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ABSTRACT 

The population balance equation for bubble size 

distribution in a vertical turbulent pipe flow is solved 

with a Direct Quadrature Method of Moment (DQMOM) 

comparing the results with a classical approach where 

bubbles are characterized by their mean size. The 

turbulent two-phase flow field, solved within a RANS 

formulation, is assumed to be in local equilibrium and the 

relative gas and liquid velocities are therefore calculated 

with an algebraic slip model, considering drag and lift 

forces. The non-linear relation between the bubble size 

and the resulting forces is accurately described through 

the DQMOM method, in which each quadrature node 

represents a dynamic class of particles with a 

characteristic size. Results are compared to experimental 

results (Szalinski et al., 2010), demonstrating that fast 

and accurate predictions are obtained for the void fraction 

and the bubble size distribution in the case of moderate 

bubble Stokes number and void fraction. 

NOMENCLATURE 

L liquid (subscript) 

G gas (subscript) 

d bubble diameter 

p pressure 

n bubble size distribution (number per unit volume) 

Vm mixture velocity 

VS slip/relative velocity 

Vd drift/diffusion velocity

 density

 gas volume fraction

 dynamic viscosity 

Y mass fraction 

INTRODUCTION 

Nowadays in many important industrial fields (in 

particular in the petroleum and chemical industry) there 

is a urgent need of mathematical models and numerical 

framework characterized by a good accuracy and 

predictivity coupled with low computational costs. This 

is true in particular for turbulent multiphase flows like 

bubble columns or pipe flows where a liquid and a gas 

phase are present and fully resolved approaches (e.g., 

explicit interface reconstruction) are not viable. The 

objective of this work is to test and validate a fast 

Eulerian-Eulerian method to solve gas-liquid flow based 

on the Algebraic Slip Model (ASM) and the Direct 

Quadrature Method of Moments (DQMOM). 

 

 

The test case under study is a two-phase flow of gas and 

water across a vertical tube of 0.067 m diameter and has 

been experimentally investigated by Szalinsky et al. 

(2010). The height of the tube is 6 m. Superficial 

velocities of air and water are given as inflow boundary 

conditions, and the average gas concentration is 

measured at a height of 5 m. 

The liquid superficial velocity is below 1.0 m/s and the 

gas superficial velocity below 0.1 m/s. This leads to a 

flow regime predominated by pure bubbly flow (with 

spherical or cap shape). The two inflow velocities 

investigated are represented with red symbols on the flow 

pattern map in Figure 1, characterized by superficial 

liquid velocity of 0.2 and 0.7 m/s and a constant 

superficial gas velocity of 0.05 m/s. The Reynolds 

numbers, based on the mixture properties at the inflow 

and the tube diameter is respectively of 17000 and 47000. 

 

Inflow conditions are set by giving superficial velocities 

of gas and water. Because no other data are available for 

the inflow boundary conditions, it is therefore assumed 

that the velocity and void fraction profiles are flat and the 

average void fraction is extrapolated from experimental 

data. Pressure outflow boundary condition is used at the 

exit of the tube. 

 

 

 

Figure 1: Gas-liquid flow regimes (Szalinsky et al., 2010). 

Red symbols indicate the cases investigated in this work, 

corresponding to the bubbly flow regime. 
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MODEL DESCRIPTION 

Multiphase flow model 

Incompressible Navier-Stokes methods are assumed to 

hold for each phase. A mixture model, in which a single 

momentum equation is solved for the mixture velocity, is 

used, with algebraic relation to solve slip velocities. This 

model can be written as follows: 

   (1) 

  (2) 

(3) 

where the subscripts G and L denote respectively the gas 

and liquid phase and the phase interaction term Sd
L is 

 (4) 

The above equations are written in the assumption of gas 

and liquid incompressibility that is valid for low void 

fraction and constant temperature. The drift velocities of 

gas and liquid are calculated with the Algebraic Slip 

Model (ASM) in the formulation of Manninen et al. 

