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ABSTRACT 

This paper describes a methodology used to develop a 

numerical model for the study of particulate suspension 

rheology. Initially, Computational Fluid Dynamics (CFD) 

models of different rheometer geometries were tested with 

both a Newtonian fluid (water), and a non-Newtonian 

Herschel-Bulkley slurry. Rheograms were reproduced 

from these models and compared to experimental values. 

Once a single-phase model had been validated, a coupled 

model combining CFD and the Discrete Element Method 

(DEM) was created. Two open source software packages 

were chosen. CFD is implemented using OpenFOAM®, 

and DEM using LIGGGHTS. These two different codes 

were coupled via another programme called CFDEM. This 

coupled model is currently capable of modelling spherical 

particles in a suspending liquid. DLVO forces have been 

included in some models to account for inter-particle 

forces due to the surface charge on the particles. The 

coupled model is currently being validated. Preliminary 

results show good qualitative behaviour of the model. 

NOMENCLATURE 

HA  Hamaker constant, J 

doc  drag coefficient, dimensionless 

E  interaction energy, J 

F  force, N 

g  gravitational acceleration, m.s-2 

G  shear modulus, Pa 

I  rotational inertia of particle, kg.m2 

k  elastic contact constant, kg.s-2 

K  fluid consistency index, Pa.sn 

m  particle mass, kg 

M  particle torque, Nm 

n  flow behaviour index, dimensionless 

p  pressure, Pa 

r  particle radius, m 

cr  cut-off distance, m 

t  time, s 

u  fluid velocity, m.s-1 

v  particle translational velocity, m.s-1 

 

  viscous damping constant, kg.s-1 

  shear rate, s-1 

  particle overlap, m 

f  fluid volume fraction, dimensionless 

0  permittivity of free space, A2.s4.kg−1.m−3 

  relative permittivity, dimensionless 

  Debye screening length, m-1 

  dynamic viscosity, Pa.s 

0  yield viscosity, Pa.s 

  Poisson‟s ratio, N.m-1 

  density, kg.m-3 

  viscous stress tensor of fluid, kg.m-1.s-2 

0  yield stress, Pa 

  electric surface potential, V 

  particle rotational velocity, m.s-1 

Subscripts 

f  fluid phase 

i  particle i 

j  particle j 

n  normal 

p  particle phase 

pf  particle-fluid interaction 

r  rolling 

t  tangential 

INTRODUCTION 

Particulate suspensions are found in a variety of 

industries, e.g. chemical, mining, food processing, and 

cosmetics. Flow properties, or rheology, of particulate 

suspensions are highly dependent on the properties of the 

particles suspended within the base fluid (e.g. size, shape 

and surface properties). This is particularly true as the 

particles become smaller in size, which means that non-

contact forces between particles also become important. 

As a result, suspensions usually exhibit complex non-

linear responses to changes in shear stress and shear rate, 

which makes their flow behaviour difficult to predict. 

Rheological studies focus on experimental measurement 

using rheometers (Figure 1) to measure fluid properties 

under different shear stress or shear rate conditions. 

However, simulating the behaviour of individual particles 

in a fluid allows a priori prediction of fluid rheology, 

which can be validated with experimental data. 

Furthermore, being able to simulate the individual 

particles, allows for easier study of their behaviour and 

effect on the fluid. This is a feature lost with empirical 

models that focus on the macroscopic behaviour.  
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Figure 1: A cross-section of the double-gap and DIN bob 

rheometer geometries (TA Instruments, 2010) 

 

A combination of Computational Fluid Dynamics (CFD) 

and Discrete Element Modelling (DEM) was used to 

model the particle-fluid system. CFD uses a continuum 

approach to model the fluid component, which is a fast 

and computationally efficient method. DEM on the other 

hand resolves the behaviour of each individual particle, 

and so accounts for the individual nature of the contact 

and non-contact forces between particles. 

