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ABSTRACT 
The conventional Discrete Element Method (DEM) 
typically has a one-to-one correspondence between 
number of particles in the simulation, N
of particles in the system being simulated, 
large scale industrial systems usually involve prohibitively 
high n for a fully resolved simulation. These are then 
usually modelled with N << n, over a limited domain or 
with a larger particle diameter and the corresponding 
assumption of scale invariance. These assumption
however, especially problematic in systems where 
granular material interacts with gas flow, as the dynamics 
of the system depends heavily on n. This has led to a 
number of suggested modifications for coupled gas
DEM to effectively increase the number of particles being 
simulated. One such approach is for each simulated 
particle to represent a cluster of smaller particles and to re
formulate the DEM based on these clusters. This, known 
as a ‘coarse grain’ method, pote
simulations with N ~ n for low computational cost. We 
investigate the effectiveness of this coarse grain approach 
for gas flow through particle beds using resolved and 
coarse grain models with the same effective particle 
numbers. The pressure drop and fluidisation 
characteristics in the beds are measured and compared, 
and the relative saving in computational cost is weighed 
against the effectiveness of the coarse grain approach.

INTRODUCTION 
The rapid and accurate simulation of coupled gas
system has become increasingly important from an 
industrial perspective for modelling applications such as 
fluidised beds, pneumatic conveyers, die filling and 
raceway formation. Popular approaches for computational 
methods include two-fluid methods, in which the particle 
phase is represented as an incompressible fluid with a 
specialised stress-strain relation, and coupled discrete 
element (DEM) and CFD methods, in which the motion of 
each particle is simulated using the DEM, coupled by drag 
relations to a background fluid flow field. Although two
phase methods are fast and effective at capturing 
fluidisation dynamics, computational resolution can limit 
the resolvable small scale particle flow structures
Hoef et al. 2006). Coupled DEM and CFD 
at a granular level, and are capable of resolving the motion 
of each grain within the system. This ability makes them 
exceptionally powerful for resolving the granular 
dynamics over all length scales within the system. 
detail, however, comes at a computational cost which 
scales as O(N), where N is the number of simulated 
particles in the system. As most industrial systems of 
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The conventional Discrete Element Method (DEM) 
one correspondence between 

N, and the number 
of particles in the system being simulated, n. However, 
large scale industrial systems usually involve prohibitively 

for a fully resolved simulation. These are then 
, over a limited domain or 

with a larger particle diameter and the corresponding 
invariance. These assumptions are, 

however, especially problematic in systems where 
granular material interacts with gas flow, as the dynamics 

. This has led to a 
number of suggested modifications for coupled gas-grain 

to effectively increase the number of particles being 
simulated. One such approach is for each simulated 
particle to represent a cluster of smaller particles and to re-
formulate the DEM based on these clusters. This, known 

potentially emulates 
for low computational cost. We 

investigate the effectiveness of this coarse grain approach 
for gas flow through particle beds using resolved and 
coarse grain models with the same effective particle 

ure drop and fluidisation 
characteristics in the beds are measured and compared, 
and the relative saving in computational cost is weighed 
against the effectiveness of the coarse grain approach. 

The rapid and accurate simulation of coupled gas-grain 
system has become increasingly important from an 
industrial perspective for modelling applications such as 
fluidised beds, pneumatic conveyers, die filling and 

Popular approaches for computational 
in which the particle 

phase is represented as an incompressible fluid with a 
strain relation, and coupled discrete 

element (DEM) and CFD methods, in which the motion of 
each particle is simulated using the DEM, coupled by drag 

to a background fluid flow field. Although two-
phase methods are fast and effective at capturing 
fluidisation dynamics, computational resolution can limit 
the resolvable small scale particle flow structures (van der 

led DEM and CFD methods work 
and are capable of resolving the motion 

of each grain within the system. This ability makes them 
resolving the granular 

dynamics over all length scales within the system. Such 
mes at a computational cost which 

is the number of simulated 
ost industrial systems of 

interest contain many more particles than are able to be 
simulated within reasonable timeframes a number of 
methods to reduce N are usually applied in simulations. 
These include reduction in the geometr
and/or application of periodic boundary conditions, to 
exploit symmetries within the system being modelled, 
restriction of particle sizes, such 
and application of algorithms to capture the dynamics of 
sub-resolution scale particles. Of the last of these, the most 
interesting are representative particle models, in which one 
‘coarse scale’ DEM particle represents a collectio
actual ‘fine scale’ particles in the simulation.
diagram of this method is shown in two dimensions in Fig. 
1, where the dashed circle represents a coarse scale 
particle made up of a number of fine scale particles.
 

