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ABSTRACT 
The level set method provides a natural framework for 
modelling multiphase phenomena in a Eulerian basis. The 
method is based on the evolution of the signed distance 
function from interfaces between phases of the flow, and 
automatically captures complex topological changes of the 
free surfaces such as breaking and merging. We present an 
extension to the level set method for modelling the 
interaction between fluids and elastic solids, where the 
level set defines the boundary between fluid and solid. The 
multiphase method varies the underlying stress tensor 
depending on the sign of the level set, changing smoothly 
from a rate of strain dependency within the liquid to a 
hypo-elastic strain dependency within the solid. We apply 
the model to two test problems, showing the potential of 
the model for industrial applications involving the coupled 
interaction of deformable elastic solids and fluids.  

NOMENCLATURE 
D  rate of strain tensor 
E  Young’s modulus 
f  body forces 
H  Heaviside step function 
p  pressure ��  2nd invariant of the strain rate tensor 
t  time 
v   velocity 
W   rate of rotation tensor 
 ∆  computational grid dimensions �  infinitesimal strain tensor �   smoothing length ��  2nd Lame parameter �, �	 fluid viscosity ��  1st Lame parameter/solid shear modulus 
  Poisson’s ratio 
ρ  density �   total stress tensor �   deviatoric stress tensor 
  pseudo-time �  level set function 

INTRODUCTION 
The interaction between liquids and solids is a 
fundamental requirement for many types of industrial 
processes. A diverse range of computational methods have 
successfully been introduced and employed to simulate 
such processes, based on a variety of formulations. These 
can be approximately split into two categories – 
Lagrangian and Eulerian methods. Both methods rely on a 
spatial and temporal discretisation of the underlying 
constitutive equations for the system into matrices suitable 
for numerical solution. In Eulerian methods the 

constitutive equations are discretised over a fixed spatial 
grid, whereas in Lagrangian methods the equations are 
discretised over a set of points which deforms in some 
manner with the underlying system. Eulerian methods 
include finite-volume (FV) and finite element methods, 
and were pioneered early in the history of computational 
modelling. Lagrangian methods, such as Smoothed 
Particle Hydrodynamics (SPH), were introduced later 
(Monaghan, 1988) and are currently in widespread use. 

Typically, simulation of fluid-structure interactions 
are more challenging for Eulerian than for Lagrangian 
approaches, as the Eulerian discretisation must conform to 
boundaries within the system. Such boundaries can be 
geometric or, in multiphase systems, interfaces between 
the flow phases. Boundary deformations are especially 
problematic, as they require the expensive step of re-
generating the underlying mesh at each timestep. Recent 
methods, such as the Immersed Boundary method (Mittal, 
2005), have partially overcome these problems, allowing 
complex geometric objects to be incorporated into 
simulations with a basic underlying spatial discretisation. 
Lagrangian methods naturally handle deforming 
boundaries as the underlying spatial discretisation is 
effectively updated at each timestep, making such methods 
extremely effective for simulation of free surfaces and 
interactions between fluids and complex geometric solids.  
However, the spatial discretisation inherent in such 
methods makes specifying advective boundary conditions, 
such as inflows and outflows, problematic. In contrast, 
such advective boundary conditions are trivial to 
implement in Eulerian methods. Lagrangian discretisation 
also leads to factors such as non-smooth boundary 
interfaces, making factors such as curvature difficult to 
determine at phase interfaces. 

The level set method (LSM), introduced by Osher and 
Sethian (1988), is a Eulerian CFD method which allows 
the modelling of free surface flow without explicit 
interface tracking. The method builds on the strengths of 
fixed discretisation Eulerian approaches, allowing the 
simple implementations of boundary conditions and 
computational discretisation based on a conservative 
Navier-Stokes formulation (Sussman et al. 1998). The 
method is based on the passive advection of a scalar 
representing a signed distance function, �, where the 
interface in a two-phase mixture is given by the set of zero 
values of �. This signed distance function gives a positive 
distance from the nearest interface in one phase and a 
negative distance in the other phase. It can be shown that 
the distance function in a flow field with velocity field v is 
passively advected: ���� � �� · �� (1) 
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The characteristic properties of the continuum, such 
as density � and viscosity �, are defined according to the 
sign of the distance function: 

