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ABSTRACT

A theoretical model assuming lubrication theory hasn
developed for the interaction of bubbles rising emd
gravity against a glass plate. This system provides
modelling challenges due to large deformations and
widely different length scales where bubbles of
micrometre to millimetre size form films that are the
nanometre range. Numerical simulations agree with w
experimental data and reveal the interplay betveeeface
tension, surface forces and hydrodynamic effectse T
experimental data were obtained using two synckeshi
high-speed cameras to visualise both the bubbéeaisl
bounce from the side and the thin film drainagenfrine
top. In our numerical model, we assume the tangknti
immobile hydrodynamic boundary condition at the- air
water interface, which provides the best agreemdren
compared to experimental data all the way to filiptare.
The reason for this counterintuitive result isihtited to
small amounts of surface-active materials thatpsesent

in the water and would move to the interface reingeit
immobile. The use of thin film theory is still acate if
the film Reynolds number is smaller than unity.

NOMENCLATURE

u velocity vector R radius of the bubble
p pressure h  separation

o interfacial tension D dimple size

p density r  radial coordinate

M Viscosity z vertical coordinate
V  speed T shear stress
INTRODUCTION

Interactions involving soft materials such as drepsl
bubbles in multiphase systems have applicatiorssviide
variety of fields ranging from pharmaceuticals,edgénts,
water cleaning and mineral extraction. Modellingd an
numerical simulations of such systems present ehgds
that are not easy to overcome. ldentifying the leibb
interface and its deformation and movement candreed
using numerical techniques such as the volume uid fl
(VOF) or level-set. When a bubble is close to daser or
two bubbles are really close to each other sudinigoes
require very refined grids and the computatioraletican
become unreasonably large. On the other hand,she®
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lubrication theory to model the last stages of tfiim
drainage can be used if the local Reynolds numbénef
system is smaller than unity.

Up until recently, experimental investigations of
bouncing bubbles were restricted to side view rdicgs
to observe deformations and bounces [Tsao and Koch,
1997; Malysa et al, 2005]. The interferometric tege
had been widely used to observe film drainage, but
experimental results were restricted to small defdions
and low velocities [Derjaguin and Kussakov, 1938hEr
et al, 1991; Klaseboer et al, 2000; Manica et a1Q.
The development of high-speed cameras allows tiay st
of much faster phenomena so that interferometric
techniques can now be used to capture the evolation
fringes for systems at higher speeds and larger
deformation [Hendrix et al, 2012].

In this work we use both numerical simulations and
experimental data to analyse the interaction anthte of
a bubble rising under gravity against a flat glasgace.
Numerical simulations are compared to the experiaien
data to infer information that is not directly daaile. The
experiments are performed using two synchronisgt-hi
speed cameras. The first camera is used to obsemne
extract the position of the centre of mass as waelthe
shape of the bubble as it interacts and deformsewhe
second records the evolution of the thin film usigy
interferometric technique.

MODEL DESCRIPTION

Assuming that the continuous phase is a Newtoriad, f
the drainage can be modelled by the continuity and
Navier-Stokes equations written as

Ulu=0

@
p{iuuD]uJ =-Op+u0?u+F

@

where p is the densityu dynamic viscosityu velocity
vector, p pressure and an external force, in our case
buoyancy.

For our modelling, we need to provide adequate
boundary conditions at the air-water interface. réach
that goal, we look at the experimental terminabegles,

V5 of bubbles with radiuR between 0.35 mm to 0.75 mm.

In our experiment, these data correspond to Reynolds
numbers,Re = 2R pV4/ u in the range 60 to 230. The
experiment is repeated for many bubbles, but obyua



10 videos are fully analysed. The experimental ciks
are compared to theoretical predictions from nucaéri
simulations as well as empirical correlations.