Figure 1: A coarse scale particle representing a collection 
of fine scale particles. 

For large systems of particles 
unfeasible to run a DEM simulation with 
representative particle methods, however, allow the 
number of fine scale particles Nf 

smaller, computationally feasible, number of coarse scale 
particles, Nc, are actually used in the DEM simulation. 
Let: 

�� � ��� 

where � is the number of fine scale particles within a 
coarse scale particle. The ratio �
the ratio of coarse and fine scale particle volumes, such 
that: 

� � ��
�� � ���

��	
where V is the particle volume and 
and, throughout, we employ the superscript 
a coarse scale variable and f to represent a fine scale 
particle. Let: 


 � ��
��  

where the scaling factor 
 �
simulation. This gives Eq. (1) as:
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many more particles than are able to be 
simulated within reasonable timeframes a number of 

are usually applied in simulations. 
geometric volume modelled 

and/or application of periodic boundary conditions, to 
exploit symmetries within the system being modelled, 

such as omitting fine particles, 
and application of algorithms to capture the dynamics of 

Of the last of these, the most 
interesting are representative particle models, in which one 

DEM particle represents a collection of 
particles in the simulation. A schematic 

diagram of this method is shown in two dimensions in Fig. 
1, where the dashed circle represents a coarse scale 

number of fine scale particles. 

 

A coarse scale particle representing a collection 

or large systems of particles it is computationally 
to run a DEM simulation with N = n. Such 

representative particle methods, however, allow the 
f to be equal to n, where a 

smaller, computationally feasible, number of coarse scale 
, are actually used in the DEM simulation. 

(1) 

is the number of fine scale particles within a � is chosen to be equal to 
the ratio of coarse and fine scale particle volumes, such 

� 	�
 (2) 

is the particle volume and d the particle diameter 
and, throughout, we employ the superscript c to represent 

to represent a fine scale 

(3) 

� �� is chosen for the 
gives Eq. (1) as: 
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�� � ��

�  (4) 

This dependence of �� on s-3 gives representative particle 
models their strength, as the computational cost scales as 
O(s-3n). 
 Such models were first suggested by Kazari et al. 
(1995). A later development to the model was made by 
Sakano et al. (2000), in which the coarse scale particle was 
assumed to be a sphere containing packed fine scale 
particles in an FCC arrangement. However, this method 
produced bubbles in fluidised beds smaller than 
experimentally observed bubbles (Mokhtar et al., 2012). A 
model called the ‘similar particle assembly’ (SPA) model 
has been given by Kuwagi et al. (2004), based on particle 
scaling arguments. This model has been shown to give 
similar results for s = 3, 6 in fluidised beds (Mokhtar et 
al., 2012).  Sakai introduced a closely related model called 
the ‘coarse grain model’ (CGM) which, additionally, 
incorporates energy conservation arguments between the 
coarse particle and group of representative particles (Sakai 
et al. 2009, 2010). 

REPRESENTATIVE PARTICLE APPROACH 

DEM is a Lagrangian method for modelling the individual 
trajectories of every particle in a granular system. The 
equation of motion for a particle in a gas flow field is 
given by: 

� ���� � �� � �� � �� � �� (5) 

where m is the particle mass, v the velocity, Fc the 
collisional forces, Fd the drag force, Fp the force from the 
gas pressure gradient over the particle, and g the 
gravitational acceleration. DEM calculates the collisional 
forces, Fc, and performs a discrete time-integration of Eq. 
(5) to give the particle velocities and positions at the next 
timestep. In systems with gas flow a CFD method is used 
to calculate the gas flow through a granular media. The 
CFD and DEM methods are calculated using drag 
relations, which give Fd and Fp. 
 The collisional force is composed of the normal 
collisional force, Fn, and the tangential collisional force, 
Ft, acting on the particle, �� �  �� � ��. These force 
components act along the normal and in the tangent plane 
at the contact point, respectively. The magnitude of the 
normal force is given by a linear-spring dashpot model: 

