigh number 
S surface diffusion number 
t dimensionless time 
T temperature (K) 
u unperturbed velocity (m s-1) 
Vi surface viscosity number 
x dimensionless x-coordinate 
z dimensionless z-coordinate 
 
Greek symbols 
α solutal expansion coefficient of liquid phase  

(m3 mol-1) 

β dimensionless reverse concentration gradient in the  
z-direction. 

δ Gibbs adsorption depth (m) 
κs dilational viscosity of Gibbs adsorption layer (N m-1 

s) 
μ viscosity (N m-2 s) 
μs viscosity of the Gibbs adsorption layer (N m-1 s) 
ν kinematic viscosity (m2 s-1) 
ρ density (kg m-3)  
σ0 negative of the slope of the curve of surface tension 

versus solute concentration (N m2 mol-1) 
 
Subscripts 
c critical value 
g gas phase 
i gas-liquid interface 
m average value over thickness of gas or liquid layer 
0 bottom liquid-solid boundary 
 
 
Operator 
D d/dz 
 
Abbreviations 
PEN Penetration theory 
NDBB Non Diffusing Bottom Boundary  

INTRODUCTION 
Heat- and mass-transfer enhancement due to Rayleigh-
Bénard (RB) convection and Bénard-Marangoni  (BM) 
convection is a well known phenomenon and continues to 
be of importance in many engineering applications such as 
evaporators, absorbers, heat exchangers and falling film 
reactors (Buffone and Sefiane 2004; Scheid, Kalliadasis, 
Ruyer-Quil and Colinet 2008).  
 

 
Figure 1: Pictorial representation RBM convection. 
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RB and BM convection is illustrated in Figure 1, adapted 
from (Manneville 2006). Gaseous solute diffuses into the 
top free surface of the liquid layer setting up a 
concentration gradient along the depth of the layer and 
hence a corresponding positive density gradient, if the 
density of the liquid increases with the solute 
concentration, as assumed for the case shown in Figure 1. 
The two exaggerated fluid particles on the left of the 
figure illustrate buoyancy driven convection. If 
concentration gradient is sufficiently large the diffusion 
relaxation time can be relatively long compared to the 
velocity relaxation time. In this case as the particle 
fluctuates randomly in the bulk, the concentration 
difference between the particle and its immediate 
surrounding bp CC −=δθ  can become negative. The 

corresponding density difference bp ρρδρ −=  can 
therefore momentarily be negative causing an upward 
buoyancy force that propels the particle into denser liquid 
reinforcing the buoyancy driving. Similarly a particle that 
moves from a higher density region to a lower density 
region can experience a negative buoyancy force that 
propels the particle further downwards. The buoyancy 
motions of the upward particle and downward particle can 
then couple to form continuous convective vortices. The 
two fluid particles on the right of Figure 1 illustrate 
surface tension gradient driven convection. Suppose the 
surface concentration just above the right most fluid 
particle momentarily increases above the average interface 
solute concentration and the surface concentration in the 
region just to the left decreases below the mean interface 
concentration due to random thermal fluctuation. Then in 
a liquid for which variation of surface tension with 
concentration dCd /ξ  is negative, the decrease in solute 
concentration results in an increased surface tension and 
the increase in solute concentration results in a dip in 
surface tension. Since a liquid cannot sustain a surface 
stress, the fluid at the interface moves from the region of 
lower surface tension to the region of higher surface 
tension. Fluid continuity means that associated with this 
surface motion is a pulling up of fluid with a lower 
concentration into the region where the concentration 
increased, reinforcing the original concentration gradient, 
thereby causing sustained fluid vortices. 
 
The classical analyses of systems which simultaneously 
exhibit the Rayleigh effect and the Marangoni effect, 
referred to as the Rayleigh-Bénard-Marangoni (RBM) 
problem (Nield 1964; Palmer and Berg 1973; Lebon and 
Cloot 1982) to determine the critical threshold of 
convection are not directly applicable to the practically 
important two-phase flow systems. By incorporating non-
linear velocity profiles (Byers and King, 1967) and 
assuming a penetration concentration profile (Bird, 
Stewart and Lightfoot, 1960), Sun and Fahmy (2006) 
modified the linear analyses due to Nield (1964), 
Gummerman and Homsy (1974) and Davis and Choi 
(1977) to be applicable to two-phase parallel flow solute 
transfer systems which also incorporated the effects of 
mass and momentum transfer in the Gibbs adsorption 
layer which were treated separately by previous authors 
(Scriven and Sternling 1962; Berg and Acrivos 1965; 
Brian 1971; Brian and Ross 1972). The central prediction 
of this analysis was that the critical threshold for RBM 
convection decreases along the downstream flow direction 
(or with gas-liquid contact time) and therefore convection 

