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ABSTRACT 

Formation of particle clusters in fast fluidization of fine 
particles significantly affects the gas-solid drag force. 
Accounting for the effect of clusters in gas-solid drag is 
critical for accurate modelling of gas-solid flows. As a 
result several modifications to the empirical gas-solid drag 
models have been proposed. However, computational 
studies with these modified drag models have shown their 
limitations in capturing the inherent heterogeneity found 
in the gas-sold flow. Generally, this has been attributed to 
the lack of understanding on effects of cluster on the gas-
solid drag force. In this study, direct numerical simulations 
using lattice Boltzmann method have been conducted to 
investigate the effect a single cluster and its properties 
such as cluster voidage and fraction on the gas-solid drag 
force over a wide range of overall voidages and particle 
Reynolds numbers. The numerical observations clearly 
show that particle configuration with a cluster exhibit a 
considerably lower drag than particles in random 
arrangement. Furthermore, major drag reduction is 
observed when the inter-particle distances within the 
cluster decreases for voidage ranging from maximum 
voidage to 0.7. The simulations show that for constant 
cluster voidage, minimum drag force occurred around 0.9 
to 0.95 overall voidage. The drag force increased steeply 
with decrease in the overall voidage. The findings reported 
here will pave the way to improved drag correlation that 
can be used in CFD simulations that solve the average 
two-fluid equations. 

NOMENCLATURE 

ea Direction vector 
F Momentum (kg m/s) 
Fd Drag force (kg m/s2) 
f Cluster fraction 
fa Velocity distribution function 
M Mass (kg) 
rb Location of boundary node [lattice unit(lu)] 
R Location of centre of mass of a particle (lu) 
T Torque (kg m2/s2) 
t Time (s) 
Δt Time step (s) 
U Velocity of particle (lu/s) 
u macroscopic velocity (lu/s) 
ub Velocity at boundary node (lu/s) 

x Lattice node 
v Kinematic viscosity 
w Weight functions 
Greek Lettter 
ε Voidage 
ρ Macroscopic Density (kg/m3) 
ρw Density at wall 
τ Relaxation time (s) 
µ Viscosity (kg/m s) 
π Macroscopic stress 
	ߗ Angular	velocity	of	particle 
Subscript 
a Direction 
b Boundary 
c Cluster 
d Drag 
eq Equilibrium 
f fluid 
f-p Exchange between fluid and particle 
f-s Exchange between fluid and solid 
p Particle 
 

INTRODUCTION 

Gas-solid flow under fast fluidization conditions finds 
wide applications in chemical processes such as fluid 
catalytic cracking, circulating fluidized bed combustion, 
etc. The performance of these processes largely depends 
on hydrodynamics of gas-solid flow. Therefore, 
computational fluid dynamics (CFD) based gas-solid flow 
models have extensively been applied to investigate the 
hydrodynamics and possible design improvements. Such 
CFD models include mass and momentum conservations 
for both gas and solid phases along with inter-phase 
exchange gas-solid drag model, which is the most critical 
and dominant closure model. Most commonly used 
empirical gas-solid drag models such as (i) the Ergun 
model (Ergun, 1952), derived from pressure drop data 
under packed bed conditions; (ii) the Wen-Yu model (Wen 
and Yu, 1966), derived from single particle settling 
experiments; and (iii) the Gidaspow drag model 
(Gidaspow, 1994), a combination of the Ergun and Wen-
Yu model give reasonable predictions for drag force for 
voidages at two extremes i.e. maximum voidage and 
minimum fluidizing voidage. However none of these 
models account for the effect of formation of particle 
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aggregates, so called clusters, which occurs at 
intermediate voidages.  

To account for the effect of clusters, the conventional drag 
models have been modified using multi-scale approaches 
such as sub-grid scale (Andrews IV et al., 2005) and 
energy minimization approaches (Li and Kawauk, 1994). 
Even with these modifications, the performances of CFD 
models have been limited to qualitative agreement. 
Quantitative validations have not been achieved yet 
(Benyahia, 2009; Shah et al., 2011b). Improvements in the 
current drag models are key to accurate predictions, and 
require better understanding of the effect of clusters.  
Available multiphase experimental techniques such as 
magnetic resonance imaging, computer tomography and 
radioactive particle tracking are ineffective in capturing 
the spatio-temporal scales required to analyse the gas-solid 
interactions at the scale of clusters. On the other hand, 
direct numerical simulations (DNS) of gas-particle flow 
can provide observations at a resolution as high as 10-20 
times less than particle diameter.  

