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ABSTRACT 

Landslides are among the most costly natural catastrophes, 

both in economic and human terms. Most mitigation 

strategies still rely on a mixture of empirical models and 

statistical data and so are limited in their ability to 

quantify the risk in a particular area. However, with the 

recent advances made in the field of computational 

mechanics, it has now become possible to develop realistic 

numerical models of natural disasters. With landslides, a 

major challenge of the numerical approach is to reliably 

predict all phases of an event, from its initiation to its 

propagation including interaction with the surroundings. 

In this paper, a combination of Smoothed Particle 

Hydrodynamics (SPH) and Discrete Element Methods 

(DEM) is considered to address this challenge and to 

enable the simulation of a complete event. The onset of 

slope instability is predicted using SPH and a Drucker-

Prager yield criterion suitable for pressure dependent 

materials. The subsequent collapse of the landslide is then 

simulated by DEM. The failure plane predicted by SPH is 

used to convert the representation of the mobilised rock or 

soil mass to a discrete representation. This combined 

approach is illustrated using an idealised example of slope 

stability and its potential for simulating complete 

landslides is demonstrated. 

 

NOMENCLATURE 

v   Velocity 

D  Strain rate tensor 

  Spin tensor 

  Stress tensor 

S Deviatoric stress tensor 

P Pressure 

W Kernel function 

l smoothing length 

g Gravity vector 

τ  Equivalent shear stress   2/1

ijij SS0.5τ   

Ce 4th order elasticity tensor 

E Young’s modulus 

ν  Poisson’s ratio 

G Shear modulus 

K Bulk modulus 

 Density 

m mass 

c Cohesion 

 Internal friction angle 

, k Material parameters 

 Dilatancy angle 

λ  Plastic multiplier 

h rate of strain hardening for k 

t Time 

1  2th order identity tensor 

INTRODUCTION 

Landslides occur in many parts of the world and have a 

major impact not only on the local population but also in 

economic terms through the destruction and disruption 

they cause. They are a threat for two main reasons, namely 

it is difficult to anticipate when a landslide might occur in 

a given area and if it does, its consequences are generally 

difficult to estimate. In most cases, the risk mitigation 

traditionally relies on risk analysis based on empirical 

models and statistical data, but these methods are 

generally not sufficient for a precise quantitative estimate 

(van Westen et al., 2006). In recent years, models based 

on deterministic approaches have been proposed to 

investigate the mechanics of landslides (Hungr and 

McDougall, 2009; van Asch et al., 2007). van Asch et al. 

(2007) described slope movements as occurring in three 

phases. The first phase, pre-failure, includes all the 

deformation that occurs prior to and ultimately determines 

the triggering factors for large scale slope failure. These 

triggering factors then initiate the second phase, failure, 

which leads to the creation of a continuous shear surface 

or slip plane along which the mass can slide upon. Once 

the mass is detached along this slip surface, the final post-

failure stage occurs. This stage is characterised by 

significant motion of the landslide mass which is 

dominated by collisional forces and motion of the granular 

material. Given the complexity of landslides, a major 

challenge is to incorporate all phases of an event within 

one numerical framework. 

The pre-failure and failure stages of a landslide are best 

modelled using continuum soil mechanics approaches 

because in this phase the slope responds as an equivalent 

elasto-plastic medium. The post failure stage, however, is 

a more dynamic process in which the continuum 

assumption no longer holds and is therefore better 

predicted using a granular dynamics approach. A 

combination of continuum and discrete techniques is 

therefore necessary for a correct representation of the 

material behaviour. In this paper Smoothed Particle 

Hydrodynamics (SPH) is combined with the Discrete 

Element Method (DEM) to simulate a landslide. To 

predict the onset of instability, a yield criterion suitable for 



 

 

Copyright © 2012 CSIRO Australia 2 

soils and rocks has been implemented in SPH and is 

presented in the next section. The failure plane predicted 

by SPH determines the initial volume of mobilized 

granular material. The continuum representation of this 

volume is then converted into a discrete representation for 

the DEM phase. A combination of factors such as the 

displacement of the slope, the amount of plastic strain rate 

and accumulated plastic strain are used as indicators of 

slope failure for the transition from a continuum to a 

discrete representation. In this way SPH and DEM can be 

embedded into one numerical framework to simulate all 

phases of landslides. The SPH predictions of the onset of 

slope failure were compared against available data from 

the literature to validate the model and the results are 

reported in this paper. Following this validation, the 

model was used to simulate the subsequent landslide as an 

illustration of this combined approach. 