would begin at the exit end of the gas-liquid contactor and 
would travel upstream as the mass transfer driving force 
∆C was increased. These predictions were qualitatively 
confirmed via schlieren observation over short contact 
lengths that guaranteed the applicability of the penetration 
theory (Sun and Fahmy 2006).  
 
The main limitation of Sun and Fahmy’s (2006) analysis 
of the two-phase flow system is that beyond a non-
dimensionalised downstream distance of approximately 
x/Pe = 0.03, the concentration gradient at the liquid-solid 
boundary is no longer zero as would be required by the 
physical system having a solid bottom boundary through 
which no diffusion can take place. In this paper we extend 
our previous theories to remove this limitation by 
incorporating a concentration profile consistent with the 
non-diffusing liquid-solid boundary and making 
corresponding modification to the linear analysis of the 
RBM problem, and show how this can lead to a restricted 
region in the gas-liquid contact channel where RBM 
convection is possible thereby raising the possibility of 
optimising RBM enhanced solute transfer between two 
phase flows. 

MODEL DESCRIPTION 
The physical system investigated in this paper is shown 
schematically in Figure 2. 
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Figure 2: Schematic diagram of the physical system. 

In Figure 2, a solute absorption (or desorption) process in 
a gas-liquid contactor is considered. As shown in this 
figure, a thin liquid layer of thickness h, with an initial 
solute concentration of C0, enters at the inlet (x = 0) 
coming into contact with a gas layer of thickness b 
containing the solute and an undissolvable gas. If the 
concentration of two phases at the inlet is uniform, 
concentration boundary layers would develop as 
illustrated in Figure 2 for only the liquid phase. The 
diffusion process within the liquid phase would then be 
governed by (Byers and King 1967), 

 CzzCtiu ∂=∂  (1) 

At t = 0, 

 ( ) 0, CtzC =  (2) 

At z = 1, 

 iCC =  (3) 

At z = 0, 

 0=∂ Cz  (4) 
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The above equations are non-dimensionalised with scales 
h for distance, h2/Dl for time and ∆C=C0–Ci for 
concentration, and has the solution (Debnath 2004), 
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where n is an integer. Corresponding to the system shown 
in Figure 2, t = x/Pe in equations (1), (2) and (5). 
 
Defining the reverse concentration gradient as 

dzdC /−=β , the following non-dimensionalised and 
linearised equations have been obtained for the perturbed 
state of the system, 

 ( ) ( ) ( ) 02222 =Θ−− zRakzWkD  (6) 

 ( ) ( ) ( ) ( ) 0,22 =+Θ− zWzxzkD β  (7) 
 
At z = 0   

 ( ) ( ) ( ) 0=Θ== zDzDWzW  (8) 
 
At z = 1, 

 ( ) 0=zW  (9) 

 ( ) ( ) ( ) ( )zSkBizDWAzD Θ+−=−Θ 2  (10) 

 ( ) ( ) ( )zMakzDWVikzWD Θ−=+ 222  (11) 
 
Equations (6) and (7) are obtained from the momentum 
and solute mass balance equations by assuming that 
perturbation of velocity and concentration can be 
expanded into normal modes of the form 

( ) ( )[ ]ykxkiz yx += expUu  and ( ) ( )[ ]ykxkiz yx +Θ= expθ , 

where [ ]wvu ,,=u , [ ]WVU ,,=U  and 222
yx kkk += . 

Equations (8) and (9) describe the non-diffusing rigid 
bottom boundary conditions and the non-deformable free 
surface boundary condition respectively. Equations (10) 
and (11) arise from a momentum balance and mass 
balance in the Gibbs adsorption layer at the free interface.  
 
