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ABSTRACT 

We study capillary absorption of small polymer droplets 

into non-wettable capillaries using coarse-grained 

molecular dynamics simulations and simple analytic 

models. We study the effect of polymer chain length on 

the capillary absorption process. Our simulations reveal 

that for droplets of the same size (radius), the critical tube 

radius, below which there is no absorption, increases with 

the length of the polymer chains that constitute the 

droplets. We propose a model to explain this effect, which 

incorporates an entropic penalty for polymer confinement 

and find that the model agrees quantitatively with the 

simulations. We also find that the absorption dynamics is 

sensitive to the polymer chain length. 

NOMENCLATURE 

 characteristic length 

 characteristic energy 

 characteristic time 

N polymer chain length 

INTRODUCTION 

Capillary action has a wide range of applications in nature 

and industry (Marmur, 1988, Zhmud et al, 2000). This 

phenomenon, in general, is very well understood at the 

macroscopic scale. However, the standard macroscopic   

models on capillarity make certain assumptions that may 

not be always valid (Marmur, 1988). One particular 

assumption which holds importance in the context of 

micro/nanofluidics is the size of the liquid reservoir 

(Marmur, 1988, 1992). Standard macroscopic models 

assume that the liquid reservoir is infinite compared to the 

tube dimensions. However, in many micro/nanofluidic 

systems the size of the liquid reservoir is often comparable 

to the device dimensions. Thus, in such situations, to 

describe the system behaviour correctly finite size effects 

need to be taken into account. 

 

Marmur (1988) first studied the effect of finite size of 

liquids on the statics and dynamics of capillarity. He 

argued that the Laplace pressure originating from the 

curvature of the droplets should play an important role in 

determining the underlying capillary process. As the 

system size is scaled down these finite size effects become 

ever more important, which could give rise to novel 

behaviour that are absent otherwise. For example, it was 

found that capillary absorption of non-wetting liquids is 

possible if the droplets are sufficiently small (Ajayan and 

Iijima, 1993, Schebarchov and Hendy, 2008). This is in 

contrast with the macroscopic theories, according to which 

there should be no capillary action for non-wetting liquids 

(contact angles greater than 90


).    

 

There is a growing interest in building polymer-based 

functional nanomaterials and nanostructures for novel 

applications. One of the methods used for producing these 

nanostructures is by filling nanomolds with the aid of 

capillary forces. For example, polymer-based nanopattern 

wires (Zhang et al, 2002), nanorods and nanotubes (Zhang 

et al, 2006), nanoscale protein patterning, nanofibers 

(Pisignano et al, 2005), nanobelts (He et al, 2007), etc. 

were produced using capillary forces. Most of these 

methods fall in the above described regime, that is the size 

of the liquid reservoir is finite compared to the 

channel/tube dimensions. Thus, in these situations, the 

Laplace pressure driven capillary forces can become 

important.  

 

Compared to Newtonian fluids, the behavior of polymer 

solutions or melts at the nanoscale is particularly 

fascinating because at these dimensions the characteristic 

length scales of polymers become comparable to the 

device dimensions. This can have important implications 

on the behavior of polymers in these devices and can lead 

to new phenomena. In the context of nanocapillaries, the 

question that received most attention, recently, is whether 

the Lucas-Washburn equation (Lucas, 1918, Washburn, 

1921) for capillary rise applies at the nanoscale 

(Schebarchov, 2008). This is yet to be fully resolved, with 

the literature containing conflicting results (Zhmud et al, 

2000 and references therein).    

 

Capillary phenomena of polymer liquids at the nanoscale 

can be expected to be different from their Newtonian 

counterparts because of their molecular nature. When a 

polymer molecule is forced to enter a tube whose diameter 

is comparable to its size then the molecule has to stretch in 

the direction of the tube. This results in a conformational 

entropy loss. Therefore, in the case of polymer droplets for 

absorption to take place the Laplace pressure must 

overcome the conformational entropy loss in addition to 

the meniscus pressure. Furthermore, the entanglement 

effects may play an important role in influencing the 

underlying capillary process.  Entangled polymers are 

known to display two different dynamics regimes 

depending on their chain lengths. Melts with shorter 

chains exhibit Rouse-type dynamics whereas those with 

longer chains showcase reptation-type dynamics 

(deGennes, 1979).  
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Keeping in view the above arguments the capillary 

phenomena of polymer droplets at small scales has the 

potential to display different behaviour to their Newtonian 

counterparts. Therefore, it is of considerable interest to 

study the effect of molecular size on the thermodynamics 

and dynamics of polymer droplets under capillary action. 