The Lattice Boltzmann method (LBM) has been 
previously used to simulate gas-solid flows in order to 
study interactions between two phases. Hill et al. (2001a, 
b) used the LBM to study the drag force on spheres, and 
provided first numerical observations which showed that 
the gas-solid drag over a range of solid volume fractions 
was different from that calculated using conventional drag 
models. However, their simulations were limited only to 
low particle Reynolds numbers and mono-dispersed 
randomly or regularly arranged particles. Van der Hoef et 
al. (2005) conducted LB simulations of fluid flowing past 
mono- and bi-disperse random arrays of spheres to 
measure the drag force on the spheres for a range of 
diameter ratios, mass fractions and packing fractions. 
From their numerical data, they gave a correlation for the 
drag force applicable to both mono- and poly-disperse 
systems. Beetstra et al. (2006) simulated particles arranged 
in a cluster that had different shapes. The numerically 
calculated drag coefficients were compared with the 
experimental data of drag coefficients for irregularly 
shaped particles reported by Tran-Cong et al. (2004). 
Beetstra et al. (2006) concluded a strong effect of inter-
particle distance on the gas-solid drag force. However, this 
study was limited to number of the particles as high as 
only 32 particles, and did not include the effect of particle 
Reynolds number on the drag force. Recently, Zhang et al. 
(2011) simulated a 2D periodic array of clusters using 
LBM to investigate the effect of cluster on the drag 
coefficient. They found close agreement between the 
simulated drag values and those calculated from the 
energy minimization approach. 

While detailed gas-solid flow simulations are available, 
the effect of clusters on the gas-solid drag is still poorly 
understood. The present study aims to quantify the effect 
of cluster on gas-solid drag. 3D LB simulations of gas-
solid flow have been carried out to investigate the effect of 
a single cluster and its properties on the gas-solid drag 
force. The flow over different particle clusters (of up to 
1331 particles) with various cluster diameters and cluster 
voidages have been studied under different flow 
conditions.  

LATTICE BOLTZMANN METHOD 

This section is intended to give a brief introduction to 
modelling multiphase flow using LBM. For detail 

understanding of the LBM, the readers are referred to 
Ladd (1994a and b).  LBM is a direct numerical 
simulation technique which resolves the flow of fluid by 
solving the Boltzmann equation of velocity distributions 
and the movement of particles by solving Newton’s force 
balance equation for each particle. The momentum 
exchange between the fluid and particles is resolved by 
applying the stick boundary condition, which says that the 
velocity of the fluid adjacent to a particle surface is equal 
to the local velocity of the surface at that point. 

Flow of fluid: A flow domain is discretized with number 
of lattices in x, y and z directions. Each node represents a 
fluid element with its velocity distributed in 19 directions. 
These fluid elements propagate from one grid point to the 
next at each time step, and the propagation includes two 
parts namely i.e. (i) streaming – movement from one grid 
point to another; and (ii) collision – collision between 
fluid elements coming at the same lattice node. The 
velocity distribution of a fluid element at each node is 
updated by the Boltzmann equation: 

௔݂ሺݔ ൅ ݁௔, ݐ ൅ ሻݐ∆ ൌ ௔݂ሺݔ, ሻݐ െ
ൣ௙ೌ ሺ௫,௧ሻି௙ೌ೐೜ሺ௫,௧ሻ൧

ఛ
 eq.(1) 

where fa is velocity distribution at any lattice node x, ea is 
the direction vectors and τ is a relaxation time. 
Equation(1) has two parts, whree (i) ௔݂ሺݔ ൅ ݁௔, ݐ ൅ ሻݐ∆ ൌ

