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ABSTRACT 

In this paper, experimental data of solid distributions in 

horizontal pipelines were modelled using CFD and 

Discrete Element Method (DEM). Experimental data were 

taken from Gilles et al. (2004), Roco et al. (1983) and Hill 

(1996) for pipe diameter in the range from 51 mm to 103 

mm, the average sand particle size from 90 m to 4400 

m and average solid volume fraction from 0.092 to 0.21.  

Two CFD models available in STAR-CCM+ for Eulerian 

multiphase flows were used,  the simple solid pressure 

model that uses the exponential formula for the solid 

pressure force and more sophisticated model based on the 

kinetic theory of granular flows that takes into account 

bulk, collisional, kinetic and frictional viscosities, which 

result from the presence of solid particles. In both models 

the turbulent flow was modelled using the standard k- 

model. The drag force acting on the particles was 

modelled using the Gidaspow formula.  

The granular flow model was compared with the DEM 

implemented in STAR-CCM+. The DEM formulation 

used in STAR-CCM+ is based on the soft-particle 

formulation where particles are allowed to develop an 

overlap. The non-slip Hertz-Mindlin contact model was 

used to account for particle-particle interactions and the 

Gidaspow drag formula for liquid-particle interaction. 

CFD and DEM predictions of solids concentration were 

compared against experimental data. The comparisons 

were made in terms of accuracy and computational time. 

NOMENCLATURE 

A constant in solid pressure force equation 
D

ijA  linearized drag coefficient 

c concentration of solid particles 

<c>  average solid concentration 

CD drag coefficient 

CL lift coefficient 

d particle diameter 

D pipe diameter 

e coefficient of restitution 

F force 

 
iintF  internal forces 

g gravitational acceleration 

g0 radial distribution function 

I2D   second invariant of deviator of the strain rate tensor 

Mi interphase momentum transfer 

p pressure 

v  velocity 

vr relative velocity between phases 

 

 

 volume fraction 

d volume fraction of dispersed phase 

d,max maximum volume fraction of dispersed  

        phase(packing limit) 

 angle of internal friction 

 dynamic viscosity 

p granular viscosity 
C

p
 collisional part of granular viscosity 

f

p  frictional part of granular viscosity 

K

p  kinetic part of granular viscosity 

f

p max,  maximum frictional viscosity 

 kinematic viscosity 
t

c  turbulent viscosity 

 density 

 turbulent Prandtl number 

i  stress tensor 

 

INTRODUCTION 

Transport of minerals like coal, copper, iron, phosphate 

and oil sand requires good understanding of slurry 

behaviour in the pipelines. This paper presents a CFD 

model of solid distribution in pipelines that gives better 

insight into the sedimentation process. 

In this work two approaches were used, the Eulerian 

multiphase model and the Discrete Element Method 

(DEM). The Eulerian multiphase model treats phases as 

interpenetrating continua. Each phase is characterized by 

its own physical properties, velocity and temperature. The 

pressure is shared by the phases and the amount of a given 

phase in a computational cell is given by the phase volume 

fraction. The DEM model is based on explicit modelling 

of the collisions between the particles. This modelling 

technique uses the Lagrangian approach.  

Eulerian multiphase model 

STAR-CCM+ solves the mass conservation equation for 

phase i: 
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where turbulent stresses t

i   are given by the k- model. In 

this work the standard k- model was use to calculate 

continuous and dispersed phase turbulent stresses that 

takes into account the extra source terms arise from the 

presence of the interfacial forces in the momentum 

balance. The interphase momentum transfer term, iM , 

includes the drag, turbulent dispersion and lift forces. 

intF  is the internal force and in this study it includes the 

solid pressure force that occurs in the particle phase only. 

Details of these forces are given below. 

Drag force 

In this work, the Gidaspow formula for the drag force was 

used. It connects the Ergun equation for high solid particle 

concentration with a modified Stokes law for regions of 

low and moderate concentrations. The linearized drag 

coefficient D

ijA is given by: 
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where CD=0.44. The drag force is given by: 
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Turbulent dispersion force 

Ekambara (2009) showed the importance of the turbulent 

dispersion force in predicting the distribution of solid 

particles in pipes. The turbulent dispersion force accounts 

for the interaction between the dispersed particles and the 

surrounding turbulent eddies. The following formula was 

used: 













 





i

i

j

j
t

cD

ij

DT

ij A














F

     

(5) 

where  is the turbulent Prandtl number equal to 1.  

Lift force 

In a non-uniform or swirling flow field the dispersed 

particles experience a lift force that is perpendicular to the 

relative velocity. STAR-CCM+ uses a formula from Auton 

(1988): 

  rrcdLC vvFL  
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and the value of the lift coefficient CL is 0.1, which is 

commonly used for small solid particles (Ekambara et al. 

2009).  