� � ������ � �1 � ������� � � ������ � �1 � ������� 
(2) 

where �� is the density of first phase and �� is the density 
of second phase. The function H is the Heaviside step 
function, given by: 

���� � �0 � ! 0�� � � 01 � " 0# (3) 

However, due to the discontinuity in Eq. (3), a 
smoothed Heaviside function is used for practical 
purposes, where Eq. (3) is smoothed over a characteristic  
length �: 

���� � � 0 � ! ���� $1 � %& � �' ()*+'%& ,- |�| / �1 � " � # (4) 

The smoothed density and viscosity defined in Eq. (2) 
can be used in a standard Navier-Stokes continuum 
formulation: 

� +���� � �� · ���, � ��0 �  � · ��2� � 3 (5) 

where p is the pressure, f are body forces and 2 is the rate 
of strain tensor, 2 �  �� �  ��4. The level set method has 
been used extensively to model free-surface systems such 
as bubbles, droplets (Sethian, 2003) and charged jets 
(Hilton and Van der Net, 2009). 

MODEL EXTENSION FOR ELASTIC SOLIDS 
The starting point for the extended algorithm is the 
Cauchy momentum equation. This describes the general 
momentum transport of a continuum material in an 
Eulerian frame: 

� +���� � �� · ���, � � · � � 3 (6) 

where ρ is the density of the continuum, v the velocity 
vector field, σσσσ the stress tensor and f body forces acing on 
the continuum. The stress tensor is split into an isotropic 
(pressure) part, p, and a deviatoric part, ττττ: 

� +���� � �� · ���, � ��0 �  � · � � 3 (7) 

Furthermore, the material in the continuum is assumed to 
be homogeneous and incompressible, such that: ���� � �� · ��� � 0 5 � · � � 0 (8) 

In our formulation, we assume that the stress tensor 
between a solid, ττττS, and liquid, ττττL, can be varied in a 
similar manner, such that: 

� � �����6 � �1 � ������7 (9) 

We use stress tensors for an hypoelastic solid and a 
Newtonian fluid, which we show can both be calculated 
using the known rate of strain tensor D. For a fluid, the 
deviatoric stress tensor for a Newtonian fluid is given by: �	 � �	2 (10) 

where the incompressibility condition, � · � � 0, has been 
used and �	 is the fluid viscosity. In a isotropic elastic 
solid, at small strain, �, the deviatoric stress tensor is given 
by the linear elastic relation: �� � ��� � ��Tr��� (11) 

where �� and �� are the first and second Lame 
coefficients, respectively. These play an analogous role in 
elastic solids to fluid shear viscosity and fluid bulk 
viscosity. The elastic relation Eq. (11) is only valid for 
small strain rates and cannot be used to model large 
deformations. However, Eq. (11) can be generalised to 
account for large deformations by using a stress rate 
formulation: ∂��∂t � ��2 (12) 

The expression given by Eq. (12) is a basic hypoelastic 
stress rate, which holds for isotropic, homogeneous and 
incompressible elastic solids (Colak, 2004). In this 
formulation, �� is the shear modulus, �� � </2�1 � 
�, 
where E is Young’s modulus and 
 is Poisson’s ratio. As 
the elastic solid is assumed incompressible, the bulk 
modulus has no effect and does not enter into the 
formulation. A closely related model for hyperelastic 
materials has recently been proposed by Sugiyama et al. 
(2011), based on a volume of fluid approach. 

The time derivative of a Cauchy stress tensor, such as 
Eq. (12), does not hold under rotational transformation. To 
ensure Eq. (12) is frame indifferent an objective stress rate 
must used, such as the Jaumann rate (Benson, 1992): 

∂��∂t? � ∂��∂t � ��@ � @�� (13) 

where W is the anti-symmetric rate of rotation tensor @ �  �� � ��4. It should be noted that a number of other 
such objective stress rates exist, such as Truesdell and the 
Jaumann rate can give oscillatory solutions (Johnson and 
Bammann, 1984). However, it is the most straightforward 
and efficient to implement as it only uses the gradient of 
the velocity field, which is already calculated for 2, and 
does not require expensive tensor decompositions. The 
total deviatoric stress is then given by: 

� � ���� A ∂��∂t? B�C
D � �1 � ������	2 (14) 

 
For an interface at ψ(t) = 0 with W = 0 the stress tensor is: 

�~�� A 2B�C
D � �	2~����t���	 ∂�∂t  (15) 

Hence the interface between the solid and liquid phase 
acts as a viscoelastic Voigt material. 