Because CFD and DEM are very different in their 

modelling approach, two separate software programmes 

were used. For CFD, OpenFOAM®
 (Weller et al, 1998) 

was chosen, and for the DEM, a programme called 

LIGGGHTS (Kloss and Goniva, 2010) was used. These 

two different codes could be coupled together with 

another programme called CFDEM (Goniva et al, 2010). 

CFDEM supports full four-way coupling where particle-

fluid interactions, fluid-particle interactions, and particle-

particle interactions are all considered. While four-way 

coupling is computationally more expensive than the more 

commonly used one or two-way coupling, it is necessary 

to handle all the important forces in a particulate system. 

This paper describes the methodology used to develop a 

numerical model for the study of particulate suspensions. 

With this model, particle properties such as size, shape 

and surface charge can be studied to determine their 

overall effect on suspension rheology. The different 

models and equations used will be described, and some 

preliminary tests of the model will be presented. 

CFD MODEL 

The first phase was the development of a CFD model of a 

rheometer to test the performance of CFD against 

experimental data. Not only is it the fluid flow that drives 

the particle motion, but it is also the macroscopic 

behaviour of the fluid that is important in this 

investigation. For rheometers, it is assumed that the flow 

follows Couette flow, where the flow is also laminar and 

incompressible. In addition, the flow is also time-

dependent due to the varying shear rate which occurs in 

controlled shear rate rheometers. 

Model Description 

A CFD mesh was created that mimicked the shape and 

behaviour of a rheometer. The simplest rheometer consists 

of one set of concentric cylinders. This is known as the 

single-gap rheometer. A double-gap rheometer is available 

and provides double the surface area for measurement. An 

adaptation of the single gap rheometer is the DIN bob, 

which has a conical tip to limit the influence of end effects 

(Figure 1). 

In all cases, a thin slice of the full geometry was modelled, 

reducing the model size and computational expense. For 

the single and double gap, a horizontal slice was modelled 

as it was assumed the end effect would be negligible when 

compared to the full length of the rheometer. These 

geometries are axi-symmetric, which allowed them to be 

further reduced. The DIN bob geometry is more complex 

than the other two, but is axi-symmetric, which permits a 

thin 5° slice in the vertical direction. 

CFD boundary conditions for the single-gap rheometer 

model are shown in Figure 2. These boundaries applied to 

all geometries. “No-slip” walls were used, with rotating 

wall boundaries given a tangential velocity corresponding 

to the required shear rate. In most cases, the shear rate was 

increased linearly over time. This allowed the model to 

replicate controlled-rate type rheometers. Slip at the 

rheometer walls was not considered in this study. Periodic 

boundary conditions were used on remaining boundaries. 

 

 
 

Figure 2: Geometry and boundary conditions for single-

gap rheometer model 

 

Torque on all rotating boundaries was calculated and 

converted to a shear stress value by multiplying it by a 

conversion factor. This factor depends on the type and 

dimensions of the rheometer geometry. A similar method 

was used for the shear rate. Equations describing these 

factors were taken from Whorlow (1992). 

Newtonian Fluid Results 

Water was selected as a benchmark fluid because most 

slurries contain water. The performance of the model was 

judged as to how close it could match the generally 

accepted value for water‟s dynamic viscosity at 20°C 

(1.004x10-3 Pa.s). OpenFOAM‟s “icoFoam” solver was 

used because the flow was assumed to be laminar, 

incompressible and unsteady. 

Testing showed that the time step size did not significantly 

affect the results, although at larger time step sizes the 

model became unstable at higher shear rates. A time step 

value of 0.001s was found to be suitable for all cases. 

When axi-symmetric models were compared against much 

larger sections (90° and 360°), no significant difference 

was found. The smallest cell size used was 50μm. 
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The rate at which the shear rate changed over time was 

investigated. Figure 3 shows rheograms obtained from 

these models for the single-gap and DIN bob geometries. 

All simulations were run for maximum of 35s in real time. 