For this purpose, we carry out molecular dynamics (MD) 

simulations of polymer droplets of same size but 

composed of different chain lengths, N. We restrict our 

simulations to the two cases, N=20 and 200, as the former 

falls in the Rouse regime and the latter falls in the 

reptation regime. From this we should be able to observe 

any noticeable differences in the capillary dynamics. The 

simulation results will then be compared against a simple 

analytical model.  

MODEL DESCRIPTION 

The method we use to simulate polymer absorption is MD 

and full details are given in a recent work of ours (Dhondi 

et al, 2012). Here we give a brief overview of the 

simulation method. The polymer molecules were modelled 

as coarse grained bead-spring chains where each chain 

consisted of N-effective monomers. The interaction 

between bonded monomers was given by the finite  

extensible nonlinear elastic (FENE) potential, which is 

Gaussian for small separations and much stiffer at larger 

separations. The excluded volume and attractive 

interactions between non-bonded monomers and between 

the monomers and substrate/tube atoms were included via 

the shifted Lennard-Jones (LJ) 12-6 potential (Dhondi et 

al, 2012). The length and energy scales in the LJ units are 

given by and respectively (and for convenience both 

are set to unity). All units are then expressed in terms of 

these quantities. 

 

The time integration of the equations of motion was 

carried out using the velocity Verlet algorithm. During this 

equilibration period the LJ potential between monomers 

was turned-off to prevent unrealistically large forces. The 

temperature of the system was controlled at 
BkT /  

using the Langevin thermostat and the corresponding 

equation of motion for any particle i is given by 

i

ij

ij
ii fF
dt

rd
m

dt
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m  





2
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   (1) 

where m is a monomer mass,   is a friction constant,
if is 

the random force (mimicking thermal fluctuations) applied 

on monomer i and 
ijij UF 


is the total force 

experienced by particle i due to its interaction with particle 

j. The time scale is given by 2/12 )/(  m . 

CHARACTERIZATION OF THE DROPLET 

Properties of the droplets, which are of interest to our 

study, were extracted by recording their configurations 

every 100 for 50000. First of all we calculate the radius 

of droplets made up of chains of different length but 

consisting of the same number of total monomers. (For 

example, for a droplet of 8000 monomers we ran separate 

simulations of 400 chains of length 20, 80 chains of length 

of 100 and so on.) The average droplet radius 

07.003.150 R  for droplets with 8000 monomers 

and 07.058.180 R  for droplets with 16000 

monomers (where the error represents the standard 

deviation computed over all considered chain lengths). 

The narrow distribution in droplet radius indicates that 

there is very little effect of chain length on the droplet 

size.  This is useful to know since we want to study the 

capillary action of droplets of same size but made up of 

chains of different lengths.   

 

For droplets of same size, the local environment 

experienced by an average chain should change with chain 

length, N. To investigate this effect we calculate the 

average radius of gyration per chain as a function of N. In 

the small N limit on average chains behave as if they were 

ideal chains, i.e. their radius of gyration scales 

as 2/1NRg  . There appears to be a cross-over from 

this behavior for N>200. A possible explanation for this 

trend may be as follows. In small N droplets, on average, 

each chain is surrounded by a large number of chains, 

equally in all directions. This is analogous to a chain in a 

melt, which is ideal. As N increases on average each chain 

will have fewer polymer neighbours, i.e. more exposure to 

solvent. Hence the trend in 
gR deviates from the ideal 

chain behaviour. These results were then compared against 

single chain simulations, conducted under the same 

conditions as the droplet simulations above. The single 

chain simulations reveal that the chains display poor 

solvent behaviour, where 3/1NRg  . In the limit N 

approaching the system size (total number of monomers in 

the droplet), the curve from the droplet simulations 

converges onto the single chain curve. This observation 

supports our earlier explanation for the shrinkage in 
gR  

for droplets with larger N values (de Gennes, 1979). 

