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ABSTRACT

The level set method provides a natural framewank f
modelling multiphase phenomena in a Eulerian bdsis.
method is based on the evolution of the signedadcst
function from interfaces between phases of the fland
automatically captures complex topological chargfabe
free surfaces such as breaking and merging. Wemptres
extension to the level set method for modelling the
interaction between fluids and elastic solids, whére
level set defines the boundary between fluid arid.sbhe
multiphase method varies the underlying stressotens
depending on the sign of the level set, changingosity
from a rate of strain dependency within the ligtida
hypo-elastic strain dependency within the solid. &dely
the model to two test problems, showing the poabruf
the model for industrial applications involving tbeupled
interaction of deformable elastic solids and fluids
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INTRODUCTION

The interaction between liquids and solids is a
fundamental requirement for many types of induktria
processes. A diverse range of computational methads
successfully been introduced and employed to simula
such processes, based on a variety of formulatibimsse
can be approximately split into two categories —
Lagrangian and Eulerian methods. Both methods melst o
spatial and temporal discretisation of the undegdyi
constitutive equations for the system into matre@gable
for numerical solution. In Eulerian methods the
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constitutive equations are discretised over a figpdtial
grid, whereas in Lagrangian methods the equatioas a
discretised over a set of points which deforms dme
manner with the underlying system. Eulerian methods
include finite-volume (FV) and finite element metlso
and were pioneered early in the history of companat
modelling. Lagrangian methods, such as Smoothed
Particle Hydrodynamics (SPH), were introduced later
(Monaghan, 1988) and are currently in widespread us

Typically, simulation of fluid-structure interactie
are more challenging for Eulerian than for Lagrangi
approaches, as the Eulerian discretisation mugboorto
boundaries within the system. Such boundaries @n b
geometric or, in multiphase systems, interfacesvéen
the flow phases. Boundary deformations are espgciall
problematic, as they require the expensive stepeef
generating the underlying mesh at each timesteperRec
methods, such as the Immersed Boundary method (Mitta
2005), have partially overcome these problemswatig
complex geometric objects to be incorporated
simulations with a basic underlying spatial disis@ton.
Lagrangian methods naturally handle deforming
boundaries as the underlying spatial discretisatisn
effectively updated at each timestep, making suethods
extremely effective for simulation of free surfacasd
interactions between fluids and complex geomeulis.
However, the spatial discretisation inherent in hsuc
methods makes specifying advective boundary candti
such as inflows and outflows, problematic. In castr
such advective boundary conditions are trivial to
implement in Eulerian methods. Lagrangian discatits
also leads to factors such as non-smooth boundary
interfaces, making factors such as curvature diffito
determine at phase interfaces.

The level set method (LSM), introduced by Osher and
Sethian (1988), is a Eulerian CFD method which allow
the modelling of free surface flow without explicit
interface tracking. The method builds on the stilesn@f
fixed discretisation Eulerian approaches, allowitige
simple implementations of boundary conditions and
computational discretisation based on a consewativ
Navier-Stokes formulation (Sussman et al. 1998)e Th
method is based on the passive advection of arscala
representing a signed distance functigh, where the
interface in a two-phase mixture is given by theodeero
values ofy. This signed distance function gives a positive
distance from the nearest interface in one phask aan
negative distance in the other phase. It can bershbat
the distance function in a flow field with velocifigld v is
passively advected:

iy

=V (1)

into



The characteristic properties of the continuumhsuc
as densityp and viscosityy, are defined according to the
sign of the distance function:

p=HWps + (1—HW))p,
p=HWp + (1 - HWY))pe
wherep, is the density of first phase apg is the density

of second phase. The functidh is the Heaviside step
function, given by:

()

P <0
P=0
P >0

However, due to the discontinuity in Eq. (3), a
smoothed Heaviside function is used for practical

purposes, where Eq. (3) is smoothed over a chaistate
lengthk:

H@) =

0
1
: 3)
1

0 P < -k
H@) = %(1 +%+7irsin(%)) [yl <k (4)
1 P>k

The smoothed density and viscosity defined in Bj. (
can be used in a standard Navier-Stokes continuum
formulation:

p (@ +(v- V)v) = (5)

ot
wherep is the pressurd,are body forces anl is the rate
of strain tensoD = Vv + Vv’. The level set method has
been used extensively to model free-surface sysseris
as bubbles, droplets (Sethian, 2003) and charged je
(Hilton and Van der Net, 2009).