Modifications to rate of shear rate change were made for 

either the whole simulation time or for only the lower 

shear rates (<150 s-1). The rate of shear rate change had 

the greatest effect at lower shear rates. Here, the faster the 

shear rate changed, the longer the values took to approach 

the final viscosity. A larger gap width (distance between 

the stationary and rotating wall) also increased the time it 

took for the viscosity to reach the final value, but the 

effect was not as significant as the change in shear rate. 

The large discrepancies between CFD and the 

experimental value at lower shear rates are thought to be 

as a result of the fluid being accelerated from rest 

relatively quickly. The mass of fluid takes a while to react 

to the acceleration of the rotating wall. Therefore a slower 

change in the shear rate is preferable as the correct 

viscosity is measured much sooner. 

Another interesting finding was that at wider gap thickness 

(≥1mm), Taylor vortices were more likely to form within 

the gap at high shear rates. This follows experimental 

observations, which is encouraging from a qualitative 

point of view. These vortices are most likely the cause of 

the sharp increase in viscosity shown in both Figure 3A 

and B at higher shear rates (Barnes, 2000, Mezger, 2002). 

 

 

 

Figure 3: Results of the CFD model for a Newtonian fluid 

comparing different shear rate changes and gap widths for 

single-gap (A) and DIN bob (B) geometries 

 

Both the single and double-gap geometries performed well 

at slower shear rate changes and smaller gap widths, with 

viscosity values within one percent of experimental 

viscosity. One important observation is the large 

difference between the performance of the DIN bob 

geometry and the other two. While both the single and 

double gap geometry are very accurate, the DIN bob does 

not even achieve a reasonable experimental error (10 – 

50%). This is partly due end effects that are present in the 

DIN bob model (the ends of the single and double-gap 

models were not modelled).  

Non-Newtonian Fluid Results 

A non-Newtonian fluid was also tested as most 

suspensions are non-Newtonian. A mineral slurry 

containing a vermiculite-quartz mix was selected (Ndlovu 

et al, 2011). Herschel-Bulkley model parameters were 

fitted to the data. OpenFOAM‟s “nonNewtonainIcoFoam” 

solver was used.  

Only the single-gap and DIN bob geometries were tested. 

Similarly with the Newtonian case, a good correlation was 

found between the fitted Herschel-Bulkley model and the 

CFD results. The DIN bob performed much better in this 

case, but still deviated slightly at higher shear rates. This 

shows the model was able to handle fluids that are more 

complex than simple Newtonian liquids. 

DEM MODEL 

A benefit of DEM is that it can provide dynamic 

information on individual particles in the system, such as 

particle trajectories and transient forces. In many cases this 

is extremely difficult, if not impossible, to obtain by 

physical experimentation. Consequently, DEM is being 

increasingly used to model discrete particle systems. The 

two types of particle motion, translational and rotational, 

are given by the following two equations respectively: 
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where z is the number of particles interacting with the 

particle. Forces involved are: the fluid-particle interaction 

(drag) force pfF , the elastic collision force cF , the viscous 

damping force dF , and the gravitational force gmi . The 

torques tM  and rM  represent the moments due to 

tangential forces and rolling friction torque respectively. 

Particle-Particle and Particle-Wall Contact 

LIGGGHTS uses the soft-sphere approach to modelling 

particle collisions. This approach, also developed by 

Cundall and Strack (1979), allows particles to deform or 

rather, overlap, during collisions which span multiple time 

steps. This overlap is used to calculate elastic, plastic and 

frictional forces between particles (Zhu et al, 2007). The 

main advantage of the soft-particle model is that lengthy 

collisions between several particles are allowed. Crucially, 

all inter-particle forces are accounted for during the 

collision. These are the two main considerations necessary 

for capturing the behaviour of dense suspensions 

(Hoomans et al, 1996; Apostolou and Hrymack, 2008). 

Unfortunately, very small time steps are required so that 

each collision can span multiple time steps, which 

increases the computational time of the simulation.  