Similar 
gR behaviour was observed for larger droplets 

of 16000 monomers.  

 

Contact Angle Measurements 

The contact angle, , between the liquid and solid can be 

used to discriminate between wetting and non-wetting 

surfaces. Within the framework of MD simulations control 

over the contact angle can be gained by tuning the 

interaction between the liquid and solid constituents. By 

varying the strength of this interaction the wetting 

properties of the liquid with respect to the solid can be 

changed.  

 

Equilibrated polymer droplets were placed on a single 

atom thick, simple cubic substrate with a lattice constant 

. The substrate atoms were fixed in space to reduce the 

computational effort. Although, in reality, the substrate 

atoms vibrate about their equilibrium positions, this 

should not influence the nature of the results since all the 

simulations were conducted under the same condition 

(stationary substrate atoms). The interaction between the 

substrate atoms and monomers was given by the LJ 

potential.  

 

In the case of wetting droplets the chains can crawl on the 

outer side of the tube. Moreover, wetting liquids are found 

to have a precursor foot spreading ahead of the liquid bulk 

thus making the contact angle time-dependent (deGennes, 

1979). For these two reasons we restrict ourselves only to 
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non-wetting droplets. We adjusted the LJ potentials to 

ensure these conditions. 

 

Contact angles were extracted by approximating the 

equilibrated droplet, on the substrate, to a spherical cap. If 

a droplet with an initial radius 
0r  assumes a spherical cap 

geometry, of height h, upon reaching equilibrium then the 

contact angle formed by the spherical cap is  











 

1/4

3
1cos

33

0

1

hr
c  . (2) 

In our simulations, the droplets were initially equilibrated 

for 10000 on the substrate to let them reach their 

equilibrium state (height). After this time period, we noted 

the droplet configurations every 100 for the next 40000 

to calculate the average height  h of the  spherical cap. 

The average radius of the droplet 
0r  are available from 

the previous section. By solving Eq. (2) we can 

approximate c . The contact angle remains approximately 

constant independent of the chain length or the droplet 

size, within the studied chain length range. We estimate 

the average contact angle for, this case, as 104c  

within 1% error.     

 

CAPILLARY ABSORPTION OF POLYMER 

DROPLETS 

In the context of non-wetting polymer droplets, for 

capillary absorption to take place, the Laplace pressure 

must overcome conformational entropy loss in addition to 

meniscus pressure. It is also worthwhile to consider the 

dynamics of the underlying process. As mentioned earlier, 

the validity of the Lucas-Washburn equation at the 

nanoscale is debatable. We suspect entanglement effects 

will play a role in determining the dynamics at nanoscale. 

Entangled polymers are known to display different 

dynamic regimes depending on their chain lengths. Melts 

with shorter chains exhibit Rouse-type dynamics whereas 

those composed of longer chains showcase reptation-type 

dynamics (deGennes, 1979). Therefore, it is of 

considerable interest to study the effect of molecular size 

on the statics and dynamics of polymer droplets under 

capillary action. For this purpose, we carry out MD 

simulations of polymer droplets of the same size (total 

number of monomers is constant) but composed of 

different chain lengths. We restrict our simulations to two 

cases, N = 20 and 200 as the former falls in the Rouse 

regime and the latter falls in the reptation region. This 

difference in chain dynamics should capture any 

significant differences in the observed capillary absorption 

dynamics. 

 

The tube was constructed by rolling a single atom thick, 

simple cubic layer with a lattice constant 1.0σ into a 

cylinder with both ends of the tube being open. The tube 

atoms remained fixed. An equilibrated droplet was placed 

at the entrance of one of the ends of the tube (see Fig. 1). 

The equations of motion were integrated via the velocity 

Verlet algorithm with a time-step of 0.01τ. 