NUMERICAL FRAMEWORK 

SPH Formulation for soil mechanics 

SPH has been applied to various areas of computational 

solid mechanics such as fragmentation in solids (Randles 

and Libersky, 1996), impact of elasto-plastic materials 

(Cleary, 2010), brittle fracture in rocks (Das and Cleary, 

2010) among others. Most of these studies either did not 

consider plasticity in the constitutive material behaviour or 

assumed a pressure independent plastic response valid for 

certain types of materials such as metals. However, a 

different approach is required in slope stability analysis of 

soils and rocks because the plastic response of these 

materials is known to be pressure dependent. Recently,Bui 

et al. (2008) proposed an SPH formulation suitable for 

soils and rocks, based on a Drucker-Prager (D-P) yield 

criterion. In this paper we also consider a D-P criterion to 

model the plastic behaviour of materials and predict the 

initiation of a macroscopic instability in a slope. 

Conceptually, SPH is a continuum method that can be 

used to solve partial differential equations for a deforming 

volume of material discretized using a set of Lagrangian 

particles. Slope stability requires the solution of both the 

continuity and momentum equations, which in SPH form 

may be written respectively as follows (see (Monaghan, 

2005) for details): 
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where ab is an artificial viscous stress term as described 

in (Monaghan, 1992).This includes a Monaghan style 

tensile instability correction with coefficient 0.3. 

These equations must be supplemented with appropriate 

constitutive laws that are suited to the medium and 

circumstances under consideration. In standard elasto-

plasticity a predictor-corrector scheme is generally used as 

follows. The material is first assumed to respond 

elastically and the corresponding elastic stress tensor 

predicted. If the predicted stress state is found to lie 

outside the yield surface a plastic correction is required to 

ensure that the point in the stress space stays on this 

surface. 

In SPH the elastic response of the material is generally 

assumed hypoelastic and of the form: 
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The Jaumann stress rate 
J is defined as: 

  J
        (4) 

The stress tensor can further be decomposed into its 

deviatoric and volumetric part: 

1S P         (5) 

where the pressure P is defined as /3σP kk  and is 

positive in compression. 

The first step of the prediction-correction scheme is to 

assume that the deformation is elastic and to identify D 

with De in Eq. 3. 

Using the stress decomposition of Eq. 5 in Eq. 4 and 

substituting into Eq. 3 leads to the following elastic 

prediction: 
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To check the validity of the elastic prediction, a D-P yield 

criterion is considered as follows: 
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0
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kPατ         (7) 

in which  and k are material parameters. It is customary 

to calibrate the D-P criterion so that it approximates the 

Mohr-Coulomb yield envelope under specific loading 

conditions. For example, the following calibration is 

introduced to match both criteria under plane strain 

conditions: 
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If the D-P yield criterion is met the material is yielding. 

Furthermore, if the elastic strains are small compared to 

the plastic strains, then the following relation holds: 

pe
DDD     .     (9) 

Thus the plastic correction can be expressed as: 

 peJ DDC  :    .     (10) 

A flow rule is required to estimate the flow due to plastic 

strain. In soil mechanics the plastic flow is typically 

represented with a non-associative flow rule: 

σ
D






g
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The plastic potential g takes the form: 

Pβτg    .      (12) 

Using this potential in Eq. 11 leads to: 
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which shows that for this model both the deviatoric and 

volumetric strains are affected by plastic deformation. 

Eqs. 6, 10 and 13 can now be combined to derive the final 

expression for the deviatoric and volumetric components 

of the stress tensor: 


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The plastic multiplier ΔtλΔλ   is determined by 

enforcing that the stress state lies on the D-P yield surface. 

Since linear hardening is assumed for the cohesion, the 

plastic multiplier can be written in closed form as follows: 

hKβαG
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ee
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The D-P yield surface may be represented by a cone in the 

stress space with a point of singularity at the apex. At this 

point, a special procedure is required for the stress 

correction (de Souza Neto et al., 2008) as the above 

procedure can lead to unphysical results. In practice, we 

can detect if a point must be brought back to the apex if 

the following condition is satisfied: 

0
τ

GΔλ
1

e
         (16) 

This is equivalent to predicting a negative equivalent shear 

stress τ. In this case, the deviatoric stresses are set to 0 and 

a return to the apex is performed by a pressure correction 

due to the volumetric strains only. 

The slope stability analysis consists of two loading steps. 