We have used ANSYS Fluent to perform
axisymmetric CFD simulations to calculate the dragéd
on a rigid spherical bubble in a uniform flow hayithe
same velocity as the terminal velocity with no-stp
stress-free boundary conditions at the bubble faxter
The numerical results for the no-slip boundary ¢tol
showed excellent agreement with experiments whike t
ones with stress-free condition are significantffedent.

We also performed a balance of forces by treatieg t
bubbles as spheres of radiis with the tangentially
immobile boundary condition at the air-water inded.
The buoyancy force

Fbuoy = ?pRs g (3
can be balanced to the steady state hydrodynaraig dr
force

1

Fdrag = Ef)\/T2 (lﬂz) CD (4)
where the drag coefficier®, is a function of Reynolds
number andy is the acceleration due to gravity. We use
the Schiller-Naumann formula [Clift et al, 1978] fGp
that is valid forRe< 800 with an error of less than +5%:

C, = %(ﬂ 0.15R&%) ()

Combining equations (3) to (5) provides the terminal
velocity as a function of bubble size.

In Figure 1 we show the terminal velocities extedct
from the side view for the bubbles analysed (diadsyn
and compare to the theory just described (solid) lemd
also to the CFD solution (squares) for no-slip baumd
condition. Terminal velocities for bubbles in ultpaure
water [Duineveld, 1995], where the stress-free i
condition applies are plotted for the boundary eem
method (BEM) (circles) [Klaseboer et al, 2011] andDCF
(triangles). The excellent agreement with the mo-sl
solution indicates that the air-water interface is
tangentially immobile.
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Figure 1. Terminal velocities for CFD simulations of
axisymmetric flow around a spherical bubble withstip
boundary condition (squares) compared to the belafc
forces solution of Clift et al (solid line) and teperiments
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(diamonds). Results for the stress-free boundardition
are plotted for BEM (circles) and CFD (triangle).

Our system is characterised by two distinct Reynolds
numbers: the global Reynolds numbéte defined
previously and the film Reynolds numbRg defined as
Re = h, p /i, whereh, is the film thickness at the centre
of interaction and/,, is the maximum velocity of the water
in the film. When the bubble is close to the glpkde a
film forms and during the drainage stage, the film
Reynolds numberRg becomes small due to small
separations and low velocities. Assuming that ttodlem
remains axisymmetric, the Navier-Stokes and coitjinu
equations can be simplified into the lubricatiomfo
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whereu, andu, are the velocity components in thandz
directions. In Figure 2, we define the theoretpadntities
used in our model.
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Figure 2. A bubble of radiusR rises at velocityV(t)
against a glass plate in water. The varialig,r)
corresponds to the time-space separation between th
bubble and the wall. The system is defined in
axisymmetric form and solved from radial coordinateO

tOr = rae With ra <R

We start with the system of equations (6) to (8 an
apply the no-slip boundary condition at the gldssepand
the tangentially immobile boundary conditions &t #ir-
water interface, an assumption well justified bye th
experimental results of terminal velocities plottéa
Figure 1. After some algebraic manipulation, thek8s-
Reynolds model can be derived [Chan et al, 2011]
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The pressure is calculated by the Young-Laplace
equation of the form [Chan et al, 2011]

aa[rd.lj—zo-_n_
rala) R P

whereR_ is the Laplace radiu®( ~R), cis the interfacial
tension,p is the pressure in the film ar]d is a surface
force which is only relevant when the separatiocobees
really small (<0.1 um) just before bubble adhesion.
We need one initial condition, which is defined as

(10)



2
h(0, 1) = h, +—— (11)
2R
whereh, is the initial separation and tinie= 0 is taken at
a position where the bubble still rises at termielbcity
and the deformation due to the presence of theaaallbe
neglected.