In an attempt to reduce computational effort, many DEM 

formulations use simplified models (and equations) to 

determine the forces and torques resulting from the contact 
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between particles. This is because complex models do not 

necessarily give more accurate results for the increase in 

computational expense (Zhu et al, 2007; Di Renzo and Di 

Maio, 2004). The most common linear model is the linear 

spring–dashpot model proposed by Cundall and Strack 

(1979), where the spring models the elastic deformation 

while the dashpot accounts for the viscous dissipation 

(Zhu et al, 2007).  

LIGGGHTS has a number of different contact force 

models available. For computational efficiency reasons, 

the linear Hooke model was chosen. It uses a combination 

of a contact force and a damping force to calculate the 

force in both the normal (n) and tangential (t) directions. It 

is described as: 

 

    ijtijtijnijn tvtknvnkF       

 

where 
nk  and 

tk  are elastic constants, 
n  and 

t  are 

viscoelastic damping constants, n  is the overlap distance 

of two particles, t  is the tangential displacement vector 

between two spherical particles (restricted to satisfy the 

Coulomb frictional limit, nct FF  ), and vn  and vt  are 

components of the relative velocity between particles. This 

contact model was used for particle-wall collisions as well. 

DLVO Interaction Force 

Many minerals have a natural surface charge due to their 

chemical structure (Ndlovu et al, 2011). DLVO forces 

were modelled to account for these non-contact attraction 

and repulsion forces between particles. The DLVO force, 

originally proposed by Derjaguin and Landau (1941) and 

Verwey and Overbeek (1948), is a combination of the van 

der Waals and electrostatic double layer forces. 

LIGGGHTS includes two separate functions to simulate 

the van der Waals and electrostatic forces between the 

particles. Combining both these functions would result in 

the equivalent DLVO force. The van der Waals force was 

modelled with a modified “colloid” function, which uses 

the following relation to calculate the interaction energy: 
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The electrostatic (electric double layer) interaction is 

simulated by a modified “yukawa/colloid” function: 
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where r is the separation distance between particle 

centres, ir  and jr are the radii of the two particles, and   

is equivalent to the zeta potential (  ). Both functions are 

only active for separation distances below the cut-off 

distance ( cr ). A longer cut-off distance reduces 

computational efficiency as the force influences more 

particles. Particles are allowed to overlap each other 

during collisions, which could cause these functions to 

become invalid. Therefore a minimum separation distance 

limit was added so the magnitude of the force did not 

become undefined during the collision. 

Fluid-Particle Drag Force 

The drag force is the means by which the fluid imparts 

motion onto the particles. In dense systems, like that found 

in a rheometer, the presence of surrounding particles will 

affect the drag force, and so a more complex formulation 

is needed. There are two commonly used drag models for 

particle-fluid systems. The older, more established, model 

by Ergun (1952) and Wen and Yu (1966) is often used, 

but introduces a discontinuity at a particle volume fraction 

of 0.2. Di Felice‟s correlation (1994) closely approximates 

that of Ergun, Wen and Yu, but eliminates the 

discontinuity, providing a much smoother change in drag 

force. Therefore Di Felice‟s drag model was employed 

here. This model, available in CFDEM, is given by: 
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COUPLED CFD-DEM MODEL 

A number of practical factors had to be considered for the 

design of the coupled model. In particular, it was expected 

to use this model to simulate particle systems of high 

particle volume fraction (up to 0.6). Also, the smallest 

particle that was considered was 1.5 μm in diameter. In the 

geometries tested with the CFD model, this would have 

led to an excessive amount of particles in the domain, with 

exorbitant computational costs. Therefore the model 

design and size had to be reduced to mitigate this problem. 