In the first step, the initial stress field due to gravity is 

determined. To prevent the slope from failing in this 

phase, a large value of the cohesion is used. The 

simulation is continued until a mechanical equilibrium is 

found. Then the cohesion is reset to its physical value in 

order to analyse the stability of the slope. 

As discussed by Bui and Fukagawa (2011), it is necessary 

in the first loading step to add a damping term to avoid 

spurious oscillations around equilibrium. To achieve this, 

the momentum equation (2) was simply modified by 

adding a damping vector Da written as follows (Bui and 

Fukagawa, 2011): 

i

a

i

a η vD          (17) 

where  is a damping coefficient defined as follows: 

2lρ

E
ξη  .        (18) 

In this equation  is a scaling parameter and l represents 

the smoothing length used in the SPH discretization. 

Failure detection and slip surface estimation 

By using the D-P stress strain model for the slope stability 

analysis, the pre-failure (stable) and failure stages of 

landslide events can be effectively represented. In order to 

predict the landslide run-out, spreading and damage, a 

transition from the D-P based SPH model to the post-

failure granular dynamics model (DEM) is required. For 

this transition, a method is proposed for detecting the 

critical point of failure and, if failure has occurred, the slip 

surface that has developed. 

After loading, the slope deforms (elastically or plastically 

based on the D-P criterion) due to the internal stresses 

generated by its weight until it forms either a new stable 

configuration or a contiguous shear surface in the case of 

failure. Once the slope has failed or stabilised, its 

cumulative displacement will become linear, following the 

standard model for D-P material behaviour. The average 

acceleration of the entire slope at this time will be 

approximately zero, since the velocity V will be constant 

for a linear displacement. This transition point between 

non-linear and linear displacement was identified as the 

point of global failure by van Asch et al. (2007) in an 

analysis of the Super-Sauze mudslide. Similar behaviour is 

found for slopes analysed in our model, as will be 

discussed in the results section. This allows for simple 

detection of the critical point being when ΔV/ Δt becomes 

sufficiently close to zero. This method works for both 

stable and failed slopes and is relatively efficient, 

eliminating the need to store, track and evaluate the 

linearity of displacement. 

Once the critical point has been reached, a decision on 

whether failure has occurred or the slope has stabilised is 

required. For stabilised slopes, the average displacement 

of the slope should be negligible. However, for unstable 

slopes, the displacement will be much larger as the slope 

continues to deform. We therefore choose to specify a 

maximum displacement threshold, above which a slope is 

considered to have failed. To reduce the scale dependence 

of this value, it is normalised by the slope height. The 

maximum displacement threshold for failure is likely to be 

dependent on local conditions and material properties, and 

is therefore used as a configurable parameter in the slope 

detection. 

If a failure has occurred on the slope, then the transition to 

a discrete particle representation for the post-failure 

landslide is performed. The mass of mobilised material in 

the landslide is bounded by the failure surface below and 

at the top by the free surface of the slope. At the start of 

the landslide phase the volume between these two surfaces 

is filled with densely packed discrete particles. The 

particles have a shape and size distribution that gives bulk 

material properties (void ratio, angle of repose) similar to 

that of the slope material. The failure plane which defines 

the lower boundary and the surface on which the DEM 

particles can slide upon is located along the region with 

the highest shear, expressed through the equivalent plastic 

shear strain rate. 

DEM landslide prediction 

Once a slope failure is detected and the slip surface has 

been identified, the post failure stage modelling can 

commence. Several methods have been developed to 

predict landslide dynamics, an overview of the most 

common methods can be found in van Asch et al. (2007). 

Here we use three dimensional DEM, a meshless 

numerical method that models collision dominated 

systems at the particle level. Landslide modelling using 

DEM in three dimensions has previously been 

demonstrated by Cleary (2004, 2009) and Cleary and 

Prakash (2004). In this implementation we represent the 

particles as non-round super-quadrics. For details of the 

method used, refer to Cleary (2004). 
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RESULTS 

A simple slope stability benchmark has been used to 

validate the SPH model of slope stability analysis. This 

example will then be used to illustrate the combination of 

SPH with DEM to simulate a complete slope collapse. 

SPH predictions of slope stability 

The geometry consists of an unstable slope as shown in 

Figure 1 and is taken from (Zienkiewicz et al., 1975). This 

problem was originally solved in 2D by Zienkiewicz et al. 

under plane strain conditions. We model the system 

instead in 3D using 10 m wide transverse slice with 

periodic boundary conditions. The third dimension cannot 

be avoided in the analysis of real landslides so needs to be 

included in the method formulation and testing. 