NUMERICAL METHODOLOGY 
The constitutive relations, Eqs. (5, 14) are discretised onto 
a semi-staggered grid with pressure, stress tensors, the 
level set function and porosity defined at the cell centres 
and forces and velocities defined at the cell corners. The 
staggering of the grid cells in this manner reduces the 
formation of ‘checkerboard’ pressure oscillations. 
Advection terms, including the level set advection 
equation, are updated using a conservative finite volume 
MUSCL scheme (Nessyahu and Tadmor, 1990) with a 
MinMod limiter. Diffusion terms are discretised using 
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second order stencils. The system is sol
incremental pressure correction method, where the 
Poisson terms are solved using a pre
conjugate gradient method, with a SSOR
 The stress tensor is calculated in a series of stages. 
First, the velocity gradient, ��, at the centre of each cell is 
evaluated using the values from the edges of the cell. 
Next, these values of �� are used to calculate the rate of 
strain tensor 2 �  �� �  ��4and the rate of rotation tensor @ �  �� � ��4. Eq. (13) is then evaluated using 
second-order accurate half-step temporal 
(Benson, 1992): 

��*FGH � ��* � ��*@ � @��* 

 ��I � ��*FGH � ∆t��2*
 

 ��*F� � ��I � ��I@ � @��I  

After the solid stress tensor is calculated, the total stress 
tensor, Eq. (9) is evaluated and used in 
transport equation, Eq. (7). The steps in Eq. (16) represent 
the numerical integration of the temporal term in Eq. (1

As the level set is advected by the velocity flow field, 
the signed distance property can become
can cause spurious gradients to occur in the level set field, 
resulting in errors to the interface. For this reason, the 
level set must be re-initialised to conform to a signed 
distance function. There is a considerable 
literature devoted to this particular step in the algorithm, 
as it involves the approximate solution of the 
equation, and is therefore an expensive operation to 
perform. Furthermore, the act of re-initialising the level set 
can cause erroneous mass loss near sharp edges on the 
interface. Such mass loss must be accounted for in the re
initialisation scheme. In this implementation we use the 
method originally developed by Sussman 
The Eikonal equation converges to the distance function 
from the interface given by the level set at the start of the 
re-initialisation,  �D: ���
 � sign��D��1 � |��|� ��
 � 0� � �D 

This expression can be evaluated to convergence in the 
pseudo-time 
. However, to correct for mass loss during 
this procedure this expression is evaluated with an 
additional conservation condition within each cell 

��
 A ����Ω � 0 

This results in the following augmented ���
 � sign��D��1 � |��|� �  �O���
 � 0� � �D 

where O��� is chosen by Sussman to be:

O��� � ������
 |��| 
and � is calculated to be: 

� � � P ������
 �sign��D��1 � |�Ω P ������
Ω O���

3 

second order stencils. The system is solved using an 
incremental pressure correction method, where the 
Poisson terms are solved using a pre-conditioned 

SSOR pre-conditioner. 
The stress tensor is calculated in a series of stages. 

, at the centre of each cell is 
evaluated using the values from the edges of the cell. 

are used to calculate the rate of 
and the rate of rotation tensor 

) is then evaluated using a 
temporal discretisation 

(16) 

After the solid stress tensor is calculated, the total stress 
tensor, Eq. (9) is evaluated and used in the generalised 

The steps in Eq. (16) represent 
the numerical integration of the temporal term in Eq. (14). 