 

 

Figure 1: Schematic diagram of geometry 

Droplets with 8000 Monomers 

We first report the results for an 8000 monomer droplet 

and later compare them with the results for a larger droplet 

with 16000 monomers. For a droplet of fixed size, the tube 

radius was varied systematically to determine the critical 

tube radius, 
tcr , below which no absorption takes place. A 

number of simulations were run for different tube radii 

ranging from 4.26σ to 6.69σ and the subsequent 

absorption process was monitored for each of the cases. 

From these simulations we were able to narrow down the 

critical tube radius region and here we only focus on 

results from this region. The absorption process was 

monitored by recording the height of the liquid meniscus 

inside the tube and the radius of the protruding droplet as 

a function of time. The results for N = 20 case are shown 

in Fig. 2. For a smaller tube radius of 
tr =5.10σ, the radius 

of the protruding droplet and height of the liquid meniscus 

does not change over time. But for a slightly larger radius 

of  tr = 5.26σ the droplet gets absorbed into the tube, once 

the system overcomes the initial energy barrier for 

penetration. Corresponding to the capillary absorption, the 

height of the meniscus increases and the radius of the 

protruding droplet decreases.  

 

 

Figure 2: Meniscus height and the radius of protruding 

droplet as a function of time for 8000 monomers with 

N=20, for different tube radii. 

In order to determine the critical cut-off radius below 

which there is no absorption, the simulation with smaller 
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tube radius of 
tr  = 5.10σ was run for much longer. Yet 

there was no absorption indicating the critical radius is 

5.26σ (for N=20). To test the applicability of the Lucas-

Washburn description to our systems we fit the meniscus 

height data to (Washburn, 1921): 

2/1

2

cos)4)((
)( t

btR
th cd








 





 ,  (3) 

where γ is the surface tension,
dR is the radius of the 

protruding droplet at time t, b is the slip length, and μ is 

the viscosity of the fluid. The initial portion of the 

meniscus height data were ignored as the Lucas-Washburn 

description does not account for inertial forces at initial 

time . The fit to the meniscus height for tr  = 5.26σ was 

found to be in poor agreement with Eq. 3 (see Fig. 3). 

 

 

Figure 3: The data points indicate the MD simulation 

results while the solid curves are model fits to Eq. (3), for 

two different cases and chain lengths. The model at most 

describes very late stage dynamics. 

Similar calculations were carried out for an 8000 

monomer droplet made up of N = 200 chains, to examine 

the effect of molecular size on the whole process. The 

meniscus height and the radius of the protruding droplet 

for this case are plotted in Fig. (4). Several interesting 

outcomes can be observed from this plot. For tubes 

smaller than tr = 5.57σ there was no absorption, within 

the time scale of the simulation runs. The absorption 

process was almost spontaneous for the case of tr = 5.73σ 

barring the initial times. The most interesting case of all 

was tr  = 5.57σ where the droplet sits outside the tube 

entrance for a very long time, during which the droplet 

tries to enter the tube by overcoming some sort of barrier. 

This is clearly evident from the meniscus height plot. The 

origin of this barrier can be energetic or entropic, due to 

conformational entropy loss, or a combination of both. 

During this period, we also observe partial absorption and 

desorption taking place. Such a process was neither 

present in the N = 20 case nor was reported earlier for 

either Newtonian or non-Newtonian fluids. Eventually, the 

droplet overcomes this barrier and gets drawn up the tube. 

We attribute this effect to the increase in molecular size, 

N. The average behaviour of chain size for this case is 

shown in Fig. 5. Prior to absorption, while the droplet 

attempts to enter the tube, fluctuations in the y-component 

of the radius of gyration were observed and the trend in 

these fluctuations coincides with the partial absorption and 

desorption in the meniscus height (see Fig. 5). (Note the 

tube axis is aligned with the y-axis.) 

 

 

Figure 4: Meniscus height and radius of protruding 

droplet as function of time for N=200, for different tube 

radii. 