The main difference between the equations above and the 
equations (37)-(43) established by Sun and Fahmy (2006) 
is the last relation in equation (8), which describes the 
non-diffusing boundary investigated in the present paper. 
The non-dimensional groups in equations (6) through (11) 
are defined as, 
 
Rayleigh number:  

 
ll D
ChgRa

ν
α Δ

=
3

 (12) 

Marangoni number: 

 
ll D
ChMa

μ
σ Δ

= 0  (13) 

Surface convection number: 
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Surface diffusion number: 

 
l
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Surface viscosity number: 

 
h

Vi
l

ss
μ

κμ +
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Biot number: 

 
l

cg

RTD
hHk

Bi =  (17) 

In addition, the Peclet number is given by, 

 
l

i
D

huPe =  (18) 

The Biot number is a function of the non-dimensionalised 
contact time t or the downstream location x/Pe, the gas to 
liquid diffusivity ratio Dg/Dl, liquid to gas viscosity ratio 
μl/μg and the Henry constant H, and is calculated from 
equations (33) and (34) of Sun and Fahmy (2006). 

RESULTS 
Under penetration theory, in the region x/Pe < 0.03, the 
concentration at the bottom liquid-solid boundary is 

0)0( CzC == . Consequently, under liquid phase 
controlled mass transfer, where the interface concentration 
is approximately fixed at HPCi /= , the system driving 
force iCCC −=Δ 0  is approximately constant. For x/Pe > 
0.03, the vertical concentration gradient is no longer zero 
at the bottom liquid-solid boundary and therefore 
penetration theory no longer applies to the practical case 
where liquid flow is over a solid non-diffusing boundary, 
and the concentration profile of equation (5) must be used 
instead. Figure 3 contrasts the penetration concentration 
profile with non-diffusing bottom boundary (NDBB) 
profile of equation (5).  In Figure 3, at the inlet (x/Pe = 0) 
of the gas-liquid contactor, Ci is assumed to be equal to 
unity and C0 is assumed to be zero. In the limiting case of 
large x/Pe, the NDBB profile is seen to approach the 
equilibrium condition where the solute concentration is 
uniform across the depth of the liquid layer, whereas the 
penetration profile approaches a constant gradient profile 
which is physically unsatisfactory.  
 
Figure 4 shows the variation of solute concentration at the 
bottom liquid-solid boundary using equation (5) and the 
mass transfer Biot number as a function of dimensionless 
downstream location. 
 
The curves in Figure 4 have been calculated for the typical 
operating condition: Dg/Dl = 5000; μl/μg = 50; b/h = 1; 
ug/ul = 1; and m/RT = 0.5 (Sun and Fahmy 2006). 
 
As indicated in Figure 4, the concentration at the bottom 
boundary rapidly increases when x/Pe > 0.03.  
Consequently, the absolute values of the system operation 
Rayleigh and Marangoni numbers decrease with the 
downstream location or contacting time. 
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Figure 3: Comparison between penetration and non-
diffusing-bottom-boundary concentration profiles for 
various downstream locations 
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Figure 4: Variation of concentration at the bottom 
boundary and the mass transfer Biot number with 
downstream location.  

 
As is evident from equations (12) and (13) we see that 
Rayleigh and Marangoni numbers are proportional to ∆C 
and the signs of the Rayleigh and Marangoni numbers 
depend on whether the fluid physical properties α and σ 
are positive or negative. For the purpose of illustration, in 
this paper we have chosen operating parameters such that 
proportionality constant is positive in equations (12) and 
(13). The interface concentration non-dimensionalised by 
taking ∆C as a unit of concentration has been set as Ci = 1 
and diffusivity of the liquid phase has been taken as a 
typical value: Dl = 1×10-9 m2 s-1. With these parameters a 
unit of dimensionless time corresponds to approximately 1 
hour in a typical physical system with a typical organic 
liquid absorbing or desorbing a solute such as carbon 
dioxide with a liquid thickness of the order of a few 
millimetres.  
 
We have solved the eigenvalue problem defined by 
equations (6) through (11) using a Chebyshev spectral 
collocation method (Trefethen 2000) to obtain the critical 
Rayleigh and Marangoni numbers. The pseudospectral 
method was validated against the method of the 
variational principles reported in (Sun and Fahmy 2006), 
under penetration concentration profile conditions. In the 
following calculations to illustrate the effect of a non-

diffusing bottom boundary over parallel flow on the 
critical threshold for RBM convection over long contact 
lengths, the effect of Gibbs absorption is not relevant, and 
therefore the Gibbs numbers A, S and Vi have all been set 
equal to zero. 
 