Solid pressure force 

The presence of solid particles results in an additional 

solid pressure force that needs to be added to the 

momentum balance. The solid pressure force accounts for 

the particle-particle interaction when the solid volume 

fraction is close to the maximum packing limit. This force 

appears in the solid phase momentum equation only. In 

this work an exponential formula was used: 
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Granular flow model 

The granular flow model offers a more accurate 

representation of the solid particles than the simple solid 

pressure force model. Two regimes can be distinguished in 

the granular flow model depending on concentration of the 

particles. 

Granular flow model - kinetic regime 

In the kinetic regime the volume fraction of particles is 

lower than the maximum packing limit and the probability 

of collisions between particles is characterized by the 

radial distribution function g0 (Ding 1990) 
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The radial distribution function is used to calculate the 

granular temperature 
p

 

that determines the effective 

granular viscosity. 

The effective granular viscosity is composed of collisional 

and kinetic parts. 
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The collisional part is given by: 
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whereas the kinetic part comes from Gidaspow (1994): 
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Granular flow model - frictional regime 

In the frictional regime the volume fraction of particles is 

close to the packing limit and the solid pressure force is 

given by (Schaeffer 1987): 

 











max,

max,d

10

max,

25

                                0

    01

dd

dddf

pp




   

(9) 

 

and the effective granular viscosity is given by: 
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where  is the angle of internal friction and I2D is the 

second invariant of deviator of the strain rate tensor. 

Schaeffer (1987) recommend using 25 deg. for the angle 

of internal friction. 

 

DEM model 

STAR-CCM+ uses the DEM model based on the soft-

particle formulation where an overlap between particles is 

allowed.  

Momentum balance takes form: 

cugb FFFF 

     

(11) 

where Fg is the gravitational force, Fu the drag force and Fc 

the contact force that includes wall-particle and particle-
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particle interactions. The contact forces between particle-

particle and particle-wall are modelled using the Hertz-

Mindlin model (Di Renzo 2004). In this model the contact 

force between two particles is decomposed into the normal 

and tangential components. Both component forces take 

into account of stiffness and damping.  

The interaction between the liquid phase and particles is 

strong and the two-way coupling with the continuous 

phase was used in this work. The two-way coupling allows 

the Lagrangian phase to exchange the momentum with the 

continuous phase.   

 

CFD MODEL 

The CFD model was constructed using the STAR-CCM+ 

software. Experiments from Gilles (2004), Roco (1983) 

and Hill (1996) were simulated. The pipe diameter varied 

from 51 mm to 103 mm, the particle size was in the range 

from m to 4400 m and the average solid volume 

fraction from 0.092 to 0.21. A summary of the modelling 

conditions is given in Table 1. 

 

case  D 

 [mm] 

d 

[m] 

v 

[m/s] 

p 

[kg/m3] 

1 0.19 103 90 3 2650 

2 0.189 51.5 165 4.17 2650 

3 0.20 51.5 270 5.4 2650 

4 0.203 51.5 480 3.41 2650 

5 0.0918 51.5 165 3.78 2650 

6 0.15 53 4400 1.75 2470 

Table 1: Modelling conditions. 

All conditions were modelled using the granular flow 

model. The exponential form of solid pressure was used 

for conditions 1-5. Due to hardware limitations DEM 

model was used only for the largest particle (condition 6). 

For conditions 1-5 the number of particles required in a 

DEM calculation is in the order of 1e7 that makes it 

computationally expensive hence DEM calculations were 

not performed for these cases. 

 

CFD simulations were run on a 3D grid with 720k cells 

shown in Figure 1. It is necessary to use a 3D grid as the 

gravitational acceleration acts perpendicular to the pipe 

axis. The grid sensitivity was studied on grids from 720k 

to 1.5M cells and solution was found to be grid 

independent at 720k cells. The grid was constructed with 

10 prism layers. Since the k- model with wall function 

was used, the first cell in the prism layer was located in the 

logarithmic region of the boundary layer. The distance 

from the wall varied from y+=40 to y+=140 with average 

value of 60. Velocity inlet and pressure outlet were used 

as boundary conditions. Uniform solid concentration was 

used at the inlet. The length of the pipe was 10m. 

 

Figure 1: Computational grid. 

 

All simulations were run as unsteady in time with the time 

step of 1e-3s for the exponential form of solid pressure 

and the granular flow model and 1e-5s for DEM. 

 

CFD RESULTS 

Normalized solid concentration vs. normalized pipe height 

at 9m from the inlet is plotted in Figures 2-6. The solid 

concentration profiles correspond to the steady state 

profile that is formed in a long horizontal pipe.   

Results for the simulations using the exponential form of 

solid pressure and the granular flow model are similar in 

the case of uniform solid concentration (Figure 2) and 

non-uniform solid concentration (Figure 5). Both models 

correctly predict the effect of particle size (Figure 3, 

d=165m and Figure 4, d=270m), pipe diameter (Figure 

2, D=103mm and Figure 3, D=51.5mm) and effect of 

average solid volume fraction (Figure 5, =0.203 and 

Figure 6, =0.0918). 

