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ABSTRACT 

In the following paper we present a parallelized resolved 

method for the simulation of the dynamics of immersed 

bodies within fluids. The algorithm uses the so called 

Fictitious Domain Method (FDM) and combines the 

Lagrangian Discrete Element Method (DEM) for the 

tracking of the bodies and a Computational Fluid 

Dynamics (CFD) method for the calculation of the flow 

and pressure field of the fluid phase. In a first step the 

CFD-calculation is carried out, disregarding the solid 

bodies. Afterwards, the velocity information from the 

bodies is included and the force, the fluid imposes onto 

the bodies, is calculated. The last step consists of a 

correction-operation which ensures the fulfilment of the 

conservation equation. Dynamic local mesh refinement is 

used in the area of the bodies in order to keep the number 

of fluid cells to a minimum.  

The CFD-DEM coupling is realized within the Open 

Source framework CFDEMcoupling (www.cfdem.com), 

where the DEM software LIGGGHTS 

(www.liggghts.com) is linked against an OpenFOAM®-

based CFD solver. While both LIGGGHTS and the CFD 

solver could already be used for parallel computations, 

only a recent improvement of the algorithm permits the 

fully parallel computation of resolved problems. This 

parallelization permits the treatment of large-scale 

problems. The enclosed validation and application 

examples show the dynamics of the flow around settling 

and rotating spheres as well as an investigation of the 

settling of spheres regarding the Boycott effect.  

NOMENCLATURE 

p pressure 

u, up  velocity, particle velocity 

ω*, ω (dimensionless) angular velocity of the sphere 

U translational velocity of the sphere 

r position vector 

, F  density, fluid density 

 dynamic viscosity 

Ω, ΩS computational domain, solid domain 

Γ, Γs domain/body boundary 

FD, FL drag and lift force 

A cross section area of the sphere 

INTRODUCTION 

In the field of particle-fluid interactions a variety of 

methods combining Eulerian and Lagrangian approaches 

find application. Especially for small particles unresolved 

methods involving a void fraction field for capturing the 

impact of the particulate phase onto the fluid phase and 

vice versa are applied (cf. Zhou et al., 2010). In contrast to 

that, resolved methods are used for the representation of 

particles or bodies with a, compared to the remaining 

geometry, large diameter. In the present case the dynamics 

of the fluid around the bodies are calculated with a 

Computational Fluid Dynamics (CFD) method while the 

motion of the moving objects is determined with a 

Discrete Element Method (DEM) approach. Fig. 1 shows 

an example of a problem that can be tackled with the 

present method: the original problem consists of a body 

within a fluid domain (Fig. 1 (a)). In order to treat the 

problem numerically, the fluid domain is meshed 

disregarding the existence of the solid areas (Fig. 1 (b)). 

Finally the object(s) have to be located within the mesh, as 

can be seen in Fig. 1 (c) and (d). Details on the last matter 

can be found in the next section. 

 

        
(a)         (b) 

 

        
(c)        (d) 

Figure 1: Body within the computational domain (a), 

meshing of the whole domain independently of the 

position of the body (b), stair step representation (c) and 

smooth representation (d). 
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For the sake of clarity, all theoretical explanations were 

and will be explained for a single-body problem. Yet all 

conclusions and assumptions can be extended to problems 

involving an arbitrary number of objects. Besides a 

number of validation and application examples, this paper 

comprises a description of the applied method and a 

collection of the latest algorithmic improvements. A serial 

version of this method has been presented and validated 

before (cf. e.g., Hager et al., 2011a). Further details on the 

coupling-software CFDEMcoupling in general can be 

found in various publications by the authors (e.g., Goniva 

et al., 2010 or Kloss et al., 2010). 

MODEL DESCRIPTION 

The computational method 

The particularity of this combined method lies in the 

separate treatment of fluid and solid phase: in a first step 

the dynamics of the fluid phase is calculated, neglecting 

the existence of the bodies, using data from the previous 

time step as initialization. The equations describing the 

flow field are the incompressible Navier Stokes equations, 

consisting of the momentum equations (1) and the 

continuity equation (2), together with boundary (3) and 

initial conditions (4): 
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With this new velocity and pressure information the force 

acting onto the objects can be evaluated. Following 

Shirgaonkar et al., 2009, the force exerted on the particles 

consists of a pressure and a viscous term:  

.2
u pf          (5) 

 

This force term (5) stems from the transformation of the 

second of two interface conditions: 

 

sSi   on ˆ andon  
s

tnuu  .   (6) 

 

It describes the stress at the interface between the solid 

body and the fluid. This term together with contributions 

for buoyancy, gravity, particle-particle collisions and 

particle-wall interactions is finally used to determine the 

motion of the bodies with LIGGGHTS. The whole palette 

of models implemented in the DEM-code can be used to 

depict the behaviour of the bodies.  