For reasons of comparison between the present theory and 
the penetration model predictions (Sun and Fahmy 2006), 
we first look at the special case where Ra = 0 , the 
Bénard-Marangoni (BM) problem.  
 
Figure 5 shows that for the BM problem, in the region 
between the gas and liquid inlets to the marginal point 
(x/Pe = 0.03) between a perfectly diffusing wall and an 
insulating wall, indicated as a black circle point, the 
penetration theory and the present predictions with non-
diffusing bottom boundary are essentially identical. Both 
profiles thus predict that as we move along the 
downstream direction the critical threshold for Marangoni 
convection decreases while the operation Marangoni 
number remains essentially constant.  
 
Once the critical threshold falls below the operation Ma, 
Marangoni convection begins, and immediately thereafter 
the system over criticality parameter (Ma–Mac)/Mac 
increases approximately linearly with the downstream 
distance. As the downstream location is further increased, 
for x/Pe > 0.03, the system operation Ma is no longer 
constant but varies as ( )[ ]iCPexCMa −∝ /0 , producing a 
local maximum of (Ma–Mac)/Mac where Marangoni 
convection is expected to be most intense, and hence 
where mass transfer rate is a maximum. 
 
Further downstream the system approaches its phase 
equilibrium conditions with the system operation Ma 
approaching zero. Thus we have a single restricted region 
along the gas-liquid contactor where Marangoni 
convection occurs and mass transfer is enhanced. Figure 6 
shows how this behaviour can be exhibited in the 
Rayleigh-Bénard (BM) problem, where Ma = 0 and the 
system operation Rayleigh number now varies as 

( )[ ]iCPexCRa −∝ /0 . 
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Figure 5: Variation of critical Ma, critical k, and the 
system operation Ma with downstream location for the 
BM problem. 
 
As shown in Figure 6 for the RB problem, in the region 
between the gas and liquid inlets to the marginal point 
(x/Pe = 0.03) between a perfectly diffusing wall and an 



 
 

Copyright © 2009 CSIRO Australia 5 

insulating wall, the penetration theory and the present 
predictions with non-diffusing bottom boundary are 
essentially identical. With further increasing in the 
downstream distance, the critical Ra increases while the 
system operation Ra approaches zero, the phase 
equilibrium conditions. Similar to the case of the BM 
problem, we have a single restricted region along the gas-
liquid contactor where Rayleigh convection occurs and 
mass transfer is enhanced. 
 
In Figure 7 we look at the effect of the non-diffusing 
bottom boundary for the more general case where both 
Rayleigh and Marangoni convection occur 
simultaneously. 
 
In a real physical process, even though the system 
operation Ra and Ma both decrease with downstream 
location as shown in Figure 5 and Figure 6, the ratio 
Ma/Ra is fixed by the fluid physical properties and the 
process: absorption or desorption (Sun et. al., 2002; Sun 
and Fahmy, 2006). Thus a straight line, e.g. line P in 
Figure 7 on which Ma = constant × Ra, depicts the system 
operation line on the Ma-Ra plane. The system follows 
along the arrow direction on the operation line from an 
initial entry point I to the final point E at the exit of a gas-
liquid contactor. As can be seen in Figure 7, RBM 
convection can only occur in either the first, second or 
fourth quadrants. In Figure 7, it is also noted, in particular 
from the curves of x/Pe = 0.03 and x/Pe = 0.5, that similar 
to the behaviour for the cases of the BM problem and the 
RB problem we have the possibility that critical threshold 
first decreases and then increases in the general RBM 
problem. This is explained below.  
 
Along the operation line Q shown in Figure 8, the points 
1, 2, 3, 4, and 5 correspond to downstream locations x/Pe 
= 0.03, 0.1, 0.23, 0.5 and 0.8, respectively. 
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Figure 6: Variation of critical Ra, critical k, and operation 
Ra with downstream location for the RB problem. 