is advected by the velocity flow field, 
can become distorted. This 

can cause spurious gradients to occur in the level set field, 
resulting in errors to the interface. For this reason, the 

nform to a signed 
considerable  amount of 

literature devoted to this particular step in the algorithm, 
involves the approximate solution of the Eikonal 

an expensive operation to 
initialising the level set 

can cause erroneous mass loss near sharp edges on the 
interface. Such mass loss must be accounted for in the re-
initialisation scheme. In this implementation we use the 

Sussman et al. (1998). 
equation converges to the distance function 

from the interface given by the level set at the start of the 

�
(17) 

This expression can be evaluated to convergence in the 
. However, to correct for mass loss during 

this procedure this expression is evaluated with an 
additional conservation condition within each cell Ω:  

(18) 

This results in the following augmented Eikonal equation: 

��� 
(19) 

is chosen by Sussman to be: 

(20) 

|��|��
�  (21) 

 
The integrals in Eq. (21) are evaluated
stencil over the neighbouring cells.

APPLICATIONS 
The method was applied to two test case scenarios. The 
first was an elastic block falling in a fluid and impacting 
on a fixed, solid, horizontal cylinder. 
fluid flow through a porous bed, where the porous material 
was a flexible elastic solid. 

Free falling elastic block 

As a first qualitative test case an elastic block freely 
falling under gravity and impacting on a fixed object was
modelled. This case was chosen to test the elastic response 
of the solid material, the interaction with fluid in the 
domain as well as to assess the behaviour of the Jaumann 
rate under large topological rotations. The computational 
domain was a square box, 10 cm
a flat cuboidal elastic solid measuring 2 cm. For ease of set-up this block was modelled using the 
implicit surface equation for a superquadric:��S, U, V� � SW � �4U�W
 

Figure 1 - Time evolution of a free
block with YZ � G[[[. The surface of the elastic solid is 
shaded by the logarithm of the second invariant of the 
stress tensor. 

 

evaluated using a 27-point 
stencil over the neighbouring cells. 

The method was applied to two test case scenarios. The 
elastic block falling in a fluid and impacting 

nder. The second case was 
fluid flow through a porous bed, where the porous material 

test case an elastic block freely 
falling under gravity and impacting on a fixed object was 
modelled. This case was chosen to test the elastic response 
of the solid material, the interaction with fluid in the 

the behaviour of the Jaumann 
rotations. The computational cm on each side, containing 

a flat cuboidal elastic solid measuring 6 cm ]  6 cm ]
up this block was modelled using the 

implicit surface equation for a superquadric: � � � VW � 1 (22) 

 

Time evolution of a free-falling square elastic 
. The surface of the elastic solid is 

shaded by the logarithm of the second invariant of the 
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Figure 2 - Time evolution of a free-falling square elastic 
block with YZ � ^[[[. The surface of the elastic solid is 
shaded by the logarithm of the second invariant of the 
stress tensor. 

After initialisation with Eq. (22) the 
function was found using the Fast Marching Algorithm 
(Sethian, 1998). The density of the block was set to 100 kg/m3, and the density of the surrounding fluid was 
set to approximately that of air, 1 kg/m
freely until it impacted with a horizontal solid cylinder. 
The solid cylinder was implemented by setting the updated 
velocity for all cells within the cylinder to zero at each 
time step. Such an approach is not restricted to fixed 
objects, however, and methods such as the Immersed 
Boundary method (Mittal, 2005) can be
any velocity within the domain. The grid dimensions were 75 ] 75 ] 75 cells, and the simulation was run for 
at a timestep of 10cd s.  

The response of the elastic material 
three different values of ��: 1000, 2000 an
1 and 2 show the results for �� � 1000
respectively. The value of �� � 2000 has been omitted 
it essentially shows intermediate behaviour. The surface of 
the elastic solid is shown in the figures, shaded by the 
magnitude of the logarithm of the second stress invariant, �� � �DD��� � ������ � ����DD � �D�� �

In all simulations the block fell, impact
(t ~ 0.06 s), deformed and rebounded, hit
again (t ~ 0.2 s) before sliding to the side of the cylinder 
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falling square elastic 
. The surface of the elastic solid is 

shaded by the logarithm of the second invariant of the 

After initialisation with Eq. (22) the exact distance 
st Marching Algorithm 

). The density of the block was set to 
, and the density of the surrounding fluid was m3. The block fell 

freely until it impacted with a horizontal solid cylinder. 
by setting the updated 

velocity for all cells within the cylinder to zero at each 
s not restricted to fixed 

objects, however, and methods such as the Immersed 
be used to prescribe 

any velocity within the domain. The grid dimensions were 
cells, and the simulation was run for 0.5 s 