Figures 3 and 6 show that there are some differences 

between the granular flow model and the exponential form 

of solid pressure when the solid particles are close to the 

pipe wall. This difference results from the extrapolation 

boundary conditions for granular temperature used for the 

pipe wall. Also the concentration of particles is not 

measured accurately near the pipe wall and there are not 

enough experimental points to validate the model in this 

region. Figure 5 shows the small kink in the measured 

solid concentration near the pipe wall indicating that the 

granular flow model may be more accurate in this region. 

Computations using the granular flow model were about 

25% slower than the solid pressure force model.  
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Figure 2: Results for case 1 (=0.19, D=103mm, 

d=90m, v=3 m/s, p=2650kg/m3) 

 

 

 

Figure 3: Results for case 2 (=0.189, D=51.5mm, 

d=165m, v=4.17 m/s, p=2650kg/m3) 

 

 

 

Figure 4: Results for case 3 (=0.20, D=51.5mm, 

d=270m, v=5.4 m/s, p=2650kg/m3) 

 

Figure 5: Results for case 4 (=0.203, D=51.5mm, 

d=480m, v=3.41 m/s, p=2650kg/m3) 

 

 

Figure 6: Results for case 5 (=0.0918, D=51.5mm, 

d=165m, v=3.78 m/s, p=2650kg/m3) 

 

The comparison of velocity and volume fraction profiles 

in Figures 7-10 shows that both models give almost 

identical solution. The velocity profiles, shown in Figures 

7 and 8, develop in the same way for two models. Also the 

settling of particles show in Figures 9 and 10 is almost the 

same for the granular flow model and the exponential 

solid pressure model. 
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Figure 7: Results for case 1 velocity at 1m (=0.19, 

D=103mm, d=90m, v=3 m/s, p=2650kg/m3) 

 

Figure 8: Results for case 1 velocity at 5m (=0.19, 

D=103mm, d=90m, v=3 m/s, p=2650kg/m3) 

 

Figure 9: Results for case 1 solids at 1m (=0.19, 

D=103mm, d=90m, v=3 m/s, p=2650kg/m3) 

 

Figure 10: Results for case 1 solids at 5m (=0.19, 

D=103mm, d=90m, v=3 m/s, p=2650kg/m3) 

 

The DEM simulation was about 7 times slower than the 

simulations with the granular flow model. Results from the 

DEM simulation are shown in Figure 11. In this case of 

large particles (4.4mm in 53 mm pipe) the DEM model is 

more accurate. There is a small error in the upper part of 

the pipe cross-section that most probably results from 

turbulence modelling and the lack of turbulent dispersion 

effects in this case resulting in a lower particle 

concentration. There are also some differences near the 

bottom wall of the pipe. The DEM model predicts that the 

particle concentration drops to 0.2 near the wall. 

Experimental data in this region is scattered.   

The granular flow model in this case of large particles is 

less accurate. For this case only, the granular flow 

simulation was performed without the turbulent dispersion 

force since it is not important for particles larger than the 

turbulent eddies. The granular flow model predicts more 

settling than DEM and experimental data. One possible 

reason for this is that with the larger particles and smaller 

pipe-to-particle diameter ratio, the particle-wall contacts 

create a significant larger void than the usual particle-

particle contacts. DEM represents this larger void near the 

lower pipe wall correctly whereas the granular flow model 

does not. 

Figure 12 shows an instantaneous concentration of 

particles near the inlet. The steady state profile is formed 

at about 4-5 diameters from the inlet.   

  

 

Figure 11: Results for case 6 (=0.15, D=53mm, 

d=4400m, v=1.75 m/s, p=2470kg/m3) 

 

Figure 12: Distribution of solid particles for case 6 

(=0.15, D=53mm, d=4400m, v=1.75 m/s, 

p=2470kg/m3) 

 

CONCLUSION 

The Eulerian Multiphase model implemented in STAR-

CCM+ correctly predicted the distribution of solid 

particles in horizontal pipes for a wide range of particle 

sizes, pipe diameters and flow rates. The predictions are 

close to the experimental data for cases when solids are 
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well distributed (Figure 2) and also when the distribution 

of solids is poor (Figure 5). When the ratio of pipe 

diameter to particle diameter is small, close to 10, the 

accuracy of Eulerian simulations decreases. 

Two models for solid pressure implemented in STAR-

CCM+, the simple exponential form and the granular flow 

model give similar results. The granular flow model is 

more accurate near the pipe wall but it is about 25% 

slower than the exponential form of solid pressure. 

The DEM simulation requires more computational 

resources and was performed only for one case with large 

particles. In this case it is more accurate than the Eulerian 

model. However, the DEM simulation takes about 7 times 

more computing time than the equivalent Eulerian 

simulation. 
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