(1997). They can be found from the force balance 

  (5) 

where for this test case only drag and lift forces are 

considered and expressed in terms of slip (or relative) 

velocities as 

    (6) 

   (7) 

where CD and CL are given by the Tomiyama correlation 

(Tomiyama, 1998). The relation between drift and slip 

velocities is then given by 

  (8) 

The turbulence is taken into account introducing a 

turbulent dispersion for bubbles, modifying the drift 

velocities as follows: 

  (9) 

Population balance model 

The model described above need the bubble size as an 

input parameter for the drag and lift coefficients. This is 

however an evolving heterogeneous quantity because of 

bubble coalescence and breakup. Furthermore in the 

same computational (or averaging) volume a wide range 

of bubble diameters can coexist. To describe more 

 

 

 

accurately the evolution of the bubbles in the riser, 

instead of solving an equation for the gas volume 

fraction, a population balance equation (PBE) can be  

introduced. This equation describes the evolution in time 

and space of the bubble size distribution (BSD) n(d;x,t) 

that represents the number of bubbles per unit volume 

with size d and can be written as 

 (10) 

where Vp is the velocity of the dispersed phase (which in 

this case is given by the algebraic slip model), G is the 

growth term (null if there is no phase change or mass 

transfer) and B and C are the collision terms describing 

respectively bubble coalescence (that is a two-point 

process and has a double dependence on the distribution) 

and breakup (that is a one-point process with a single 

dependence on the distribution). In this work these 

phenomena are described with the kernel used by 

Laakkonen et al. (2006). 

 

All the equations are solved within a Reynolds average 

formulation and the k- model has been used to model 

Reynolds stresses. The averaging procedure applied to 

Eq. 10 gives place to a turbulent fluctuation term, 

modelled with a turbulent diffusivity term with a constant 

Dt = tSct and a turbulent Schmidt number Sct = 0.9. 

 

The population balance equation is discretized with the 

Direct Quadrature Method of Moments (DQMOM, 

Marchisio and Fox, 2005) which consists in the 

resolution of transport equations for quadrature nodes and 

weights that approximates exactly the first M moments of 

the BSD. Each node, corresponding to a particular bubble 

size, and its corresponding weight are transported with 

their relative velocity (calculated with the ASM) and can 

be considered as a dynamic class with a certain size and a 

weight that represents the number of bubbles per unit 

volume within that class. This results in higher accuracy 

and lower computational cost than the standard classes 

methods. In the test case under study it has been 

demonstrated that accurate results are already obtained 

with M=4, tracking exactly (except numerical 

discretization errors) moments up to third order. 

It is important to underline that, when the population 

balance is solved there is no need to solve the equation 

for the total gas volume fraction but this is obtained 

implicitly as a multiple of the third order moment of the 

BSD. Therefore the simulation require to solve only 3 

scalar equations more than the classic ASM model. 

NUMERICAL METHODS 

The models described above have been implemented in 

commercial CFD code TransAT. The different modelling 

possibilities to describe this type of multiphase flows are 

shown in Table 1. In addition to these models a 

population balance, solved with the DQMOM approach 

can be coupled to describe the dispersed phase. 

 

With the objective of simplify the simulation to later 

extent this model to more complex pipe systems, we 

decided to use a RANS k- model and to assume a two-
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dimensional axisymmetric domain giving place to a 

steady-state solution. 

 

The steady-state solution can be obtained either by 

directly employing a steady-state iteration or through 

marching in time until steady-state conditions are 

reached. To consider the effects of large-scale 

fluctuations also unsteady simulations, with the Very-

Large Eddy Simulation (V-LES) method, has been tested. 