The response of the elastic material was evaluated for 
: 1000, 2000 and 5000. Figures 1000 and �� � 5000, 

has been omitted at 
shows intermediate behaviour. The surface of 

the elastic solid is shown in the figures, shaded by the 
e logarithm of the second stress invariant, � ���� � ��D� . 

, impacted the cylinder 
, hitting the cylinder 

0.2 s) before sliding to the side of the cylinder 

and impacting the solid base (t ~ 0.36 s).
stress distribution over the object before impact
s) can be seen in Figs. 1 and 2, with a high stress 
component around the edges on the und
object. This was caused by pressure gradient over the 
object from the surrounding air, showing 
correctly handles stress transmission over the fluid
boundary. After impact, deformation of the material was 
found to be lower at higher shear modulus, as shown by 
comparing Figs.1 and 2. This can be most clearly seen by 
comparing the degree of bending 
impact (t ~ 0.08 s) between the two simulations.
waves also propagated through the object, initiat
centre on impact and rebounding from the sides of the 
object. Such waves can be seen at t = 0.12 and t = 0.24 in 
the simulation with �� � 1000.  

The numerical method accurately modelled
dynamics of the object. After rotation through 
the cylinder, the object was essentially 
the initial configuration, showing that the level set method 
correctly captured the geometric transformations
object. Furthermore, propagation of stress waves were 
unaffected as the object rotated, showing that Jaumann 
rate, Eq. (13), updated the stress tensor 
objective manner using the half step method given by Eq. 
(16). 

Flexible porous bed 

As a second, quantitative, test of the method we simulate
gas flowing through a porous bed, composed of a pack
of bonded elastic spheres. Flow within porous media is 
strongly dominated by the drag from 
and this case was chosen to investigate th
viscoelastic boundaries, Eq. (15), 
 

Figure 3 – Set-up for gas flow through a flexible porous 
medium. 

A spherical packing was prepared using a discrete element 
simulation and used as the initial
set. The computational domain was a rectangular duct 
with dimensions 11 cm ]  33 cm
bonded spheres of diameter 2.5
grid had dimensions 50 ]  150
spacing ∆ � 2.2]10cf m. The smoothing length 

~ 0.36 s). A non-uniform 
stress distribution over the object before impact (t ~ 0.04 

can be seen in Figs. 1 and 2, with a high stress 
component around the edges on the underside of the 
object. This was caused by pressure gradient over the 
object from the surrounding air, showing that the method 

stress transmission over the fluid-solid 
deformation of the material was 

r at higher shear modulus, as shown by 
This can be most clearly seen by 

comparing the degree of bending just after the initial 
between the two simulations. Stress 

through the object, initiating at the 
centre on impact and rebounding from the sides of the 
object. Such waves can be seen at t = 0.12 and t = 0.24 in 

 
accurately modelled the 

fter rotation through 90° around 
essentially unchanged from 

on, showing that the level set method 
geometric transformations of the 

Furthermore, propagation of stress waves were 
unaffected as the object rotated, showing that Jaumann 
rate, Eq. (13), updated the stress tensor correctly in an 
objective manner using the half step method given by Eq. 

quantitative, test of the method we simulated 
flowing through a porous bed, composed of a packing 

Flow within porous media is 
drag from internal boundaries, 

investigate the effect of the 
, Eq. (15), in the methodology. 

 

flow through a flexible porous 

A spherical packing was prepared using a discrete element 
simulation and used as the initial conditions for the level 
set. The computational domain was a rectangular duct cm ] 11 cm, filled with 5 cm. The computational 150 ] 50, giving a grid 

. The smoothing length � was 
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chosen as 2 grid cells, � � 2∆. The initial set
in Fig. 3. 