Because of the partial absorption and desorption 

processes, there was either an increase or decrease in the 

y-component of radius of gyration, corresponding to a 

compression or expansion of the other two components 

observed. Hence the average behaviour of the components 

of  radius of gyration is a good measure of the underlying 

phenomena. Another interesting observation from this 

simulation was the capillary dynamics. Once again we 

found that the capillary dynamics observed here cannot be 

described by the Lucas-Washburn description (Eq. 3). 

Moreover, the standard capillary models cannot explain 

the process of partial absorption and desorption observed 

in this case. The average chain size measurements were 

also performed on the bigger tube radius tr = 5.73σ case. 

In this particular case, we were able to study the system 

behaviour after complete absorption, mainly due to faster 

dynamics involved compared to the previous case of tr  = 

5.57σ. Once the droplet was totally absorbed into the tube, 

the meniscus height remained approximately constant (see 

Fig. 4), during which period we monitored the average 

radius of gyration components. An interesting observation 

from this calculation was that after complete absorption 

the chains started to relax. In the long time limit, we 

expect the chains to retain their original size in the bulk 

(unless obstructed by the capillary walls).  

Droplets with 16000 Monomers 

Absorption simulations were also performed for larger 

droplets with 16000 monomers for chain lengths 20 and 

200. The critical tube radius region was identified by 

conducting a number of simulations for tr  between 4.94σ 

and 7.49σ. Apart from the fact that larger droplets require 

broader tubes for absorption, which stems from Marmur’s 

theory, we also noticed some other interesting physics 

related to absorption dynamics. We shall report them one 

by one here. First, we present results for absorption of an 

N = 20 droplet. The height of the meniscus and radius of 

the protruding droplet are presented in Fig. 6 showing the 

critical tube radius is 6.37σ. The activation time, time after 

which the absorption process starts, has increased 

considerably compared to the 8000 monomer droplet for 
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the same chain length. This could be due to an increase in 

curvature of the droplets resulting in weaker Laplace 

forces.  

 

 

Figure 5: Components of the radius of gyration for tube 

radius 5.57, for N=200 and 8000 monomers in total. The 

blue dashed encircled regions show the partial absorption 

instances (which are demonstrated with the help of snap-

shots). 

Results for N = 200 droplets show remarkably different 

behaviour in comparison with any of the earlier cases 

presented. The meniscus height plots are sufficient to 

bring about this contrast and trends in the radius of the 

protruding droplet, 
gR , and potential energy calculations 

complement its findings. The meniscus height plots for 

different tr are shown in Fig. 7 and the critical tube radius 

is 6.69σ. In the case of tr  = 6.53σ throughout the 

simulation period the droplet was found to partially absorb 

and desorb without ever being able to cross the barrier.  

 

 

Figure 6: Meniscus height and radius of protruding 

droplet plots for the 16000 monomer droplet with N=20, 

for various tube radii. 

One can argue that this is purely a dynamic issue, given 

long enough time the droplet may eventually overcome 

this barrier with the help of fluctuations and capillarity 

phenomenon can be observed. Though we do not deny this 

possibility, it is not at the core of our claims, which is the 

precise identification of the critical tube radius. The most 

interesting observation was the persistent partial 

absorption and desorption of the droplet, which has not 

been reported before. For a slightly larger tube of tr  = 

6.69σ, the droplet gets stuck in multiple metastable states, 

for long periods of times. This scenario implies that the 

droplet is partially inside and partially outside for 

relatively long time periods. Such a process contrasts with 

existing dynamic theories aimed at explaining the capillary 

dynamics of simple liquids. 