This method is based on the concept of filtering a larger 

part of turbulent fluctuations as compared to LES. The V-

LES used in TransAT is based on the use of the k- 

model as a sub-filter model. A filter is applied to this 

model, so that turbulent structures smaller than the filter 

width are not solved. A length-scale limiting function f 

has been derived in Johansen (2004) and can be written 

as 

 (11) 

where  is the filter width and  

   (12) 

is a constant and  is the anisotropic factor. Applying this 

function to the k- model gives the following expression 

for turbulent viscosity 

  (13) 

Near the wall boundaries, the length-scale limiting 

function is set equal to one, which means that the 

standard k- model is applied. This enables one to use 

standard wall-function of RANS models for V-LES. 

 

SIMULATION DETAILS 

The spatial derivatives have been discretized with the 

HLPA scheme (Zhu, 1991) which is in this case the best 

compromise between accuracy and stability. Since the 

drag and lift forces used are highly non-linear, a small 

diffusivity is added to the solution to stabilize the 

evolution of the flow in the first part of the riser near the 

wall where the most dramatic changes happen. 

 

The equations for nodes and weights are characterized by 

having locally large source terms because of the collision 

kernel. Even if an implicit solver (SIP solver) has been 

used, a fully implicit treatment of the source terms is not 

possible because of the high non-linearity. Therefore a 

sophisticated source term linearization and relaxation has 

been implemented to stabilize the computations. First the 

coupled system of equations for nodes and weights is 

relaxed with the maximum eigenvalue of the system, then 

a special treatment to avoid critical values for DQMOM 

variables is performed. In fact, although the DQMOM 

formulation (where weights and weighted nodes are 

transported) presents many advantages with respect to the 

original QMOM formulation (where moments are 

transported), it can blows up when dealing with mono-

disperse populations or equivalently when the distance 

between two quadrature nodes approaches zero. This 

problem can be solved either with an adaptive DQMOM 

(reducing locally the number of quadrature nodes and 

weights) or preventing the systems to reach these critical 

states during the internal sub-iterations or time steps. This 

second solution is the one adopted in this work, where we 

can suppose that the real solution is never mono-

dispersed. It is important to highlight that this source 

term treatment is only a numerical trick to enhance 

convergence and stability while it is not affecting the 

consistency of the model (i.e., the system converge to the 

exact numerical solution in the limit of null residuals). 

DQMOM has been solved with M=4 and M=6 resulting 

in very similar results therefore in the following results 

only the case with M=4 is shown. 

 

Simulations have been performed on a single core of a 

Intel XEON X5690. 2D steady simulations with k- 

model have taken less than one hour of CPU time to 

converge to a maximum normalized residual of 10-5 on a 

mesh of 507x24 cells (tube of 5.0 m). Also 3D unsteady 

simulations with the V-LES model have been performed 

to understand if large scale fluctuations could be present 

affecting the overall results. Indeed, although the flow 

under survey is unsteady, it reaches a well-defined steady 

state (in a time-averaged sense). If results are not 

sensitive to the fact that we use steady or unsteady 

simulations, then a lot of computational time can be 

saved. 

It resulted that steady and unsteady void fraction profiles, 

reported in Figure 2 are very close to each other in terms 

of gas volume fraction profiles. This is in agreement with 

the fact that the flow reaches a statistical steady state 

where large scale fluctuations are not important. 

Therefore, in the current study, only 2D axisymmetric 

results with k- model will be presented, because 

obtained results are acceptable and 3D unsteady 

simulations are significantly more expensive in terms of 

computational cost. A more detailed analysis of 3D 

unsteady simulations will be considered for further 

investigations especially when more complex geometries 

will be taken into account. In fact, asymmetric and 

complex geometries can affect the turbulent flow field 

with strong anisotropy and more complex flow structures 

that are better resolved with unsteady simulations. 

 

A set of simulations have been then performed in order to 

define which size of the domain is needed, and what is 

the required refinement in order to obtain a grid 

independence of the results. This analysis, as well as the 

following results, has been performed using a 2D 

axisymmetric and steady simulations. 