Gas was injected into the system at the base and 
drawn from the top at an equal mass flow rate. In order to 
fix the porous block in place zero-velocity boun
conditions are applied over five grid cells (
the side wall boundaries. A set of simulation
out with the inflow velocity fixed at 0.1
shear modulii, ��, of 100, 250, 500, 750 and 1000. 
density of the elastic solid was 10 kg/m
of the gas was 1 kg/mf. The gas viscosity was set to 1 ] 10cd Pa s. 
  

Figure 4 - Pressure along vertical midline for fluid flow 
through a flexible porous medium, with 
of 100, 250, 500, 750 and 1000. 

 

Figure 5 - Pressure gradient along vertical midline for 
fluid flow through a flexible porous medium, with 
modulii, YZ, of 100, 250, 500, 750 and 1000
pressure gradients from 0.1 to 0.25 m are shown as dashed 
lines. 

The pressure drop over the porous bed is shown in Fig.4 
for all shear modulii considered at � �
was measured along the vertical midline along S � 5 cm, V � 5 cm. The pressure drop
linearly over the bed, with the gradient proportional to the 
shear modulus of the bed material. The pressure gradient 
is shown in Fig. 5, along with the average pressure 
gradient within the interior of the bed. The average 
pressure gradient is shown as dashed lines, where the 
interior was defined as U � 0.1 m
Although there were considerable gradient fluctuations 

5 

. The initial set-up is shown 

was injected into the system at the base and 
drawn from the top at an equal mass flow rate. In order to 

velocity boundary 
e grid cells (1.1 cm) from 

the side wall boundaries. A set of simulations were carried 1 m/s and different 
, of 100, 250, 500, 750 and 1000. The mf, and the density 

The gas viscosity was set to 

 

Pressure along vertical midline for fluid flow 
through a flexible porous medium, with shear modulii, YZ, 

 

Pressure gradient along vertical midline for 
fluid flow through a flexible porous medium, with shear 

, of 100, 250, 500, 750 and 1000. Average 
o 0.25 m are shown as dashed 

The pressure drop over the porous bed is shown in Fig.4 � 1 s. The pressure 
was measured along the vertical midline along U at 

. The pressure dropped approximately 
nearly over the bed, with the gradient proportional to the 

shear modulus of the bed material. The pressure gradient 
is shown in Fig. 5, along with the average pressure 
gradient within the interior of the bed. The average 

d lines, where the m to U � 0.25 m. 
considerable gradient fluctuations 

within the bed, the average pressure gradient was found to 
scale in an exact linear manner with the shear modulus
shown in Fig. 6. The pressure distribution over the surface 
of the bed is also shown in Fig. 7 at 
and YZ � 1000. The pressure distribution is very similar 
in both cases, approximately linear in the vertical 
direction, differing only by the magnitude of 
 

Figure 6 – Average pressure gradient over the bed at k � G s against bed shear modulus.

The pressure gradient in the simulations 
be much greater than for gas flow through a bed of 
regular, non-elastic, particles. The Reynolds number for 
this system is ~250, so the pressure gradient for idealised 
gas flow through a bed of spherical particles can be 
determined using the Ergun equation

�0 � +1 � lmf , �|n|�B o150�1 �B|n|
where l is the voidage fraction, d the sphere diameter, 
the gas density and � the gas viscosity. For the parameters 
used in this set up, the Ergun relation gives a pressure 
gradient over the bed of 11 Pap�1000�Pa/m in the simulations. A li
pressure gradient against shear modulus relation in Fig. 6 
has an non-zero intercept at p
porous flow behaviour returns 
excess pressure gradient therefore arises from the elastic 
component of the model.  
 

Figure 7 - Pressure distribution over elastic porous bed 
with shear modulii, YZ, of 100 (left) and 1000 (right) at k � G s. 

within the bed, the average pressure gradient was found to 
scale in an exact linear manner with the shear modulus, as 

The pressure distribution over the surface 
of the bed is also shown in Fig. 7 at � � 1 s for YZ � 100 

. The pressure distribution is very similar 
in both cases, approximately linear in the vertical 
direction, differing only by the magnitude of the gradient. 