�� � ���� � ���  (6) 

where kn is a spring stiffness, Cn is the normal damping 
coefficient, which gives a required coefficient of 
restitution, and vn is the relative normal speed. The 
magnitude of the tangential force is calculated 
incrementally using: 

�� � �!" # $������ � �� % ��Δ�' (7) 

where $ is the Coulomb coefficient of friction, �� a 
tangential spring stiffness, vt the relative tangential 
velocity, Δ� the time-step and �� a tangential damping 
coefficient. The incremental sum is taken over the 
duration of the contact, and models the tangential elastic 
deformation of the surface, limited by the Coulomb 
friction $��, acting in the direction opposing the applied 
force. 

 The gas-particle drag force is given by: 

��(�) � *+��(�),-.|01|+021 (8) 

where �� is the drag coefficient for a particle of diameter 
d, A the cross sectional area projected in the direction of 
the gas flow field, -. the gas density, and 01the relative 
gas-particle velocity, where a normal is represented by the 
circumflex. The drag coefficient �� is a strong function of 
both the local bed porosity and the Reynolds number. The 
gas pressure gradient force is given by: 

�� � ��34 (9) 

where Vp is the particle volume and p the gas pressure. 
 Representative particle approaches are derived by 
Sakai et al. (2010) and Mokhtar et al. (2012) using the 
following approach. First, the equation of motion for a 
fine scale particle is considered, given by Eq. (5): 

�� ���
�� � ��� � ��� � ��� � ���5��6 � ��� (10) 

Taking the sum of both sides over the number of particles 
in a coarse scale particle, �, gives: 

�� % ���
��7

� 

���� � %8��� � ��� � ���5��6 � ���9
7

 

(11) 

where it is assumed that the mass of all the fine scale 
particles within the coarse scale particle are the same. The 
velocities of the fine scale particles are also assumed to be 
identical and equal to the velocity of the coarse scale 
particle. This is set to be the average velocity of the fine 
scale particles: 

�� � 1� % ��
7

 (12) 

From Eq. (11) this gives: 

�� ���
�� � ��� � %8��� � ��� � ���5��6 � ���9

7
 (13) 

as ��� � ��. Each of the summations on the right-hand 
side of Eq. (13) are now considered in turn. 

Coarse grain normal Collisional Force 

For collisional forces, the coarse grain is assumed to act as 
a linear superposition of collisions of fine grain particles. 
Eq. (6) gives: 

% ���
7

� ��� % ���7
� ��� % � �

7
 (14) 

From Eq. (12) all the normal velocities are identical. 
Making the further assumption that the coarse scale 
overlap is the average of the fine scale overlaps gives: 

% ���
7

� �8������ � ���� �9 (15) 

Setting the coarse scale particle normal damping and 
spring stiffness as: 

��� � ���� ��� � ���� 
(16) 

gives: 
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% ���
;

� ����� � ��� � � ��� (17) 

Coarse grain tangential Collisional Force 

Using the same assumptions as for the normal force, the 
representative approach gives the coarse grain tangential 
collisional force, Eq. (7), as: 

% ���
7

� �!"
<=
> $ % ���

7� ?����� � ��� % ��Δ�@AB
C

 (18) 

where a tenuous assumption has been made that the 
vectorial sum of the fine grain sliding contacts is equal to 
the coarse grain sliding contact. From Eq. (17), this 
becomes: 

% ���
7

� �!" # $���
� ?����� � ��� % ��Δ�@' (19) 

Setting the coarse scale particle tangential damping and 
spring stiffness as: 

��� � ���� ��� � ���� 
(20) 

gives: 

% ���
7

� �!" # $���
����� � ��� % ��Δ�' � ��� (21) 

Drag force 

The drag force is given by Eq. (8). Summation over � 
gives: 

% ���5��6
7

� *+-.|01|+021��5��6 % ,�
7

 (22) 

where ��5��6 indicates that the drag coefficient is 
calculated using the fine scale particle diameter. For 
spherical particles and using Eqs. (2, 3), this gives the area 
summation as: 