—Vp+ V- (uD) +f

MODEL EXTENSION FOR ELASTIC SOLIDS

The starting point for the extended algorithm i th
Cauchy momentum equation. This describes the general
momentum transport of a continuum material in an
Eulerian frame:
av
p(a+(v-V)v)=V-a+f (6)
where p is the density of the continuuna, the velocity
vector field,o the stress tensor afidbody forces acing on
the continuum. The stress tensor is split into satropic
(pressure) parp, and a deviatoric part;
av
p(E+(v-V)v>=—Vp+V-t+f (7)
Furthermore, the material in the continuum is asliho
be homogeneous and incompressible, such that:

dp
at
In our formulation, we assume that the stress tenso

between a solidts, and liquid,t,, can be varied in a
similar manner, such that:

t=HW)t + (1 -HW)T, (9)

We use stress tensors for an hypoelastic solid and
Newtonian fluid, which we show can both be calcdat
using the known rate of strain tendor For a fluid, the
deviatoric stress tensor for a Newtonian fluidiiseg by:

(10)

+(WV-V)p=0-V-v=0 (8)

T, =D
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where the incompressibility conditioW,s v = 0, has been
used andy;, is the fluid viscosity. In a isotropic elastic
solid, at small strairg, the deviatoric stress tensor is given
by the linear elastic relation:

Tg = UsE + /lsTr(S) (11)

where us and Ag are the first and second Lame
coefficients, respectively. These play an analogoiesin
elastic solids to fluid shear viscosity and fluidillo
viscosity. The elastic relation Eq. (11) is onlylidafor
small strain rates and cannot be used to modek larg
deformations. However, Eq. (11) can be generaliged
account for large deformations by using a strege ra
formulation:

6‘[5

ot

The expression given by Eq. (12) is a basic hypmtiela
stress rate, which holds for isotropic, homogeneand
incompressible elastic solids (Colak, 2004). In this
formulation, ug is the shear modulugg = E/2(1 +v),
whereE is Young's modulus and is Poisson’s ratio. As
the elastic solid is assumed incompressible, thi bu
modulus has no effect and does not enter into the
formulation. A closely related model for hypereiast
materials has recently been proposed by Sugiyana. et
(2011), based on a volume of fluid approach.

The time derivative of a Cauchy stress tensor, sisch
Eq. (12), doesot hold under rotational transformation. To
ensure Eg. (12) is frame indifferent an objectiress rate
must used, such as the Jaumann rate (Benson, 1992):

6/‘[\5 6‘[5

at ot
where W is the anti-symmetric rate of rotation tensor
W = Vv — Vv’ It should be noted that a number of other
such objective stress rates exist, such as Truemuktlthe
Jaumann rate can give oscillatory solutions (Jomresad
Bammann, 1984). However, it is the most straightéodv
and efficient to implement as it only uses the gmatof
the velocity field, which is already calculated By and
does not require expensive tensor decompositiohs. T
total deviatoric stress is then given by:

+ Tsw - WTS (13)

o
= H) [ Fa+ (-H@)up (9

For an interface ag(t) = 0 withW = 0 the stress tensor is:

¢ ot
T~Us f Ddt + MLDNMSS(t)'i'HLE (15)

0
Hence the interface between the solid and liquidsph
acts as a viscoelastic VVoigt material.

NUMERICAL METHODOLOGY

The constitutive relations, Egs. (5, 14) are digeee onto
a semi-staggered grid with pressure, stress tensoes
level set function and porosity defined at the celhtres
and forces and velocities defined at the cell can€&he
staggering of the grid cells in this manner reduthes
formation of ‘checkerboard’ pressure oscillations.
Advection terms, including the level set advection
equation, are updated using a conservative finilense
MUSCL scheme (Nessyahu and Tadmor, 1990) with a
MinMod limiter. Diffusion terms are discretised ngi



second order stencils. The system isved using an
incremental pressure correction method, where
Poisson terms are solved using a -conditioned
conjugate gradient method, witt6&OF pre-conditioner.