௔݂ሺݔ, ൣ ሻ represents the streaming; and (ii)ݐ ௔݂ሺݔ, ሻݐ െ

௔݂
௘௤ሺݔ,  ሻ൧/߬ represents collision steps. Equation(1)ݐ

represents the Bhatnagar-Gross-Krook (BGK) approach 
(Bhatnagar et al., 1954) for a relaxation towards 
equilibrium; where the relaxation time, τ is governed by 
the kinematic viscosity of the fluid, with length being 
represented in terms of lattice units (lu), i.e.; 

߬ ൌ ݒ3 ൅ 0.5         eq.(2) 

Macroscopic properties such as density, velocity and stress 
are calculated from the velocity distribution functions at 
each lattice node using the following equations,  

ߩ ൌ 	∑ ௔݂
ଵଽ
௔ୀ଴                eq. (3a) 

ݑ	 ൌ 	∑ ௔݂
ଵଽ
௔ୀ଴ ݁௔              eq. (3b) 

ߨ	 ൌ 	∑ ௔݂
ଵଽ
௔ୀ଴ ݁௔݁௔            eq. (3c)  

When a fluid element encounters a solid boundary, the 
bounce back rule is applied, i.e.: 

݂ି ௔ሺݔ, ݐ ൅ ሻݐ∆ ൌ ௔݂ሺݔ,  ሻ      eq. (4)ݐ

The macroscopic properties are used to calculate 
equilibrium distribution: 

௔݂
௘௤ ൌ ߩ௘ೌݓ	 ቂ1 ൅

௨௘ೌ
௖ೞ
మ ൅

ሺ௨௘ೌሻమ

ଶ௖ೞ
ర െ

௨మ

ଶ௖ೞ
మቃ    eq. (5) 

where cs is the speed of sound and wea is the weight 
function for different directions. The value of cs is 1/3 

lattice unit per second, whilstthose of w0, w1 and ݓ√ଶ are 
1/3, 1/18 and 1/36 respectively. 

Fluid-particle interactions: If a fluid element strikes a 
moving solid boundary, such as suspended particles, then 
a stick boundary condition is applied and the velocities of 
the fluid elements at nodes inside the solid particle are 
equal to the velocity of the particle. The bounce back rule 
at the moving solid boundary is: 

݂ି ௔ሺݔ, ݐ ൅ ሻݐ∆ ൌ ௔݂ሺݔ, ሻݐ െ  ௕݁௔ሻ  eq. (6)ݑ௘ೌሺݓ௪ߩ6
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where ρw is wall density, and ub is the velocity of the 
boundary nodes inside the particle. The value of ub is 
resultant of the axial and radial velocity of the particle, 
given by: 

௕ݑ ൌ ܷ ൅ ߗ ൈ ሺݎ௕ െ ܴሻ      eq. (7) 

where U is translation velocity of the particle, ߗ is angular 
velocity, rb is location of boundary node and R is the 
location of centre of mass of the particle. 

The resulting force exerted by the fluid element on the 
particle because of the change in momentum of the fluid 
element is given by: 

௙ି௣ܨ ൌ ∑ ∑ ሾ2 ௔݂ሺݔ, ሻݐ െ ௕݁௔ሻሿ௔ݑ௔ሺݓ௪ߩ6 ݁௔௕ ;  eq. (8) 

whilst torque is given by: 

௙ܶି௣ ൌ ∑ ሺݎ௕ െ ܴሻ∑ ሾ2 ௔݂ሺݔ, ሻݐ െ ௕݁௔ሻሿ௔ݑ௔ሺݓ௪ߩ6 ݁௔௕        eq. (9) 

Movement of particles: Newton’s force balance equation 
is solved for each particle to obtain its velocity: 

௣ܨ ൌ ௣ܯ
ௗ

ௗ௧
ܷ	                eq. (10.a) 

௣ܶ	 ൌ ௣ܫ
ௗ

ௗ௧
 eq. (10.b)           ߗ

where FP and TP are momentum and torque transfer to 
particles from fluid plus other forces. Mp and Ip are mass 
and moment of inertial of the particle. 

The change in fluid momentum (eq. 8) at the boundary 
nodes on a single particle is equal and opposite of the total 
force that the gas exerts, Ff-s. Using this equality, the drag 
force Fd can be calculated. 