Governing Equations for Coupled Flow 

The fluid phase equations have to be altered to include the 

effects of momentum transfer due to particles suspended 

within the fluid. Most literature regarding fluid-particle 

systems mentions two different formulations of the fluid 

flow equations that are commonly used, namely Model A 

and Model B (Zhu et al, 2007; Feng and Yu, 2003). Zhou 

et al (2010), however, proposes that there are actually 

three formulations and discusses the applicability of each 

one to different systems. Based on their analysis, Model A 

would be more suitable for this system. This is because 

Model B is only valid when the fluid flow is steady and 

uniform or when the residual force on the particles is zero. 

These conditions are not strictly true for this type of 

system. 

Model A is described by the following two equations, 

where the first equation describes conservation of mass, 

and the second describes conservation of momentum: 
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where pfF  is the volumetric particle-fluid interaction 

force. This force is made up of the particle drag force, the 

pressure gradient force, and the viscous force due to fluid 

shear stress. 
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Coupled Model Geometry and Boundary Conditions 

In order to take advantage of LIGGGHTS‟ limited ability 

to handle periodic boundaries, the circular CFD domains 

were restructured into a flat-edged box. This is equivalent 

to unravelling the circular ring of the single-gap rheometer 

into a linear domain with one wall translating past the 

other. To further reduce the number of particles required, a 

smaller domain size was also used. A smaller model is 

quicker to solve, but may lose its value as a representative 

sample. The lower limit of the box size is still under 

investigation, but the current size is a cube with sides of 

50 μm in length. For 1.5 μm diameter particles this results 

in just over 35 000 particles at a volume fraction of 0.5. 

Even with the new domain shape, the boundary conditions 

remain the same (Figure 4). There are two walls, one 

stationary outer wall, and a (now) translating inner wall 

mimicking the rotational movement of the cylindrical 

surface in a conventional rheometer. Periodic boundaries 

extend the flow in the vertical and horizontal directions. 

 

 

Figure 4: Boundary conditions for coupled model 

 

According to preliminary CFD tests (water only), the 

values generated by the box geometries are just as accurate 

as the cylindrical single-gap rheometer geometries (up to 

six percent), but underestimate the experimental viscosity 

value instead of overestimating it like the circular 

geometries. This might be explained by flat edges of the 

box versus the curved rheometer geometries. Different box 

dimensions, did not affect the results significantly as the 

different sizes achieved errors within two percent of the 

experimental value. Increasing the gap width to 500 µm 

had the most effect, increasing the error to six percent. 

In addition, the box geometries were found to be mesh-

independent, with cell sizes ranging from 3 to 12 μm 

(along each side). This is to be expected for such a simple 

flow geometry.  

Time Step Size and Coupling Procedure 

Due to the physics involved in many coupled systems, the 

DEM time step generally needs to be much smaller than 

the CFD time step. The time step has to be sufficiently 

small to capture the energy transmission by wave 

propagation (Li, Xu and Thornton, 2005). To establish the 

upper limit of the DEM time step, the criteria of the 

Rayleigh time was used, as it is typically suited to dense 

systems. Rayleigh time is the time taken by the Rayleigh 

surface wave to propagate through a solid particle. It is 

good practice to select the time step as a fraction of the 

Rayleigh time, typically in the region of 0.1 – 0.3. 

Rayleigh time is defined as: 
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CFDEM runs the CFD and DEM solvers concurrently. 

Because the CFD timestep is often much larger than the 

DEM timestep, the DEM solver runs for a number of 

timesteps before the information is transferred to the CFD 

solver, which usually only iterates for one timestep 

between coupling. The coupling interval is typically in the 

region of 50 – 100 timesteps. 

Preliminary Validation of Coupled Model 

In order to validate the coupled model, experimental data 

from Megias-Alguacil, Duran and Delgado (2000) was 

used. Part of their work covers rheological data for 

spherical zirconia particles. They also include detailed 

data on the DLVO interaction forces which is useful in 

reconstructing the material parameters needed in the 

computer model. However, all simulations have not been 

completed yet, and so only preliminary results are 

presented here (Figure 5). 