% ,�
7

� ��,�
 (23) 

As the coarse scale drag force is given by: 

���(�) � *+-.|01|+021��(�),�
 (24) 

The drag expression, Eq. (22) becomes: 

% ���5��6
7

� �����5��6 (25) 

Pressure gradient force 

The summation over the pressure gradient force, Eq. (9): 

% ���7
� 34 % ���

7
 (26) 

straightforwardly becomes, from Eq. (2): 

% ���7
� �34��� � 34��� (27) 

Comparison of equations of motion 

In the representative particle approach, the equation of 
motion, Eq. (13), therefore becomes: 

�� ���
�� � ��� � ��� � ��� � �����5��6 � ���  (28) 

where Eqs. (17, 21, 25 and 27) have been used. 
Comparison of Eq. (28) to the corresponding motion for a 
fine scale grain, Eq. (13), shows that the equations of 
motions for the fine and coarse scale grains are identical, 
apart from the drag term. The sub-scale dependency on the 
gas flow from the finer-scale granular material therefore 
acts entirely through this drag term. This result is due to 
inherent assumptions in the model, namely, equating the 
coarse grain overlap and relative velocities with the sub-
cluster average fine particle overlap and their average 
relative velocities. These are strong assumptions, the 
consequences of which have not been evaluated to date.  
 The equations of motion given here are the same as 
the SPA model (Mokhtar et al., 2012) and the CGM 
method (Sakai et al. 2010). The SPA method appears to 
have equal damping and spring stiffness in both the 
normal and tangential directions for both coarse and fine 
scale particles. Such an approach is allowable as the spring 
stiffness can be freely chosen and �� is calculated by the 
DEM to give a required coefficient of restitution. In the 
investigation carried out by Mokhtar et al., (2012) the 
highest value of s is 6, giving � � 216. Setting ��� � ���  

rather than ��� � ���� would therefore make only a slight 
difference to the observed maximum particle overlap.  

The CGM additionally uses an assumption that each 
of the fine scale particles are rotating around their 
individual centres of mass. This assumption leads to the 
inclusion of a scaling term in the equation for rotational 
motion. Here, we make the assumption that the moment 
balance on the collection of fine scale particles is identical 
to that of the coarse scale particle. This appears to be the 
same assumption used in the SPA model. 

Analytical test of a falling particle 

As an initial test case we consider the simplest possible 
gas-grain system: a single particle freely falling in a gas. 
Both a single particle of diameter �� and a cluster of 
particles of diameter �� represented by a coarse particle of 
diameter �� should fall at the same velocity. From Eqs. (8 
and 10), neglecting the pressure gradient, the equation of 
motion for a particle of diameter �� falling in a gas with a 
vertical velocity �F is: 

��F�� � ��5��6 ,�-.2�� �F+ � G � 0 (29) 

which, for a spherical particle, reduces to: ��F�� � �I��5��6 1�� -.- �F+ � G � 0 (30) 

the solution to which has the form �F J tanh O�P. For a 
coarse grain particle, Eqs. (24 and 28) give: ��F�� � ����5��6 ,�-.2�� �F+ � G � 0 (31) 

which reduces to: 

��F�� � �I��5��6 ���� -.- �F+ � G � 0 (32) 



 
 

Copyright © 2012 CSIRO Australia 

But, as ���� � ��, Eq. (32) is exactly the same equation 
of motion as Eq. (30). Therefore both the fine scale 
particle and collection of fine scale particles 
by a coarse scale particle fall at the same rate. For this 
simple analytic case the representative part
therefore gives a correct result. 

IMPLEMENTATION 
The analysis carried out in the previous section has shown 
that a representative particle model can be implemented 
with great simplicity in a coupled DEM
as only the drag term differs between fine and coarse scale 
models. The steps to modify the formulation are as 
follows: 

1. Choose a coarse grain diameter, 
represents a collection of finer particles of diameter ��.  

2. When calculating the drag force, use the drag 
coefficient for ��, ��5��6. 

3. Multiply the drag force by 
 �
apply to the particles. 

All calculations in the DEM method use the coarse grain 
diameter ��, apart from the drag term, which 
as described. 