 

 

Table 1: Modelling approaches for turbulent two-phase 

flows (Ascomp, 2012) 



 

 

4  

 

Figure 2: Comparison of void fraction profiles for steady 

and unsteady simulation 

 

A first study has been performed on the size of the grid 

cells (Figure 3). Simulations have been performed on a 

tube of 5.1m long, with a coarser mesh of 307 x 15 cells 

(x=0.016 m, ymin=0.001 m) and a finer mesh 

consisting in 507 x 24 cells x=0.01 m, ymin=0.0004 

m). No further refinement have been performed, because 

since y+=11 on the fine mesh, and further refinement 

would mean changing the near-wall treatment of 

turbulence. Void fraction and velocity profile were 

analyzed and resulted quite close one to each other at the 

centre of the tube, which means that grid independence is 

almost reached. However, there is an important loss of 

precision with the coarser mesh close to the wall. 

Therefore only the results on the mesh of 507 x 24 will 

be presented. 

 

 

 

Figure 3: Grid convergence study. Velocity profiles at 

height x=5 m for two mesh refinements. 

 

Figure 4: Domain height study. Void fraction profiles in 

different sections at height 2,3,4,5 m. 

 

A second analysis has been performed on the length of 

the tube (Figure 4). Indeed, simulating the full domain 

can be costly, whereas it is only needed to have a fully 

developed flow to measure the void fraction distribution, 

which will not change once the flow is fully developed. 

Experiments suggest that the flow is developed after 3 m. 

Simulations have then been performed on a 5.1 m long 

tube, and profiles of the void fraction at different heights 

demonstrated that simulating 3 m is enough (equivalent 

to a length-to-diameter ration of L/D=44.7). 

RESULTS 

The main case studied consists in a liquid superficial 

velocity of 0.2 m/s and a gas superficial velocity of 0.05 

m/s. In the experiments, bubbles are released from holes 

of diameter 3 mm but merging happens immediately in 

the vicinity of the sparger. The Tomiyama’s model which 

has been used to model lift force, changes its behaviour 

for a radius of 2.9 mm. Thus, in the simulation with the 

standard ASM (fixed bubble radius without PBE model) 

the bubble radius has been fixed to 2.92 mm, which gives 

a bubble Reynolds number Reb=2450. Instead the 

simulations performed with the population balance 

models are performed with an inlet BSD equivalent to a 

log-normal distribution with mean value 5.8 mm and a 

standard deviation of 1.5 mm. This distribution was 

estimated with the procedure explained in Petitti et al. 

(2010). 

 
 

 

Figure 5: Evolution of the mean bubble diameter along 

the riser near the wall and in the center of the pipe. 
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In Figure 5 the evolution of the mean bubble diameter 

along the pipe is shown for a position near the wall and in 

the center of the pipe. The mean diameter is calculated as 

the first moment of the BSD divided by the total number 

of bubbles (d10) or as the ratio between the third and the 

second order moments (d32). The difference between 

these estimations of the mean bubble size is also a 

quantification of the poly-dispersity of the distribution 

and on the importance of solving the population balance 

model without imposing a fixed mean size for the 

bubbles. Two concurrent phenomena are causing the 

formation of large bubbles in the center of the pipe and 

small bubbles near the wall. On one side this is due to the 

lift force correlation that depends on the bubble size. On 

the other side the coalescence and breakage events are 

highly influenced by the presence of the wall. 

 
 

As can be seen in Figure 6, where the gas volume 

fraction is shown for the ASM model with and without 

the population balance, simulation results are in good 

agreement with experimental data. The maximum void 

fraction, at the centre of the tube, is well predicted. The 

void fraction is slightly over predicted close to the wall 

for the classic ASM model without population balance, 

which may be due to the fact that the bubble coalescence 

is not simulated causing an underestimation of the lift 

force. When the population balance is solved the profile 

is closer to experiments and the remaining mismatch can 

be due to the inaccuracy of the lift and drag coefficients 

for large bubbles. 