Material parameters for zirconia particles result in a DEM 

timestep size of 1x10-9 seconds, as recommended by the 

Rayleigh criteria. This was due largely to the small particle 

size modelled (1.5 µm). Selecting a larger coupling 

interval of 100, gives a CFD timestep size of 1x10-7 

seconds. Shear rates were increased linearly from zero, up 

to 180 s-1. 

CFD mesh cell size was selected based on particle 

diameter. A cell with edge length of 4.2 particle diameters 

(6.25 μm) was sufficiently large for the assumption of 

unresolved CFD-DEM coupling. This results in a mesh of 

512 cells. Bigger cells of 5.6 particle diameters in length 

were tested, but were found to give different results. 

Figure 5 compares initial coupled model results with the 

experimental values for a particle volume fraction of 

4.68% and pH of 4.5 (with a corresponding zeta potential 

of 32 mV). CFD results for pure water are also shown for 

comparison to illustrate the effect of adding particles to 

the model. For the coupled model, the torque value used 

to calculate the shear stress is a combination of the fluid 

viscous force on the translating boundary and the 

tangential force due to particles impacting that same 

surface. As can be seen from Figure 5, plain particles (no 

DLVO forces) significantly increase the shear stress. 

Including DLVO forces further increases the overall shear 

stress as expected. However, it did not produce a sizeable 

increase in shear stress as the shear rate was increased, 

which was expected from the experimental data trend. 

This might be a result of a mesh that is too coarse, where 

the particle effects are diffused into the general flow. 

Pure fluid flow in a box is simple enough to be mesh 

independent, but adding particles increases flow 

complexity. Furthermore, distribution of particles into 

their respective CFD cells during the coupling procedure 

changes with different meshes. These factors indicate that 

the coupled model would not be as mesh independent as 

the pure fluid simulations. 

It should be noted that the experimental data were 

measured using a coaxial cylinder geometry, whereas the 

numerical results were calculated for a box-shaped 
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domain. However, box and single-dap geometries were 

found to be equivalent (produce similar results) in pure 

CFD tests. 

 

 

Figure 5: Rheogram comparing preliminary coupled 

model results with experimental values 

 

Simulations were conducted on a high performance 

cluster, consisting of 2.93 GHz Intel processors, with 8 

cores on each node. Memory for each node was 12 GB, 

though the coupled simulations typically only required 1 – 

2 GB. Particle-fluid systems (including DLVO forces) 

took around 10 days to compute with 8 CPU cores. 

Removing DLVO forces halved the computational time. 

CONCLUSIONS 

The methodology for the development of a CFD-DEM 

numerical model for particulate suspensions has been 

described. At each major step in the development, testing 

has been done to assess its behaviour under different 

conditions. For the pure CFD model, the results were very 

good. Accurate representations of the known fluid material 

behaviour for both Newtonian and non-Newtonian cases 

were achieved. In addition, the results show that slower 

changes in shear rate, and gap widths of less than 1mm 

produce more accurate results over a larger shear rate 

range. 

Preliminary behaviour of the coupled model is reasonable 

and follows some good trends. However, work still needs 

to be done to refine it further. In particular, the coupling 

interval and mesh size still need to be fully explored. Once 

the development and validation of the model has been 

completed, it will provide interesting insights into the 

rheology of particulate suspensions. Preliminary tests 

show the model to be fast and efficient, but the number of 

timesteps that are required results in long computational 

times. 

REFERENCES 

APOSTOLOU, K. and HRYMACK, A.N., (2008), 

“Discrete element simulation of liquid-particle flows”, 

Computers and Chemical Engineering, 32, 841-856. 

BARNES, H.A., (2000), Handbook of Rheology, 45 p, 

University of Wales, Aberystwyth. 

CUNDALL, P.A. and STRACK, O.D.L., (1979). “A 

discrete numerical model for granular assemblies”, 

Geotechnique, 29, 47–65. 

DERJAGUIN, B.V and LANDAU, L., (1941), “Theory 

of the stability of strongly charged lyophobic sols and of 

the adhesion of strongly charged particles in solutions of 

electrolytes”, Acta Physicochem, 14, 633–662. 