The stress tensor is calculated in a series ofest
First, the velocity gradienfv, at the centre of each cell
evaluated using the values from the edges of thle
Next, these values dfv are used to calculate the rate
strain tensoD = Vv + VvTand the rate of rotation tens
W= V-V Eq (13 is then evaluated usina
second-order accurate half-stépmporal discretisation
(Benson, 1992):

n+l

Ty 2 =15+ TgW — Wrg

1
T = ‘[2+2 + AtugD"® (16)

=1 + W — Wt

After the solid stress tensor is calculated, thaltetres:
tensor, Eq. (9) is evaluated and usecthe generalised
transport equation, Eq. (7The steps in Eq. (16) repres:
the numerical integration of the temporal term @ 84).

As the level seis advected by the velocity flow fiel
the signed distance propertan becon distorted. This
can cause spurious gradients to occur in the katefield,
resulting in errors to the interface. For this oagsthe
level set must be re-initialised to rdform to a signe
distance function. There is eonsiderable amount of
literature devoted to this particular step in thgodthm,
as it involves the approximate solution of ttEikonal
equation, and is thereforan expensive operation
perform. Furthermore, the act ofirgtialising the level se
can cause erroneous mass loss near sharp edgés
interface. Such mass loss must be accounted fibreime-
initialisation scheme. In this implementation wee ube
method originally developed b$ussmanet al. (1998).
The Eikonalequation converges to the distance func
from the interface given by the level set at thetstf the
re-initialisation, y,:

oy
e sign(yo)(1 — [VY]) (17)

Y =0) =1,
This expression can be evaluated to convergendbe
pseudo-timer. However, to correct for mass loss dur
this procedure this expression is evaluated with
additional conservation condition within each «.:

5]
3 fﬂ H@) =0 (18)
This results in the following augmentEikonal equation:
5]
' Sign(o) (1~ VD) + 2£GH) 9
P =0) =1,
wheref (y) is chosen by Sussman to
0H
F) = 2 gy (20

andA is calculated to be:
1, 2O (sign(yo)(1 ~ IyD)
o W £y

A

(21)
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The integrals in Eqg. (21) arvaluate using a 27-point
stencil over the neighbouring ce

APPLICATIONS

The method was applied to two test case scendfios
first was anelastic block falling in a fluid and impactir
on a fixed, solid, horizontal cylder.The second case was
fluid flow through a porous bed, where the porowaderial
was a flexible elastic solid.

Free falling elastic block

As a first qualitativetest case an elastic block fre
falling under gravity and impacting on a fixed atijevas
modelled. This case was chosen to test the elasiponst
of the solid material, the interaction with fluidh ithe
domain as well as to assehe behaviour of the Jauma
rate under large topologicabtations. The computation
domain was a square bok) cm on each side, containing
a flat cuboidal elastic solid measuril6 cm X 6 cm X

2 cm. For ease of setp this block was modelled using 1
implicit surface equation for a superquac

W(x,y,z) =x8+ (4y)8+28 -1 (22)

0.04s

0.40s

Logyy |84

0.0 b | 4.0

Figure 1 - Time evolution of a fre-falling square elastic
block with us = 1000. The surface of the elastic solic
shaded by the logarithm of the second invariathe
stress tensor.
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Figure 2 - Time evolution of a fredalling square elasti
block with us = 5000. The surface of the elastic solic
shaded by the logarithm of the second invariathe
stress tensor.

After initialisation with Eq. (22) theexact distance
function was found using the $aMarching Algorithn
(Sethian, 1998 The density of the block was set
100 kg/m?, and the density of the surrounding fluid v
set to approximately that of ait,kg/m3. The block fell
freely until it impacted with a horizontal solid lder.
The solid cylinder was implementég setting the update
velocity for all cells within the cylinder to zerat eact
time step. Such an approack mot restricted to fixe
objects, however, and methods such as the Imm
Boundary method (Mittal, 2005) cdie used to prescribe
any velocity within the domain. The grid dimensiansre
75 x 75 x 75 cells, and the simulation was run 10.5 s
at a timestep of0~5 s.