 

 

 
The advantage of the population balance mode is that we 

can track a number of important physical quantities such 

as the bubble surface area that is a crucial quantity for 

phase change, heat transfer and reaction. In Figures 7 and 

8 respectively the mean bubble surface area (obtained as 

a multiple of the second order moment) and the number 

of bubbles per unit volume (equal the 0th order moment) 

is reported for the center of the pipe (continuous line) and 

a region near the wall. 

 

Figure 8: Evolution of the total number of bubbles per 

unit volume along the riser near the wall and in the center 

of the pipe. 

 

The experimental results reported also the mean BSD at 

the end of the riser, revealing a bi-modal distribution with 

a first wide peak between 3 mm and 6 mm and the 

second one between 25 mm and 40 mm. This is 

consistent with our DQMOM results. Air and water 

velocity profiles can be also calculated from the 

simulations but no experimental data is available for 

comparison of the velocities. Since the superficial 

velocities are constant, it would be important in future 

analysis to be able to compare the velocities to 

experimental data to find out exactly the reasons for the 

differences in the void-fraction profiles. 

 

Finally a flow with a liquid superficial velocity of 0.7 m/s 

and a gas superficial velocity of 0.05 m/s, which gives 

place to a Reynolds number of 47000 has been 

considered. In Figure 9 the gas volume fraction obtained 

with and without the population balance model is 

compared against experimental values. Also in this case 

the usage of the population balance model ensures a 

better approximation of the BSD in the pipe and this 

results also in a better approximation of gas velocity and 

therefore of volume fraction. 

 

 

Figure 9: Gas volume fraction at the end of the riser for 

liquid superficial velocity equal to 0.7 m/s. Experiments 

(symbols), classic ASM model (dashed line) and ASM 

with population balance model (continuous line). 

 

Figure 7: Evolution of the mean bubble surface area along 

the riser near the wall and in the center of the pipe. 

Figure 6: Gas volume fraction profile at the end of the 

riser. Experiments (symbols), classic ASM model (dashed 

line) and ASM with population balance model (continuous 

line). 
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CONCLUSION 

This work shows the capabilities of a computationally 

efficient algebraic mixture model coupled with a 

population balance model to predict dispersed bubbly and 

cap-bubbly flows in a vertical column. The simulation 

results obtained are in good agreement with the 

experiments performed by Szalinski et al. (2010) for the 

bubbly flow regime, although 2D axisymmetric 

conditions have been assumed in the simulations. It can 

also be safely concluded that the mixture model with 

algebraic slip model is appropriate for this kind of flow, 

provided that good empirical correlations are given for 

drag and lift forces, without using the two-fluid approach 

that is computational costly and can be affected by 

numerical instability. The present results can be easily 

extended to long piping systems thanks to the cheap 

computational setup and to more complex geometries 

with the use of an immersed boundaries technique 

implemented in the code. 

The same model has been tested also for higher gas 

superficial velocities for which the formation of air slugs 

or Taylor bubbles are important. In this case it more 

complicated to model the flow because of the large 

structures and associated unsteady behaviour. 

Furthermore the algebraic slip model is well known to be 

well suited for the simulation of flows laden with small 

bubbles, of sizes comparable to the grid, and with 

moderate Stokes number. Furthermore the modelling of 

the drift velocity requires a well-defined bubble radius   

that is not available for slug flows. Also the population 

balance formulation in this case is not valid if the slugs 

predominates. For flows featuring large air scale 

structures, in fact, the phase average approach is not 

adequate. Therefore the model blows up giving 

inaccurate results . For these types of flow regimes an 

interface tracking model can be a better choice even if it 

would not solve the small air bubbles formed in the wake 

of the Taylor bubbles. Our future work will try to merge 

these two techniques and extend these results for more 

complex geometries with the use of the Immersed 

Surfaces Techniques (IST) available in the code. 
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