In the next step, the particle-velocity is incorporated into 

the velocity field of the fluid phase. The correction of the 

velocity field takes place in those cells, where the particle 

is located, as demanded by the first equation of (6). The 

correction operation causes a violation of the mass 

conservation, so the concluding step of the procedure 

consists of a correction operation. These steps are repeated 

for each time step. CFD and DEM calculation in many 

cases require different time step widths, which can easily 

be taken into account, as the number of time steps between 

the coupling is user-defined.  

Similar approaches for determining the motion of 

immersed bodies can for example be found in Glowinski 

et al., 1998, Patankar et al., 2000 or Uhlmann, 2005; Haeri 

and Shrimpton, 2012, give an overview over several 

existing methods together with a number of application 

examples.  

Representation of the bodies within the fluid phase 

Fig. 1 (c) and (d) show two different ways of representing 

the bodies within the fluid mesh: Fig. 1 (c) shows a case, 

where each individual cell is considered either fluid or 

solid. This sharp distinction is very fast, but causes a slight 

numerical mal-representation of the bodies. This effect can 

be diminished by a rather small mesh size in the area of 

the solids. The method of dynamic local mesh refinement 

helps to avoid unnecessarily fine meshes over the whole 

domain by only resolving those areas, where a body is 

located. For more details on this topic see, e.g., Hager et 

al., 2011b. Nevertheless, in some cases refinement cannot 

eliminate the occurring troubles: due to the sharp 

interfaces certain areas of the mesh are isolated from the 

rest of the domain, even though in the original problem 

the region is connected with the remaining fluid area. This 

leads to numerical instabilities. Fig. 2 shows a problem 

where this locking appears, some of the “cut-off” areas are 

marked by dark boxes.  

 

 
 

Figure 2: Closing of gaps due to the mal representation of 

particles. 

 

As a remedy, the present solver comprises a new particle 

location model, which takes the degree to which the very 

cell is covered by solid into account. The chosen method 

is discussed in the following section. In Fig. 1 (d) the cells 

are coloured according to the amount of solid volume they 

occupy. Once this information is available, it can be used 

for correcting the velocity with respect to both fluid and 

solid accordingly. Furthermore, this information also plays 

a role for the evaluation of specific force terms acting onto 

the body. 

Computation of the void fraction inside a cell 

When determining the volume of the part of the cell, 

covered by solid, a balance between computational costs 

and accuracy has to be found. Using classical stochastic 

methods for each cell is too expensive, especially for a 

growing number of particles. A possible representation 

which assumes cubic mesh cells is the following one: The 

algorithm first decides whether the cell is close enough to 

the surface in order to be only partly filled. If this case 

occurs, all 8 vertices are checked. If the vertex lies inside 

the body, a contribution of 1/8 is added to the volume 

fraction of the cell. Otherwise the intersection point of 
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sphere surface and the line connecting vertex and cell 

centre is computed. The relative length of the line from 

centre of intersection point times 1/8 is the added 

contribution for this case. Fig. 3 shows the method for a 

2D cell. 

    

Figure 3: Determination of the volume fraction 

 

The restriction to cubic mesh cells can easily be lifted for 

general cases, but as for the present applications this 

condition is met automatically, this case will not be 

discussed here.  

Determination of the void fraction – Validation 

In order to show the accuracy of the void fraction model, 

the algorithm was implemented in Matlab and compared 

to the results gained by a Monte Carlo method. For getting 

a number of comparative cases, the cell centre is moved on 

a line that draws a certain angle α with the horizontal (cf. 

Fig. 4) 

 

Figure 4: Comparative cases for the validation of the void 

fraction model 

 

Fig. 5 shows the relative errors made by the smooth void 

fraction model. Both results good accordance, especially 

as the 3D case comprises 8 control points only.  

 

 
Figure 5: Deviation of the volume from Monte Carlo 

results for α  = 15°, 30° and 45°.  

IMPLEMENTATION 

Parallelization of the method 

Investigations showed that at least 8 cells per particle 

diameter are necessary for gaining accurate results. For 

problems with a bigger number of particles this results in 

large meshes and a parallelization of the code is required 

for obtaining results within reasonable time.  

Both OpenFOAM® and LIGGGHTS can be run in 

parallel using MPI. Yet the computation does not only 

involve a CFD-solver and a LIGGGHTS calculation but 

also a number of sub-models accounting for several 

coupling-issues such as force calculation and location of 

the bodies within the fluid phase. Especially the 

parallelization of the latter one requires some adjustments 

in order to depict the particles correctly when passing 

from one processor to the next.  