In our implementation the CFD 
model is based on the constitutive equations for fluid
gas, flow through a porous bed, formulated such that the 
interstitial flow is assumed incompressible. 
covered in detail in Hilton et al., (2010
applied to numerous gas-grain systems
pneumatic conveying (Hilton and Cleary 2011)
raceway formation (Hilton and Cleary 2012)

Computational modelling of a fluidised bed

A model of a fluidised bed was used to compare the 
representative particle method to fully resolved 
simulations. The bed contained spherical particles of 
varying diameter and different gas flow velocities. The 
set-up used is shown schematically in Fig. 2.
inflow with gas velocity �F was applied over the base of 
the particle bed, with an identical outflow over the top of 
the domain. The domain was filled by creating particles 
over a regular grid at the top of the domain and allowing 
them to freely fall under gravity until Q
height had been filled. The boundary conditions in the 
and z directions were solid walls, with a no
velocity boundary condition applied for gas.

The parameters used in the simulations are given in 
Table 1. Each simulation was run for a total of 2 s. The 
grid resolution in the x, y and z directions was 10, giving a grid resolution of 10.2 mm.
 

Parameter  

Particle density -�  

Gas density -.  

Gas viscosity R  

Particle friction $  

Spring stiffness �  

Coefficient of restitution S  

Table 1: Simulation parameters used 

 
The inflow gas velocity was varied from 0.2 to 2 m/s in 
increments of 0.2 m/s. Verification of the pressure 
gradient was carried out by comparing measurements

4 

, Eq. (32) is exactly the same equation 
both the fine scale 

particle and collection of fine scale particles represented 
by a coarse scale particle fall at the same rate. For this 
simple analytic case the representative particle model 

The analysis carried out in the previous section has shown 
that a representative particle model can be implemented 

DEM/CFD formulation, 
fers between fine and coarse scale 

The steps to modify the formulation are as 

Choose a coarse grain diameter, ��, which 
represents a collection of finer particles of diameter 

When calculating the drag force, use the drag 

� �� � ��/�� and 

All calculations in the DEM method use the coarse grain 
which is calculated 

 component of the 
model is based on the constitutive equations for fluid, or 

flow through a porous bed, formulated such that the 
is assumed incompressible. The method is 

2010), and has been 
grain systems, including 

(Hilton and Cleary 2011) and 
(Hilton and Cleary 2012). 

Computational modelling of a fluidised bed 

was used to compare the 
cle method to fully resolved 

spherical particles of 
different gas flow velocities. The 

up used is shown schematically in Fig. 2. A uniform 
was applied over the base of 

e particle bed, with an identical outflow over the top of 
the domain. The domain was filled by creating particles 
over a regular grid at the top of the domain and allowing Q of the domain by 

The boundary conditions in the x 
directions were solid walls, with a no-slip zero 

velocity boundary condition applied for gas. 
The parameters used in the simulations are given in 

Each simulation was run for a total of 2 s. The 
directions was 10 U 30 U

, giving a grid resolution of 10.2 mm.  

Value 1000 kg/m3  1.2 kg/m3  1.8 U 10YZ Pa s 0.1  1.0 U 10I N/m 0.5  

The inflow gas velocity was varied from 0.2 to 2 m/s in 
Verification of the pressure 

measurements from 

the simulations to an empirical expression given by 
(1952): 

�4�\ � -.�F+� �1 � ]^]�̂ 	 �150RO1-.�
where ]^ is the bulk packing fraction, calculated from the 
number of particles multiplied by the volume of each 
particle divided by the total volume enclosing the
is slightly different from the bed packing fraction, 
to the reduction of the packing f
effects near the walls. Fluidisation 
of the bed balances the applied pressure gradient. 
Neglecting wall friction, this is given by:

_�4�\`� � O1 � ]P8-a �
The inflow gas velocity required to reach this
‘lift-off’ velocity. 