LB SIMULATIONS 

For the present study, a multiphase 3D lattice Botzmann 
code “SUSP3D” (Ladd, 1994a and b) was used. SUSP3D 
is a highly parallel code and scales well for thousands of 
particles. However, the size of the flow domain and 
number of particles in simulations are limited by the 
available computational power. For example, each 
simulation with a 256 lu3 required more than 16 GB of 
RAM and 2.4 GB data storage capacity. Further increase 
in the size of the flow domain increases the demand on 
RAM and disc storage exponentially. Therefore, for the 
present study, the domain was limited to 256 lattices in 
each direction. The particle diameter was set at 17.5 lu to 
keep the domain size to particle diameter ratio less than 
20, which is generally a cell size in continuum gas-solid 
flow simulations. 

Simulations with random particle arrangement and with 
cluster configuration were performed. A list of the 
simulations conditions are given in Table-1. 

Table 1: Simulation Conditions 

 Initial 
simulations  
(Beetstra, 2005) 

Simulations  
With cluster 
configurations 

Flow domain Variable  256 Lattice3 
Particle diameter 17.5 Lattices 17.5 Lattices 
Kinematic viscosity 8.333e-4 lbu 8.333e-4 lbu 
Fluid density 36 lbu 36 LB lbu 
Ratio of particle to 
fluid density 

1 2000 

Boundary condition Periodic Periodic 
Particle arrangement Random A single cluster 

with surrounding 

particles 
Number of particle 54 Variable 
Number of time steps 1000 1000 
Number of cycles 100-150 150-250 

For simulations with random particle arrangement, 
configurations similar to Beetstra (2005) were chosen. The 
primary aim was to verify the LB simulation methodology 
used in this study. In these simulations, 54 particles were 
randomly positioned using the Monte-Carlo method in a 
cubical flow domain. The diameter of each particle was 
17.5 lattices, and the size of the flow domain was adjusted 
to achieve a desired volume fraction. The simulations 
were set up in such a way that a particle configuration was 
forced to move with a velocity in x-direction. As a result 
the moving particle configuration exerted the drag force to 
the gas phase, which was counter balanced by applying a 
uniform force to the gas phase. This condition ensured that 
the particles moved as a static configuration, and their 
velocity was equal to superficial gas velocity. Thus, the 
particle Reynolds number was given by: 

NRe,p = ρUd/µ = ρVsimd/µ.            eq. (11) 

where U is superficial gas velocity, Vsim is velocity of 
particles. Variation in particle Reynolds number was 
obtained by changing the flow velocity. The volume 
fractions, domain sizes and particle Reynolds numbers 
used in the simulations are listed in Table-2. 

Table 2: Initial simulation runs of Beetstra, 2005 

Vol. 
fraction 

Flow domain 
(lu3) 

Particle Reynolds 
Number (NRe,p) 

Velocity  
(lu s-1) 

0.1 120  0.2 1×10-5  
0.2 92 21 1×10-3  
0.3 81 105 5×10-3  
0.4 74 210 1×10-2  
0.5 69 420 2×10-2  
  1049 5×10-2  

The simulations were run in a periodic domain for 150 
cycles. The first 100 cycles were required to achieve a 
steady state, whilst the last 50 cycles were used for 
averaging. The force exerted on each particle obtained by 
simulation was divided by voidage to calculate the gas-
particle drag force. The calculated drag force was 
normalized by the Stokes-Einstein drag force on a single 
particle under zero Reynolds number limit (Hill et al., 
2001b and Beetstra et al., 2005) The averaged normalized 
drag force is reported. The relevant equations are: 

௙ି௦ܨ ൌ
ி೏
ఌ

              eq. (12) 

௙ି௦,௡௢௥௠௔௟௜௭௘ௗܨ ൌ
ி೑షೞ
ி೏,ೞ೟

ൌ
ி೑షೞ
ଷగఓௗ௎

	           eq. (13) 

where Ff-s is total drag force, Fd is drag force on a single 
particle, Ff-s,normalized is the dimentionless normalized drag 
force, Fd,st is the Stokes-Einstein drag, µ is viscosity of 
fluid, d is diameter of particle and U is superficial velocity 
of fluid.  
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Figure 1: Particle configurations used in each simulation. 