 

 

Figure 7: Meniscus height of protruding droplet plots for 

the 16000 monomer droplet with N=200, for various tube 

radii. In the inset we highlight the metastable and partial 

absorption regions for the case of tr =6.69

Comparison with theory 

The MD results from the previous sections show for 

droplets composed of longer chains, a larger critical tube 

radius is required than for droplets composed of shorter 

chains. Specifically, we have found that the radius of 

gyration of the N=20 chains is 2.14 while the N=200 

chain is 5.83,  compared to critical tube radii of roughly 

5.26 and 5.57 (respectively) for the droplet composed 

of 8000 monomers and 6.37 and 6.69 (respectively) for 

the droplet composed of 16000 monomers. We shall now 

attempt to understand the previous MD simulation results 

from a theoretical point of view - why do the droplets 

composed of longer chains have a larger critical tube 

radius? We only consider equilibrium thermodynamics 

here and therefore only model the initial and final, 

equilibrium conformations of the polymer droplets (Fig 1a 

and 1c). Previously Schebarchov and Hendy (2008) were 

able to show that non-wetting metallic droplets could be 

drawn up a narrow capillary tube if the droplet radius was 

sufficiently small. Their theoretical analysis was based on 

surface tension arguments (between the metallic droplet, 

the tube walls and the surrounding solvent) which gives 

rise to a Laplace pressure which assists the droplet in 

rising up the tube. Our analysis is based on these ideas, 

however, the complicating factor is that for polymer 

chains one needs to account for chain entropy. If a chain is 

confined within a narrow tube the number of possible 

conformations it may investigate decreases and as a result 

the chain's free energy increases. 

 

We don’t go through all the details here as they are given 

elsewhere (Dhondi et al, 2012), but only an overview. 

Figure 1a shows a polymer droplet before entering the 

tube. We can readily calculate its surface energy 

(proportional to surface area) and there is no penalty in 
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chain conformational entropy (as all polymer chains are 

random walk chains). We call this configuration I. If the 

polymer droplet is absorbed in the tube it takes up a 

configuration shown in Fig. 1c. The surface energy is 

easily calculated but the entropy penalty now is more 

difficult. Chains are perturbed from their random walk 

configuration by the presence of the capillary walls. Every 

time a polymer chain hits a capillary wall it experiences an 

energy penalty of .TkB
 We can then calculate the energy 

for a polymer droplet consisting of q chains of length N, 

where for a particular set of simulations we kept qN 

constant (at 8000 or 16000). The conformational entropy 

penalty is 









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Where b is a random walk step length and tr is the tube 

radius. The subscript II indicates this is for configuration 

II (Fig. 1c).  

 

Configuration II is favoured if it has a lower free energy 

compared to configuration I.  We thus define the 

difference in free energy between the two configurations, 

III  . It is given by  
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where td rr / and Tkb B/2  . The absorbed state 

is favoured when 0 . 

 

Figure 8 shows the free energy for a contact angle of 103.5 

degrees. (Recall the contact angle from the MD 

simulations was in the non-wetting regime (
5.103 .) In 

the absence of the polymeric term, all droplets below a 

radius of 6.35 tr  would be absorbed into the capillary. For 

both polymeric cases, however the critical tube radius is 

smaller (at 5.5 tr  for the 1000 length chains and 5.3 tr  for 

the million length chain) and the critical  decreases with 

increasing chain length. In our MD simulations for the 

droplet of 8000 monomers, the critical    for short chains 

(N=20) is 2.9, which for longer chains (N=200) is 2.7. For 

the droplet of 16000 monomers, the critical  for short 

chains (N=20) is 2.95, while for longer chains (N=200) is 

2.8. Thus the theoretical results agree with our MD 

simulations qualitatively in that both MD simulations and 

theory predict (i) a decrease in critical  with longer 

chains and (ii) when a simple molecular fluid droplet 

would be absorbed, the polymeric droplet remains outside 

the tube. This difference can only be attributed to the 

entropy penalty the chains must overcome when entering a 

restricted domain. 

CONCLUSION 

The results of both MD and equilibrium statistical 

mechanics theory indicates droplets composed of longer 

polymer chains find it more difficult to absorb into a 

narrow, non-wetting capillary than droplets composed of 

shorter chains. We have shown this is due to the entropical 

(conformational) energetic penalty which affects longer 

chains more drastically than shorter chains. These results 

will have important implications on any micro or nano-

fluidic applications involving polymer droplets such as 

producing nanowires, nanofibres or nanorods. 

 

 

Figure 8: Free energy for various droplet configurations at 
5.103c for various .
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