Figure 1: Cross-section of the unstable slope with key 

locations shown (in m).  

In the first loading step where gravity was applied, a value 

of 0.02 for  was found sufficient to damp the undesired 

oscillations. This value is consistent with that reported in 

Bui and Fukagawa (2011). 

In the second step, the damping term was turned off. The 

dilatancy coefficient  was assumed equal to the friction 

coefficient . The dilatancy angle has been found to play a 

relatively minor role on the onset of slope instability 

(Zienkiewicz et al., 1975) therefore the precise value of 

this parameter is unimportant in the present simulations. 

The other material properties used are given in Table 1. 

Material  

properties 

E 

(MPa) 

  () ρ 

(kg.m-3) 

Value 200 0.25 20 2038 

Table 1: Material properties used in the SPH simulations. 

Zienkiewicz et al. (1975) determined the critical cohesion 

below which the slope would become unstable to be about 

3 kPa for the configuration of Figure 1. We ran a number 

of simulations with different values of cohesion (starting 

from 30 kPa down to 1 kPa) to assess the ability of this 

model to accurately predict the critical cohesion at failure. 

In all simulations the particle separation was set to 0.2 m 

which required about 640,000 particles for the slope 

discretisation. 

Figure 2 displays the average displacement of the slope for 

cohesion cases ranging from 1 kPa to 30 kPa. The 

displacement is expressed as a percentage of the slope 

height (10 m in this case). At time t = 1.1 s, the cohesion 

was lowered to the physical value ranging from 1 kPa to 

30 kPa as explained earlier. This causes the sudden 

displacement as the slope is no longer in mechanical 

equilibrium. For stable configurations the velocity of the 

slope will rapidly tend back to zero as a new equilibrium 

is reached. This can be clearly seen in Figure 2 for 

cohesion values from 4 kPa to 30 kPa. While a small 

motion was still recorded in these cases, its relative value 

was sufficiently small to be considered negligible. In 

contrast, for unstable configurations the displacement 

keeps increasing, as is observed in Figure 2 for cohesion 

values ranging from 1 to 3 kPa. From this graph we can 

infer that the critical cohesion below which the slope 

becomes unstable is between 3 and 4 kPa, which is in 

good agreement with the results of (Zienkiewicz et al., 

1975). 
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Figure 2: Normalised slope displacement for cohesion 

values from 1 to 3 kPa (unstable, black) and 4 to 30 kPa 

(stable, grey). 

A close-up view of the cross-section of the slope shaded 

by the von Mises equivalent plastic strain is shown in 

Figure 3, at t = 5 s (about 4 s after the lowering of the 

cohesion), for three different values of cohesion 

corresponding to the three regimes of mechanical 

response. The post-failure part of the SPH simulations 

shows the mechanical response of the slope when 

modelled as an elasto-plastic continuum medium. 

 For a cohesion of 30 kPa (Figure 3a), the plastic strain 

does not exceed 0.4%, with higher plastic strains 

found at the foot of the slope and close to the 

boundaries. No failure plane is predicted in this case 

as the slope is inherently stable.  

 For a cohesion of 3 kPa (Figure 3b), a clear region of 

localised plastic deformation is predicted with a plastic 

strain within the shear band estimated at about 10%. A 

region of even higher plastic strain is found at the 

surface of the slope (the thin red line on the top 

surface of the slope in Figure 3b), where the plastic 

strain reaches 20%. Here, the pressure due to gravity is 

zero and therefore does not play a stabilising role, 

meaning that points near the surface can readily fail in 

tension for small values of cohesion. According to the 

D-P criterion, this material will therefore yield and 

large plastic strain will be predicted. It would be more 

accurate to allow for the initiation and development of 

tensile cracks near the surface since the material will 

likely fail before it can actually yield. This illustrates 

ones of the advantages of a discrete (DEM) modelling 

approach since cracking is naturally supported while 

continuum modelling of soil ceases to be valid.  

 For cohesion of 1 kPa (Figure 3c), the band of 

localised plastic deformation is wider and much higher 

values of plastic strain (about 25 %) are predicted 

(15;15) 

(45;5) 
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within it. Even larger regions of higher plastic strain 

(more than 100 %) are predicted near the surface. The 

shape of the slope at this time is markedly different to 

that in Figure 3b. The comparatively small value of 

cohesion causes more material to deform plastically. 