For simulations with cluster configurations, particles were 
positioned in cluster configurations with each consisted of 
a single cluster of particles and several surrounding 
individual particles as shown in Figure-1. Details of 
particle configurations are summarized in Table-3. 

Table 3: Details of Particle Configurations 
 particles particles 

in cluster 
particles in 
surrounding 

Cluster 
voidage 

Overall 
voidage 

Cluster 
fraction 

1 90 64 26 0.9 0.9850 0.1505 
2 90 64 26 0.8 0.9850 0.0752 
3 90 64 26 0.7 0.9850 0.0502 
4 90 64 26 0.6 0.9850 0.0376
5 90 64 26 0.52 0.9850 0.0313 
6 151 125 26 0.7 0.9748 0.0841
7 242 216 26 0.7 0.9595 0.1349 
8 538 512 26 0.7 0.9101 0.2998 
9 1026 1000 26 0.7 0.8285 0.5717
10 1331 1331 0 0.7 0.7775 0.7417 

Various voidages of the particle configurations listed in 
Table-3 can be correlated by: 

ߝ ൌ ሺ1 െ ݂ሻߝ௙ ൅ ௖ߝ݂             eq. (14) 

where ε is overall voidage, f is cluster fraction, εf is 
voidage of surrounding fluid and εc is cluster voidage. 
Note that due to small number of particles present, the 
voidage of surrounding fluid, εf, is generally assumed to be 
close to unity. 

RESULTS 

To verify the simulation methodology, results from 
random particle arrangement were compared with those 
reported by Beetstra (2005). Figure-2(a) and (b) shows a 
comparison between the calculated drag forces from our 
simulations to those reported by Beetstra (2005) for low 
(0.2) and high (21) particle Reynolds numbers 
respectively. Figure-2 also shows comparison between the 
calculated normalized drag and empirical drag models 
such as the Ergun and Wen-Yu models (Wen and Yu, 
1966). Except for very low overall voidage (close to 
minimum fluidization voidage), the simulations closely 
agree with those from Beestra (2005). The discrepancy at 
low with those of Beetstra (2005) could not be explained. 
At very high overall voidages (close to unity), the 
calculated drag forces from both this study and Beetstra 
(2005) reasonably agreed with that calculated from the 
Wen-Yu model. At low voidages close to minimum 
fluidizing voidages simulations from this study were 
closer to that of the Ergun model (Ergun, 1952). These 
observations were consistent for results from even higher 
Reynolds number runs which are not reported here. 
Furthermore, the drag forces from the LB simulations 
were considerable different from that from the empirical 
models, particularly at high volume fractions and particle 
Reynolds numbers. This observation was consistent with 
those of Hill et al. (2001) and Beetstra (2005). 

Effect of a cluster on gas-solid drag 

Simulations were carried out with particle configurations 
(as shown in Figure-1) which consisted of 64 particles 
forming a single cluster and 26 surrounding particles. In 
these configurations (first five configurations in Table-3), 
inter-particle distance between the particles in the cluster 
was varied from 0.9 to 0.52; with corresponding variation 
in cluster fractions (Table-3). However, particle Reynolds 
number and overall voidage in these configurations were 

kept constant at 420 and 0.985 respectively. The resulting 
drag force is shown in Figure-3. 

(a) 

(b) 

Figure 2: Normalized drag force Vs. Overall voidage (a) 
NRe,p = 0.2 and (b) NRe,p = 21 

At higher voidages (0.7 to 0.97) the calculated normalized 
drag force gradually declined with decrease in the cluster 
voidage. Further reduction in cluster voidage results into 
only marginal reduction in drag force. As the cluster 
voidage is increased, the calculated normalized drag force 
approaches that for the random configuration with the 
same overall voidage and particle Reynolds number. 
Based on these results, the cluster voidage of 0.7 was used 
in all subsequent simulations. 