In the basic version, the body-location algorithm starts 

from the cell, which contains the centre of the object and 

checks the neighbouring cells recursively. Objects about 

to traverse a processor boundary and thus located on two 

processors at once are, therefore, represented incorrectly. 

In a new approach, which is sketched in Fig. 6, the 

location algorithm uses additional satellite points for 

starting the location routine. These points are situated on 

the surface of the sphere and can be distributed arbitrarily 

densely. The correct depiction of the particle at each time 

step is especially important for the force calculation: even 

the misrepresentation for a couple of time steps has a huge 

effect on the body motion. 

 

 

Figure 6: Particle location process in the parallelized 

model – grey shaded cells mark the starting positions of 

the locate algorithm on the two processors respectively. 

Parallelization – Benchmark 

In order to determine the efficiency of the parallelization, 

test runs were launched for different numbers of 

processors. Tab. 1 gives an overview for the scaling 

behaviour of a problem with approximately 130,000 cells. 

The computational time is scaled with the time elapsing 

for the calculation on two processors.  

 

number of processors computational time 

2 1.00 

4 0.60 

8 0.22 

12 0.10 

Table 1: Performance of the behaviour of a problem with 

approx. 130.000 cells 

 

The resolved method is designed for problems comprising 

a limited number of bodies (O(103)). The reason for this 

limitation lies in the fact that each particle requires a 

certain resolution, which leads to huge mesh sizes. So 

clearly the limiting factor regarding case-size lies on the 

CFD side. Classical CFD-DEM problems can easily 

handle problems with O(106) particles and more.  

VALIDATION AND APPLICATION  

The presented method can be used for a wide field of 

problems. While with the first examples the coupled 
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method is validated, the last example is a typical 

application of a coupled CFD-DEM solver.   

Flow around a fixed sphere  

In the following case we consider a fixed sphere in a fluid 

flow at Reynolds numbers between 100 and 1000. For Re 

= 100 the fluid passes the object without any instabilities 

and shows symmetric behaviour in the wake downstream 

of the body. For increasing flow velocities, i.e. for higher 

Reynolds numbers the regime changes, until at a Reynolds 

number of 300 a vortex street develops. This observation 

is in accordance with results by Sakamoto and Haniu, 

1990. The drag force acting onto the sphere can be used 

for determining the dimensionless drag coefficient by 

using the relation  

A

F
C

F

D

D
2

2

1
u

    .             (8) 

Fig. 7 shows the drag coefficient on the sphere for this 

case, Fig. 8 the corresponding velocity field. The 

structures in the latter figure depict the spanwise 

velocities, i.e. the instabilities in the flow.  

 

 

Figure 7: Drag coefficient on a sphere for Re = 300 

 

Figure 8: Velocity around a sphere at Re = 300 

In Fig. 9 drag coefficients gained from the simulations are 

compared against values from literature (cf. Böswirth, 

2007). The area of interest is marked by a box; the bold 

black line marks the simulation results.  

Flow around a rotating sphere 

Generally the motion of a rigid sphere can be described by  

,rωUu p
          (7) 

meaning it consists of a translational and a rotational 

component. While previous publications focused on the 

validation of effects in context with the translational 

component which dominates in many cases, we here 

concentrate our attention on the rotation. 
 

    

Figure 9: Drag coefficient on a sphere for different 

Reynolds numbers, comparison simulation results (---) and 

literature (cf. Böswith, 2007, p. 217). 

 

Due to the rotation of the sphere the fluid is accelerated at 

one side of the sphere, which, according to Bernoulli, 

causes a pressure drop. The different pressures on the two 

opponent sides of the body result in a lift force, termed a 

Magnus force. Fig. 10 is a screenshot from one of the 

calculations; it shows the streamlines around the rotating 

sphere. In the area of the particle the velocity vectors 

depict the rotation.  

For Reynolds numbers between 10 and 140 Oesterlé and 

Bui Dinh, 1998, derived the following correlation between 

Reynolds number and lift coefficient: 

 

Figure 10: Flow around a rotating sphere, Magnus force 

acts on sphere (vertical arrow) 

,)45.02(45.0
7.04.0* Re075.0*   eCL

     (9) 

where the lift coefficient CL is calculated similar to CD, 

using the lift force FL instead of FD: 

A

F
C

F

L

L
2

2

1
u

    .    (10) 

The dimensionless angular velocity ω* is given by rω/u, 

where r denotes the radius of the sphere this time. In Fig. 

11 results gained from simulations are compared to the 

relation given by Oesterlé and Bui Dingh. While for lower 

dimensionless angular velocities deviations can be seen, 

there is a good accordance in the higher region.  