We also need four boundary conditions. Due to
symmetrydp/or = dh/or = 0 atr = 0. For the far-field
boundary conditions we assume the pressure desay¥ a
[Yiantsios and Davis, 1990] to writ@p/or+4p = 0 atr =
rmax The last boundary condition assundégdt= V(t) atr
= I'max [Klaseboer et al, 2000]. In our simulatio¥§) is
taken to be the velocity of movement of the cenfrmass
of the bubble from the experimental data. Another
possibility is to calculat&(t) through a balance of forces
[Klaseboer et al, 2001].

EXPERIMENTAL

Experiments have been performed to confirm the
numerical results. A schematic of the experimental
apparatus together with photographs from the resgec
cameras is presented in Figure 3.

Laser

<= 1S
camera

HS
camera

0.5 mm Fiber lamp

Figure 3. Experimental set up: A millimetre size bubble is
released from a needle and rises under gravitynagai
glass surface. Two synchronised high-speed cameras
capture the movement and shape of the rising bubble
(bottom left photograph) and at the same time, filhe
drainage evolution through interferometry (top lefage).

A typical experimental result is plotted in Figute
The top sequence shows the interferometric phopbigra
at selected stages of interaction: bubble rising)pte
formation, film rupture and three-phase contacte lin
expansion. We notice that while the film is contiliy
changing, the corresponding side view images at the
bottom sequence look mostly stationary.

Figure 4. Selected movie frames highlighting bubble rise,
interaction with the glass plate, film rupture atidee-

Copyright © 2012 CSIRO Australia 3

phase contact line formation. The top sequence
corresponds to interferometric data from the tomea
while bottom sequence represents side view images.

In Figure 5, we show a sequence of fringes where
curvature inversion, also called dimple, and filmidage
can be observed. These fringes are then convertélnt
profiles and analysed. Most of the numerical work
presented in this manuscript involves this stage of
interaction.

Figure 5. Typical sequence of interferometric fringes for
time-step 0.37 ms between frames during the firstact

of the bubble against the glass surface. The sefrantt
shows flattening of the bubble surface while thedth
presents curvature inversion or dimple formation.

The experiment is repeated and movie files are
collected for over 20 bubbles. We have analysedlasb
with small sizes to ascertain straight rise andyamimetric
drainage, at least during the initial phase ofrantgon.

RESULTS

In this section, we present comparisons between
experiment and numerical simulations for a typicase.
We have chosen a bubble radRis 385um. This radius
is small so that the bubble never fully detachemfthe
wall after the first contact. This allows the fildrainage
process to be known absolutely based on the pbifiltro
rupture. In all simulations we have used interfai@asion
o =72 mN/m and water viscosity= 1 mPa.s.

To obtain the film thicknesh(t,r), we use the Bragg
equation for a fringe of orden: h =m (A/2 n), where\ =
532 nm is the wavelength of the laser and 1.33 is the
refractive index of water. In practical terms, thiference
in separation between two white fringes is abou 2.
Constructing the relative film profiles becomes &ereise
of counting fringes. This process is performed gsim
automated routine in Matlab to identify changes
intensity for each movie frame. The absolute sejmaras
obtained from the point of contact when the bulides
touched the wall. After that, we count backward to
produce the time evolution of the bubble shape.
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Figure 6. Evolution of the position at the centig(t) and

at the rimh,(t) of the dimple during first contact and

subsequent film drainage.
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Results for drainage of the centre as well as fith®
dimple region are presented in Figure 6. The eenell
agreement between experiments (symbols) and the
numerical solution (solid lines) all the way to Il
attachment indicates that lubrication is still thein
contribution during the interaction process once film
becomes thin enough. Notice that the first impaud a
dimple formation happens in about 5 ms while thawvsl
drainage process takes over 200 ms. Any theoretiodel
that assumes bubble attachment at the moment eé clo
contact would be an oversimplification.

A further test to our theory is the evolution okth
bubble profile as the film drains. In Figure 7 wew the
comparison between the numerical solution (solad)
and experiment (symbols) during the first encounter
between the bubble and the glass surface. This staly
comprises about 3 ms of the drainage process pfegsen
Figure 6. Once again the agreement is excellertt bot
time and space without any adjustable parametethen
model. Note the curvature inversion and dimple faron.
Any model that assumes that the film is flat woulds
most of the physics.