 

Average pressure gradient over the bed at 
shear modulus. 

in the simulations was found to 
than for gas flow through a bed of 

particles. The Reynolds number for 
, so the pressure gradient for idealised 

gas flow through a bed of spherical particles can be 
determined using the Ergun equation (Ergun, 1952): � � l��|� � 1.75q (23) 

is the voidage fraction, d the sphere diameter, � 
the gas viscosity. For the parameters 

used in this set up, the Ergun relation gives a pressure Pa/m, in comparison to 
in the simulations. A linear fit to the 

pressure gradient against shear modulus relation in Fig. 6 p�10�Pa/m, so ordinary 
 in the limit �� 5 0. The 

therefore arises from the elastic 

 

Pressure distribution over elastic porous bed 
, of 100 (left) and 1000 (right) at 
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Inspection of the simulations showed that 
pressure gradient was not caused by elas
the bed, as the degree of deformation 
bed was found to be very similar over the range of shear 
modulii used. A close-up view of the top part of the bed is 
shown in Fig. 8 for YZ � 100 and YZ �
of the simulation, k � [. ^ s and k �
circles in these figures indicate the initial position of one 
of the spheres within the bed for comparison. The bed 
deformed approximately 10 mm in the v
with almost negligible difference between both cases.

 

Figure 8 – Comparison of bed deformation 
and YZ � G[[[ at k � [. [, [. ^, G s. 

The boundary conditions, Eq. (15), are therefore 
responsible for this excess pressure, greatly increasing 
relative gas-solid drag though viscoelastic interaction. 
This effect scales linearly with shear modulus, as shown in 
Fig. 6. The flow of viscoelastic fluid through porous 
media has received attention both experimentally 
(Slattery, 1967) and computationally (Ariel, 1993). 
However, to our knowledge such a system with flexible, 
viscoelastic boundaries has not previously been modelled 
and such a linear drag relation between pressure gradient 
with shear modulus has not previously been established.
Further investigation of this  system is planned to fully 
understand the physical nature of this drag relation.
 

CONCLUSION 
The level set method can be extended to model the 
interaction between a Newtonian fluid and an elastic solid. 
This can be implemented by varying the stress tensor over 
the computational domain depending on the sign of the 
level set function. The stress tensor depends only on the 
local strain rate within the fluid, but includes a history
dependant part within the solid. Use of
function causes viscoelastic Voigt behaviour of the 
material over the boundary between the interfaces
 Two test cases were simulated using the model
Elastic falling bodies showed good qualitative behaviour 
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Inspection of the simulations showed that this excess 
pressure gradient was not caused by elastic expansion over 

 within the porous 
bed was found to be very similar over the range of shear 

up view of the top part of the bed is � 1000 at the start 1.0 s. The dashed 
circles in these figures indicate the initial position of one 
of the spheres within the bed for comparison. The bed 

in the vertical direction, 
between both cases. 

 

Comparison of bed deformation for  YZ � G[[ 

The boundary conditions, Eq. (15), are therefore 
responsible for this excess pressure, greatly increasing the 

viscoelastic interaction. 
This effect scales linearly with shear modulus, as shown in 
Fig. 6. The flow of viscoelastic fluid through porous 
media has received attention both experimentally 

ally (Ariel, 1993). 
However, to our knowledge such a system with flexible, 
viscoelastic boundaries has not previously been modelled 

relation between pressure gradient 
with shear modulus has not previously been established. 
Further investigation of this  system is planned to fully 
understand the physical nature of this drag relation. 

The level set method can be extended to model the 
interaction between a Newtonian fluid and an elastic solid. 

ed by varying the stress tensor over 
the computational domain depending on the sign of the 
level set function. The stress tensor depends only on the 
local strain rate within the fluid, but includes a history-

Use of a smoothing 
behaviour of the 

between the interfaces. 
simulated using the model. 

falling bodies showed good qualitative behaviour 

in interaction with solid boundaries
to change in shear modulus. 
boundary-dominated flow through a porous bed showed a 
linear relation between pressure gradient and shear 
modulus. These basic cases highlight the capability of the 
model to fully resolve the coupled dynamics 
solids with a  fluid flow field, showing the potential of the 
model for possible application to
industrial applications. 
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