Figure 2: Fluidised bed test case set

 

Fluidised bed with fully resolved particles

For comparison, the fluidised bed was first simulated for a 
range of particle diameters, given in Table 2, 
standard coupled DEM-CFD method. These results were 
then compared to simulations using a representative 
particle approach. The pressure gradients as a function of 
inflow velocity are shown in Figs. 3, 4, and 5 for 
particle diameters of 4 mm, 3 mm and 2 mm respectively. 
The Ergun equation, Eq. (33) is shown as a dashed 
in each figure, and the error bars shown one standard 
deviation of the measured pressure gradient
particle bed. The lift-off pressure gradient is also shown a
the horizontal dotted line in each figure.
 

d ]  ]^
2 mm 0.626 0.611

3 mm 0.624 0.604

4 mm 0.623 0.597

5 mm 0.620 0.591

6 mm 0.619 0.587

Table 2: Particle diameters used with 
and bulk packing fraction, and number of particles.

expression given by Ergun 

O1 � ]^P�F� � 1.75	 (33) 

is the bulk packing fraction, calculated from the 
number of particles multiplied by the volume of each 
particle divided by the total volume enclosing them. This 
is slightly different from the bed packing fraction, ], due 

reduction of the packing fraction from boundary 
Fluidisation occurs when the weight 

of the bed balances the applied pressure gradient. 
Neglecting wall friction, this is given by: 

P8 � -.9G (34) 

The inflow gas velocity required to reach this point is the 

 

: Fluidised bed test case set-up. 

Fluidised bed with fully resolved particles 

For comparison, the fluidised bed was first simulated for a 
range of particle diameters, given in Table 2, using a 

CFD method. These results were 
then compared to simulations using a representative 

The pressure gradients as a function of 
inflow velocity are shown in Figs. 3, 4, and 5 for resolved 

m, 3 mm and 2 mm respectively. 
) is shown as a dashed curve 

in each figure, and the error bars shown one standard 
pressure gradient within the 

off pressure gradient is also shown as 
the horizontal dotted line in each figure. 

^  N 

0.611 291,914 

0.604 85,585 

0.597 35,640 

0.591 18,079 

0.587 10,374 

Particle diameters used with corresponding bed 
and bulk packing fraction, and number of particles. 



 
 

Copyright © 2012 CSIRO Australia 

Figure 3: Pressure gradient for c � d mm

Figure 4: Pressure gradient for c � f mm

Figure 5: Pressure gradient for c � g mm
The behaviour of the fluidised bed was exactly as 

expected, closely following the empirical expression for 
all particle diameters until the pressure gradient reached 
the bed weight. At this point the bed fluidised, 
characterised by a large spread in instantaneous 
gradient and, visually, by well-known bubbling and 
slugging characteristics (van der Hoef
shown in Fig. 6 for 2 mm particles. Graphs of diameter 6 
mm and 5 mm have been omitted due to space limitations, 
but show the same behaviour. 

5 

 mm particles. 

 mm particles. 

 mm particles. 

The behaviour of the fluidised bed was exactly as 
expected, closely following the empirical expression for 
all particle diameters until the pressure gradient reached 

s point the bed fluidised, 
instantaneous pressure 
known bubbling and 

oef et al. 2006), as 
. Graphs of diameter 6 

5 mm have been omitted due to space limitations, 

 

Figure 6: Fluidisation behaviour in a bed with 
resolved particles of diameter 2 mm and an inflow 
velocity of 1.0 m/s. A cross section over the 
and the particles are shaded by their velocity in the vertical 
(y) direction. 

Comparison with representative particle

The representative particle method was used to simulate 
fine particles of 4, 3 and 2 mm using a coarse grain size of 
6 mm. A summary of the parameters used and relative 
computational time compared to the fully resolved 
simulations is given in Table 3.
Mokhtar et al., (2012), the spring stiffness was set to the 
same value in each simulation, given in Table 1.

 ��   ��    
  
2 mm 6 mm 3.0 

3 mm 6 mm 2.0 

4 mm 6 mm 1.5 

Table 3: Parameters for the 
simulations.  h/hijk is the ratio of computational time 
taken for the fully resolved simulation, 
representative, coarse grain, simulation, 

The pressure gradients for the representative method 
as a function of inflow velocity are shown in Figs. 
and 9 for particle diameters with fine grain diameters of 4 
mm, 3 mm and 2 mm respectively.
results from the fine scale and ful
at the same particle diameter show that the fluidisation 
characteristics match reasonably well
basic sub-scale drag dependency. The 
particle method also matched the Ergun expression until 
the lift-off velocity was reached, although
from the empirical curve was found at smaller pa
diameters. This deviation appear to grow as 
which we attribute to the increasing importance of the 
absent sub-cluster structure and dynamic
the bed showed similar fluidisation characteristics to the 
fully resolved bed. However, the lift
to be moderately higher than the empirical expression 
given by Eq. (34) when using the representative particle 
approach, as shown by the circled
respectively.  