12

50 0 50 100
r{um)
Figure 7. Spatiotemporal evolution of the bubble shape
during first encounter corresponding to the indetigure
6 from time 18 to 21 ms. The domain size was takeve

Imax= 270 um for a bubble radius Bf= 385 um.

100

We also learn from the numerical solution that gitou
the outside of the bubble is already moving apier ane
millisecond, the central part is still approachirithe
curvature inversion, also called ‘dimple’, occuts & 19
ms in this case and is a result of the pressutbdrfilm
exceeding the internal pressure, also called thwace
pressure, (@/R) of the bubble. This feature is clearly
highlighted in Figure 8 where the pressure profitesthe
same time instants as those of Figure 7 are plotted
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Figure 8. Pressure profiles corresponding to the same time

instants as in Figure 7.
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In Figure 9 we present the maximum water velocity a
a function of radial position as the drainage egslfor the
same time steps of Figure 7. For this case, thamuax
outward velocity is reached before the first shqwafile
appears; the velocity decreases as the film becomes
thinner. When the back of the bubble reverses from
approach to retract the water has to occupy thatesgo
that the velocity reverses from outward to inwabeh the
other hand, the central part of the bubble is still
approaching. This interesting numerical result axd the
‘suction’ effect when we try to separate two bulsbl€his
effect is now known to be responsible for the cezdace
of bubbles [Vakarelski et al, 2010] or drops [Bremiaet
al, 2008] when they are being separated from etwdr.o
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Figure 9. Maximum radial velocity of the water inside the

film as time progresses where it is assumed thecitgl

profile is parabolic, consistent with the thin fisolution.
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The viscous shear stress can be calculated from
[Klaseboer et al, 2000]

_ha
2

In Figure 10 we present shear stress curves fosdhee
time instants as shown in Figure 7. The shearsstralsies
are relatively low due to deformation and are nuilgh

to change the boundary condition at the bubblefaute.

It is interesting to notice that the maximum shstess
happens at the rim of the dimple and once againggs
sign when the bubble surface starts to separate fhe

glass plate.

T= (12)
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Figure 10. Shear stress curves for the same time instants
as those of Figure 7 for times ranging from 181a1i.

To justify the validity of using lubrication theofgr
this system, we look at how the film Reynolds number
changes as the drainage evolves. From Figure 11, we
notice that it becomes smaller than unity before first
profile appears in Figure 7, even though the global
Reynolds number is about 67. For larger bubblediltine
Reynolds number would be above unity when dimpk fir
forms and the model used in this work might noffiqren

so well when compared to experiments.
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Figure 11. Film Reynolds number. Circles represent time

instants that were plotted in Figure 7.
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As stated before, the boundary condition applied at
the air-liquid interface is of tangential immobjlilue to
the presence of low concentration of surface-active
impurities in the water that the shear stress tsafte to
compensate for. Earlier studies of bubbles in puager
[Duineveld, 1995] obtained terminal velocities afeo 35
cm/s and those results were also confirmed by niaader
solutions using a boundary element method [Klasebbe
al, 2011]. Our current experimental results att@dine
velocities, which are less than half that valualbbut 15
cm/s for bubbles of the same size and compare twell
experimental observations at small amount of known
surfactant [Malysa et al, 2005].

CONCLUSION

In this work we have performed numerical simulasida
model experimental data of a rising and bouncinigbibe
The simulations allowed explaining a number of dees
that could not be captured directly by the expeniméor
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example the pressure profile, velocities and shgasses.
The use of synchronised high-speed cameras allowed
observation of features that were not possiblenayiears
back. The excellent agreement between numerical
simulations and the experiment indicates that tloeleh
developed performs excellently when applied systems
where a thin deformable film is present.
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