Under typical conditions with a solute such as carbon 
dioxide and an organic liquid such as methanol with a 
thickness of a few millimetres, these values of the 
parameter x/Pe correspond to contacting time 
approximately 2, 5, 15, 30, and 50 minutes, while the 
critical Ra-Ma curves at x/Pe = 0.001, 0.005, 0.03 and 0.5 
corresponds to approximately 0.05, 0.5, 2 and 30 minutes 
from initial contact respectively. For time less than about 
2 minutes, the system operating point remains 
approximately fixed at point 1 taking approximately 3 

minutes to go from point 1 to point 2, while the critical 
parameters Rac and Mac, starting from a very large value 
rapidly approach and then fall below the system operation 
Ra and Ma values. 
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Figure 7: Variation of critical Ma and Ra with 
downstream location for the RBM problem. 

Thus the curves shown in Figure 7 indicate that system 
instability will start within 0.5 minutes of contact. This is 
typical of critical contact times measured in our 
laboratory. In the remaining time of contact process, the 
system operation Ra and Ma approach the equilibrium 
value of zero. By the time the system reaches point 4 on 
the operation line corresponding to approximately 30 
minutes, however, the values of the system operation Ra 
and Ma have fallen below the critical values and Rayleigh 
and Marangoni convection subsides.  
 
Therefore, it is the competition between these two effects, 
the variation of the critical threshold and the variation of 
the system operation Ra and Ma that will determine the 
bounds of the region within the gas-liquid contactor where 
convective instability can occur. This behaviour is the 
main difference between the present study and the results 
reported in figure 8 of Sun and Fahmy (2006), where only 
the region between the inlet of a gas-liquid contactor and 
the marginal point (x/Pe = 0.03) was investigated. 
 
The critical Ra-Ma curves in Figure 7 also indicates that 
for a sufficiently long gas-liquid contactor, the liquid layer 
may become instable at a location before the exit of the 
gas-liquid contactor and that the instability would traverse 
both upstream and downstream with increasing driving 
force for mass transfer. 
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Figure 8: Variation of measured and penetration theory 
mass transfer coefficient. 
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The prediction of restricted regions for occurrence of 
convective instability in gas-liquid contactors with long 
contact distance has yet to be confirmed experimentally. 
Nevertheless the collapse of mass transfer enhancement 
factor, which is defined as the ratio of experimentally 
measured mass transfer coefficient to that predicted by 
penetration theory (Brian and Ross, 1972), after a long 
exposure time has been observed in wetted-wall column 
(Hozawa et al.,1984). Similar collapse of mass transfer 
enhancement has also been observed in our laboratory 
with mass transfer processes in thin quiescent layers, 
which has a direct correspondence to flow system via the 
transformation t = x/Pe. Such a collapse we observed is 
illustrated in Figure 8. 
 
It should be noted the reduction in mass transfer rates 
relative to penetration mass transfer rates is not a viable 
measure of mass transfer enhancement at a long contact 
length or time. A more appropriate definition would be 
with respect to the theoretical instantaneous mass transfer 
coefficient under the concentration profile of equation (5). 

CONCLUSION 
Penetration theory is not an adequate basis to evaluate 
unperturbed concentration profiles in calculations of the 
critical threshold for the Rayleigh and Marangoni 
instabilities in solute transfer between a gas layer and a 
liquid layer between two non-diffusing solid plates when 
the contact length/time is large. This difficulty has been 
overcome by enforcing non-diffusing boundary condition 
to evaluate the unperturbed concentration profile, and 
correspondingly enforcing non-diffusing boundary 
conditions in the linearised perturbation equations for the 
Rayleigh-Bénard-Marangoni problem. Critical thresholds 
evaluated using the concentration profile satisfying with 
non-diffusing boundary condition are consistent with 
those obtained using the penetration concentration profile 
within the region where penetration theory is valid. 
Investigation into the region where the penetration theory 
is no longer valid shows that, both the critical thresholds 
and the operation Marangoni and Rayleigh numbers are 
functions of downstream location. Consequently, within 
certain operation regimes of the system, there can only be 
a limited region within the gas-liquid contactor where 
convective instability is possible and within which there is 
a local maximum of convective intensity, thereby opening 
up the possibility of optimising gas-liquid contactors with 
respect to Rayleigh and Marangoni convection enhanced 
mass transfer, for instance, by paralleling a limited contact 
area rather than cascading. It has also been pointed out 
that the reduction in mass transfer enhancement at long 
exposure observed in a stationary gas-liquid system could 
be attributed to the competition between system operation 
Rayleigh and Marangoni numbers and critical thresholds. 
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