Settling of two spheres 

In further investigations, the settling behaviour of two 

spheres was analysed with the present method. The cases 

were chosen according to settings in Glowinski, 2001 and 

Uhlmann, 2005 for being able to directly validate the 

results. 
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Figure 11: Comparison of the lift coefficients, □ recent 

results from the simulations, --- predicted value (Oesterlé 

and Bui Ding, 1998) 

The two spheres of diameter 0.167 cm  are placed in a 

cuboid box of height 4 cm and a square base of length 1 

cm. Their centres are initialized central with respect to the 

base and at the heights 3.16 and 3.5 respectively. The 

gravity vector points towards the negative z-axis, i.e. is 

given by (0 0 -981). The simulations were carried out for 

different sphere densities (1.14 and 1.5 g/cm³). The 

viscosity of the fluid is given with 0.01 cm²/s. Fig. 12 

shows the comparison of the settling velocities from the 

simulation compared to the result by Glowinski.  

 

 

 

 

 

 

 

 

 

Figure 12: Settling of two spheres with density 1.5 g/cm³, 

present simulations vs. results by Glowinski. 

During the settling process of the spheres three different 

states can be observed: first the objects start their descent 

“in parallel”, meaning that they do not influence each 

other. As soon as the upper particle reaches the wake of 

the lower one, it gets accelerated, and while approaching 

the leading particles, it influences its motion as well. After 

colliding, the behaviour of the two spheres becomes 

chaotic until they finally reach the bottom of the domain. 

These states are termed “drafting, kissing and tumbling.” 

For a more detailed study of this case see Hager et al., 

2011a, b. 

The Boycott effect 

The investigation of the settling behaviour of particles 

within a suspension showed that particles settling in a 

tilted tube sediment much faster than those in a vertical 

tube, cf. Boycott, 1920, Ungarish, 1993. This effect is 

evoked by the fact that the particles approach the sloping 

wall and leave an area with pure liquid or only few 

particles above them. The region with the higher solid-

concentration exhibits a higher density than the remaining 

fluid which leads to a circulating flow in the tube and thus 

a faster settling of the solids. Fig. 13 gives a schematic 

representation of the settling process after a certain time: 

the upper region of the suspension is already cleared of 

particles, while in the lower region one can distinguish 

between a dilute and a dense suspension. The (purely 

imaginary) border between the two regions is marked by a 

line.   

 

Figure 13: Settling of particles within a tilted tube, dense 

suspension, dilute suspension and pure fluid. 

An extensive investigation of the effect can be found in 

Xu and Michaelides, 2005. 

The Boycott effect – Settling of spheres 

In order to reproduce this effect, the following testcase 

was defined: A cuboid with quadratic base of length 1 cm 

and with a height of 5 cm was chosen. A dense packing of 

50 particles with a diameter of 0.167 cm was generated 

above the height of 4 cm and released at t = 0. For one 

case the gravity vector points straight in the direction of 

the negative z-axis, (i.e. g = (0 0 -981) cm/s2, for the 

comparable case the gravity vector is shifted by an angle 

of 45° (i.e., g = 981*(-0.707 0 -0.707)). Fig. 14 shows a 

screenshot from the velocity fields of the two calculations 

at the same time step. For the straight case the main 

velocities are those in the area of the bodies, while for the 

tilted case the development of the circulation of the fluid 

becomes visible. This flow accelerates the settling of the 

spheres. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Velocity field with glyph vectors – body 

motion dominates straight case (left), circulation develops 

for tilted case (right). 
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Fig. 15 (a) shows the initial configuration of the discussed 

cases. Furthermore Fig. 15 comprises screenshots of the 

states at two different times for the case with the vertical 

and the shifted gravity vector respectively. For      t = 1.1 

(Fig. 15(d) and (e)) the discussed effect shows best: while 

the sedimentation process is still ongoing for the straight 

case, particles in the tilted case are already settled. 

 

 

 

             
 

Figure 15: Initial position of the spheres (a), settling of 

the packing at two different time steps. The arrows point 

in the direction of the gravity vector. 

CONCLUSION 

The present paper contains a description of the resolved 

CFD-DEM method used, focusing on the representation of 

the bodies within the fluid. In the implementation-section 

the authors elaborate on the concept of the parallelization. 

The range of applications reaches from a detailed, resolved 

depiction of the impact, fluid has on single settling, 

rotating or fixed particles to multi body problems. With 

the aid of the parallelization, which allows the treatment of 

some hundreds or thousands of objects, it was possible to 

demonstrate the Boycott effect. For a significantly higher 

number of particles the resolved approach did not prove 

successful. In a next step merging this resolved method 

with an unresolved method for tackling massively 

polydisperse problems would be of interest.  
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