DI FELICE, R., (1994), “The voidage function for 

fluid–particle interaction systems”, Int. J. of Multiphase 

Flow, 20, 153–159. 

DI RENZO, A. and DI MAIO, F.P., (2004), 

“Comparison of contact-force models for the simulation of 

collisions in DEM-based granular flow codes”, Chemical 

Engineering Science, 59, 525-541. 

Ergun, S., (1952), “Fluid flow through packed 

columns”, Chemical Engineering Progress, 48, 89–94. 

FENG, Y. and YU, A., (2003), “Numerical simulation 

of the gas-solid flow in a fluidized bed by combining 

discrete particle method with computational fluid 

dynamics”, Third Int. Conf. on CFD in the Minerals and 

Process Industries, Melbourne, Australia, December 10-

12. 

GONIVA, C., KLOSS, C., HAGER, A. and PIRKER, 

S., (2010), “An Open Source CFD-DEM Perspective”, 

Proc. of OpenFOAM Workshop, Göteborg, Sweden. 

HOOMANS, B.P.B., KUIPERS, J.A.M., BRIELS, W.J. 

and VAN SWAAIJ, W.P.M., (2006), “Discrete particle 

simulation of bubble and slug formation in a two-

dimensional gas-fluidised bed: a hard-sphere approach”, 

Chemical Engineering Science, 51, 91-111. 

KLOSS, C. and GONIVA, C., (2010), “LIGGGHTS – A 

New Open Source Dem Simulation Software”, 5th Int. 

Conf. on Discrete Element Methods (DEM5), London. 

LI, Y., XU, Y. and THORNTON, C., (2005), “A 

comparison of discrete element simulations and 

experiments for „sandpiles‟ composed of spherical 

particles”, Powder Technology, 160, 219-228. 

MEGIAS-ALGUACIL, D., DURAN, J.D.G. and 

DELGADO, A.V., (2000), “Yield stress of concentrated 

zirconia suspensions: correlation with particle 

interactions”, J. of Colloid and Interface Science, 231, 74-

83. 

MEZGER, T.G., (2002), The Rheology Handbook, pp 

33-34, Vincentz Verlag, Hannover. 

NDLOVU, B., BECKER, M., FORBES, E., DEGLON, 

D. and FRANZIDIS, J.P., (2011), “The influence of 

phyllosilicate mineralogy on the rheology of mineral 

suspensions”, Minerals Engineering, 24, 1314-1322. 

TA INSTRUMENTS, 2010, AR-G2 Rheometer 

operator‟s manual. 

VERWEY, E.J.W., and OVERBEEK, J.T.G., (1948), 

Theory of the stability of lyophobic colloids - The 

interaction of soil particle having an electrical double 

layer, Elsevier, Amsterdam. 

WELLER, H.G., TABOR, G., JASAK, H., and 

FUREBY, C., (1998), “A tensorial approach to 

computational continuum mechanics using object 

orientated techniques”, Computers in Physics, 12, 620–

631. 

WEN, Y.C. and YU, Y.H., (1966). “Mechanics of 

Fluidization”, Chemical Engineering Progress Symposium 

Series, 62, 100–111. 

WHORLOW, R.W., (1992), Rheological techniques, 2nd 

edition, Ellis Horwood. 

ZHOU, Z.Y., KUANG, S.B., CHU, K.W. and YU, A.B., 

(2010), “Discrete particle simulation of particle-fluid flow: 

model formulations and their applicability”, J. of Fluid 

Mechanics, 661, 482-510. 

ZHU, H.P., ZHOU, Z.Y., YANG, R.Y. and YU, A.B., 

(2007), “Discrete particle simulation of particulate 



 

 

Copyright © 2012 CSIRO Australia 7 

systems: theoretical developments”, Chemical 

Engineering Science, 62, 3378-3396. 