This is evidenced by the difference in shape between 

Figure 3b and 3c. In Figure 3b the block above the 

failure plane retains its original shape while in Figure 

3c the upper block has experienced stronger 

deformation. Again, these observations indicate that a 

DEM model will be more appropriate for the post-

failure analysis because the large amount of failed 

material will behave more as a collection of interacting 

discrete entities rather than as a continuum. 

 

Figure 3: SPH predictions of equivalent plastic strain at 

t = 5 s. a) c = 30 kPa (stable regime), b) c = 3 kPa (critical 

limit), c) c = 1 kPa (unstable regime). A different scale 

range has been used in each case to clearly display the 

strain field contours. 
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Figure 4: Cumulative slope displacement at different 

heights with x = 25 m for cohesion 3 kPa. After failure, 

the displacement becomes linear. 

Figure 4 shows the slope displacement over time at 

different heights along the centre of the slope (x = 25 m in 

Figure 1).  The slope studied had cohesion of 3 kPa. The 

displacement increases with time for the higher points on 

the slope (y = 10 m and y = 7 m), but remains fairly 

constant after 1.5 s at points lower than y = 6 m. The 

displacement is initially non-linear, becoming linear at 

approximately 2 s. The normalised displacement threshold 

was specified at 0.1%, based on the onset of instability 

shown in Figure 3. Using this displacement value, the 

slope was predicted to have failed at 2 s. 

 

Figure 5: (a) Slip surface (black line) and strain rate (in   

s-1) at failure, and (b) slip surface and cumulative plastic 

strain after 5 s. 

After failure, the geometry of the slip surface was 

calculated, based on the regions of highest shear. Figure 

5(a) displays the strain rate and calculated slip surface at 

the time of failure (t = 2 s) for a slope with a cohesion of 

3 kPa. The slip surface lies along the centre of the high 

strain band and coincides with the highest accumulated 

plastic strain of the slope after 5 s shown in Figure 5(b). 

This suggests that an estimate of the slip surface based on 

the instantaneous strain rate is reliable. 

The volume between the slip surface and top surface of the 

slope was filled with DEM particles with properties 
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matching the material properties of the slope. The particles 

had a fairly rounded shape, with a uniform distribution of 

aspect ratios between 0.7-0.8 and 0.8-0.9, with a major 

axis length between 0.25 and 0.50 m. In this instance, we 

assumed the particles were not cohesive, since after failure 

the sliding mass is essentially non-cohesive. 

DEM simulations of post failure collapse 

After transition of the mobilised slope mass to the discrete 

representation, the resulting DEM particles then move 

freely under the load applied by the particles above. The 

flow immediately after the transition is shown in 

Figure 6a. A small band of particles near the base of the 

slip plane are moving at approximately 1 m/s. The front of 

the avalanche is travelling faster at approximately 2 m/s. 

The particles flow down the slope along the failed slip 

plane until they come to rest. Figure 6b shows the 

landslide 4 s after failure. Almost all of the material is 

moving as a single mass at the same speed (2.5 m/s). The 

final landslide deposit is shown in Figure 6c. It has 

stopped with approximately half the material remaining on 

the failed slip plane and the remainder coming to rest on 

the horizontal floor.  

 

Figure 6: DEM prediction of the avalanche at (a) just 

after failure, (b) 4 s after failure, and (c) at rest, 8 s after 

failure. 

The simplified geometry of this slope means that the 

avalanche process is not complex, since it lacks 

topographical features such as gullies and ridgelines which 

can have a significant effect on the post-failure flow. 

However the inclusion of such features has been 

demonstrated by Cleary and Prakash (2004). 

CONCLUSION 

A combined SPH-DEM approach has been developed for 

the simulation of all phases of landslides. A non-

associative Drucker-Prager plastic model has been used 

with SPH to determine the onset of slope failure. The 

displacement of the slope, the equivalent plastic strain and 

strain rate are all used as combined indicators to identify 

failure initiation and the mobilised landslide mass. This is 

then converted to a discrete form and its subsequent 

collapse, flow and deposition are predicted using DEM.  

The SPH predictions have been compared to available 

data from the literature and close agreement was found for 

the estimation of the critical cohesion that leads to the 

initiation of a landslide. After this initial model validation, 

an integrated framework was illustrated by considering the 

post-failure analysis of the slope using DEM. DEM was 

able to predict the motion of the material along a solid 

surface, whose location was defined by the shear plane, 

and can allow for estimations of run-out distance and final 

deposit shape of the landslide. This new approach should 

enable better estimation of risks and potential costs 

associated to slope failures and landslides. 
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