 

 

: Fluidisation behaviour in a bed with fully 
particles of diameter 2 mm and an inflow 

velocity of 1.0 m/s. A cross section over the bed is shown, 
and the particles are shaded by their velocity in the vertical 

representative particle model 

method was used to simulate 
fine particles of 4, 3 and 2 mm using a coarse grain size of 

A summary of the parameters used and relative 
computational time compared to the fully resolved 
simulations is given in Table 3. As in the study by 

, (2012), the spring stiffness was set to the 
same value in each simulation, given in Table 1.  

��  l/lmno 

280,098 68.64 

82,992 15.73 

35,012 4.22 

the representative particle 
is the ratio of computational time 

fully resolved simulation, h, to the  
representative, coarse grain, simulation, hijk. 

The pressure gradients for the representative method 
as a function of inflow velocity are shown in Figs. 7, 8, 

for particle diameters with fine grain diameters of 4 
mm, 3 mm and 2 mm respectively. Comparison of the 
results from the fine scale and fully resolved simulations 
at the same particle diameter show that the fluidisation 

reasonably well, despite the very 
scale drag dependency. The representative 

the Ergun expression until 
, although small deviation 

was found at smaller particle 
This deviation appear to grow as s increased, 

which we attribute to the increasing importance of the 
cluster structure and dynamics. After lift-off 

similar fluidisation characteristics to the 
the lift-off point was found 

than the empirical expression 
when using the representative particle 

shown by the circled points in Figs. 8 and 9, 
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Figure 7 - Pressure gradient for cp � d 

Figure 8 - Pressure gradient for cp � f 

Figure 9- Pressure gradient for cp � g mm
 Despite the higher transition velocity the overall 
behaviour of the representative particle
surprisingly similar results to the fully resolved method, at 
a fraction of the computational time. As shown in Table 3, 
a two second simulation can be completed 
times faster than a fully resolved simulation for 2 mm. For moderate scale ratios s, the model 
appears to be able to provide useful 
acceleration with limited loss of accuracy.

6 

  mm particles. 

  mm particles. 

 mm particles. 

the higher transition velocity the overall 
representative particle method showed 

prisingly similar results to the fully resolved method, at 
a fraction of the computational time. As shown in Table 3, 
a two second simulation can be completed  around 70 

a fully resolved simulation for �� �
, the model therefore 

appears to be able to provide useful computational 
acceleration with limited loss of accuracy. 

CONCLUSION 
Fully resolved and representative 
beds with the same fine scale particle diameters show 
broadly similar pressure and fluidisation characteristics. 
Deviation from the empirical curve given by the Ergun 
relation was found for small fine grain diameters. As the 
maximum ratio used was 
 � 3, 
understand this deviation at larger values of 
off point was also found to be 
expected when using the representative model.

Such straightforward fluidised bed simulations have 
only minor dependence on the system geometry. It is 
likely that in gas-particle systems dominated by inter
or grain-boundary collisions this method may
correct dynamics as the DEM component 
by the coarse grain size. Examples of such systems incl
die filling and discharge of fine powders from narrow 
outlets, both of which are affected by gas, but are 
strongly influenced by geometrical factors. 
testing is necessary to understand the limitation of this 
method in relation to such systems.

For fluidised beds, at least, the ‘coarse grain’ or 
representative particle approach 
plausible method to increase the effective number of 
particles in an extremely straightforward manner
coarse grain simulations can be
time of the fully resolved simulations, and therefore 
provide a significant computational saving with little 
overhead. Although such a method could potentially allow 
industrial systems to be simulated with 
must be undertaken to understand the limitations of the 
model and the many assumptions used to construct it
particular, the behaviour of the model at high values of 
coarse grain scaling factor should be investigated before 
this can become a viable approach for industrial gas
systems. 
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