 

Figure 3: Normalized drag force Vs. Cluster voidage 
(Overall voidage = 0.985 and NRe,p = 420) 

Figure 4 shows a comparison between calculated drag 
forces from (i) random configuration and (ii) cluster 
configuration of 90 particles with a constant cluster 
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voidage equal to 0.7. The overall voidage in these 
simulations was constant at 0.985, whilst the particle 
Reynolds number varied from 21 to 1049. The simulation 
results show that the drag for cluster configuration was 
significantly lower than that for a randomly arranged 
particle configuration for the entire range of particle 
Reynolds numbers. Moreover, the difference between the 
two curves widened with increase in particle Reynolds 
number. These observations of drag reduction due to a 
cluster was consistent with the energy minimization multi-
scale (EMMS) concept (Li and Kwauk, 1994); which says 
that the formation of clusters causes less resistance to the 
flow of the fluid, and as a result it decreases the effective 
drag force.  The simulation results provide a basis for 
quantifying such a reduction.  

Figure 4: Normalized drag force Vs. Particle Reynolds 
number (Overall voidage = 0.985) 

Effect of a cluster fraction 

Simulations were carried out with increasing number of 
particles in a cluster, from 64 to 1331, with a constant 
number of surrounding particles. Six particle 
configurations (see configurations 3 and 6-10, Table-3) 
were considered. Each configuration had different overall 
voidage but the same cluster voidage of 0.7. Such an 
arrangement resulted in a variation in cluster fraction from 
0.0502 to 0.7417.  Figure 5 shows the effect of overall 
voidage and cluster fraction on the calculated normalized 
drag force. It can be seen that as the voidage was 
increased, the solid phase resistance decreased which 
lowered the normalised drag. However, beyond an overall 
voidage of 0.92, an increase in the normalized drag force 
was observed. This is due to the cluster behaviour 
transiting into randomly arranged particles at very high 
voidage, resulting in the normalized drag force 
approaching the value calculated for randomly arranged 
particles at the maximum voidage. Below overall voidage 
of 0.92, decrease in the overall voidage with increase in 
the cluster fraction gave steep increase in the drag force 
which then seems to be approaching the value of the drag 
force for randomly arranged particles with approximately 
0.7 overall voidage. 

Figure 5: Effect of cluster fraction on calculated 
normalized drag forces. 

Simulations were also carried out at different particle 
Reynolds numbers to study the effect of cluster fraction at 
constant cluster voidage. Figure 6 shows the calculated 
normalized drag calculated from simulations of six 
particle configurations (5-10, Table-3) with different 
particle Reynolds numbers ranging from 21 - 1049. For all 
simulations, a minimum drag force in the range 0.9-0.95 
overall voidage was obtained, The minimum value of the 
drag force was found to increase with increased particle 
Reynolds numbers.  

 

Figure 6: Effect of a cluster on drag at different flow 
conditions. 

The simulations carried out as part of this study depended 
i.e. (i) overall voidage, (ii) particle Reynolds number, (iii) 
cluster fraction, and (iv) cluster voidage. Overall voidage, 
cluster voidage and cluster fraction are related by eq (14). 
Hence, flow can be defined by knowledge of three 
parameters. Information on the cluster voidage at given 
flow conditions is not available either experimentally or 
numerically. In the present study the cluster voidage was 
assumed to be constant. Work on predicting the cluster 
formation and cluster configuration for a given set of flow 
conditions is currently under progress. 

CONCLUSION 

Gas-particle flows with the particles arranged in the 
cluster configurations were simulated using LBM to 
investigate the effect of a single cluster and its properties 
on the gas-solid drag force over a wide range of voidages 
and particle Reynolds numbers. 

When the calculated drag forces from the simulations with 
particles in the cluster configuration were compared with 
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that for randomly arranged particles under the same flow 
conditions, the cluster configuration gave considerably 
lower effective gas-solid drag force. The reduction in the 
calculated drag force due to the cluster was observed to be 
larger at higher particle Reynolds numbers. The 
simulations with different particle configurations with 
varying inter-particle distances between particles in the 
cluster and a constant overall voidage showed that a major 
drag reduction happened for the cluster voidage higher 
than 0.7, whereas a minor decrease in the drag force was 
observed for the cluster voidage less than 0.7. When 
simulations were conducted at a constant cluster voidage 
of 0.7, the drag decreased with decrease in the overall 
voidage from the maximum voidage to approximately 
0.92. However, further decrease in the overall voidage 
resulted in steep increase in the calculated drag force. The 
findings reported here are important in formulating 
improved drag correlations that can be used in CFD 
simulations that solve the average two-fluid equations. 
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