The response of the elastic matewas evaluated for
three different values gfs: 1000, 2000 &d 5000. Figures
1 and 2 show the results fag = 1000 and ug = 5000,
respectively. The value @fs = 2000 has been omitteat
it essentiallyshows intermediate behaviour. The surfac
the elastic solid is shown in the figures, shadgdthe
magnitude of th logarithm of the second stress invari
Sy = TooTi1 + Tu1Tap + TopTgo + Ty + T, + Ty

In all simulations the block felimpaced the cylinder
(t ~ 0.06 s), deformed and reboundhitting the cylinder
again (t ~0.2 s) before sliding to the side of the cylin

Copyright © 2012 CSIRO Australia 4

and impacting the solid base~t0.36 s, A non-uniform

stress distribution over the object before im (t ~ 0.04
s) can be seen in Figs. 1 and 2, with a high s

component around the edges on the erside of the
object. This was caused by pressure gradient dwe

object from the surrounding air, showithat the method
correctly handlestress transmission over the fl-solid

boundary. After impactdeformation of the material wi
found to be lowe at higher shear modulus, as shown
comparing Figs.1 and Zhis can be most clearly seen

comparing the degree of bendifjust after the initial
impact (t ~ 0.08 shetween the two simulatiol Stress
waves also propagatédrough the object, initiing at the
centre on impact and rebounding from the sidesher
object. Such waves can be seen at t = 0.12 arm@él24=in

the simulation withug = 1000.

The numerical methodaccurately modelle the
dynamics of the object. ffer rotation througt90® around
the cylinder, the object wasssentiallyunchanged from
the initial configuratn, showing that the level set mett
correctly captured thgeometric transformatio of the
object. Furthermore, propagation of stress waves \
unaffected as the object rotated, showing that aan
rate, Eq. (13), updated the stress tercorrectly in an
objective manner using the half step method giveid.
(16).

Flexible porous bed

As a secondguantitative, test of the method we simud
gasflowing through a porous bed, composed of a ing
of bonded elastic sphereBlow within porous media i
strongly dominated by thdrag frominternal boundaries,
and this case was chosenitwestigate te effect of the
viscoelastic boundarie&q. (15),in the methodology.

33 cm

25¢cm
diameter
spheres

Figure 3 — Set-up for gaflow through a flexible porou
medium.

A spherical packing was prepared using a discletaaent
simulation and used as the ini conditions for the level
set. The computational domain was a rectangulat

with dimensions1lcm X 33 cm X 11 cm, filled with

bonded spheres of diamet2/5 cm. The computational
grid had dimensions50 x 150 x 50, giving a grid
spacingA = 2.2x1073 m. The smoothing lengtlk was



chosen as 2 grid cellg,= 2A. The initial se-up is shown
in Fig. 3.

Gas was injected into the system at the base
drawn from the top at an equal mass flow rate.rtiepto
fix the porous block in place zekealocity bourdary
conditions are applied over &vgrid cells 1.1 cm) from
the side wall boundaries. A set of simulas were carried
out with the inflow velocity fixed ab.1 m/s and different
shear moduliiug, of 100, 250, 500, 750 and 10(The
density of the elastic solid wd$) kg/m3, and the density
of the gas wasl kg/m3. The gas viscosity was set
1x 1075 Pas.
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Figure 4 - Pressure along vertical midline for fluid flc
through a flexible porous medium, wishear moduliiusg,
of 100, 250, 500, 750 and 1000.
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Figure 5 - Pressure gradient along vertical midline
fluid flow through a flexible porous medium, wishear
modulii, ug, of 100, 250, 500, 750 and 1(. Average
pressure gradients from 04 ®.25 m are shown as dast
lines.

The pressure drop over the porous bed is showrigid
for all shear modulii considered at= 1s. The pressure
was measured along the vertical midline alcy at
x =5cm, z =5 cm. The pressure drped approximately
linearly over the bed, with the gradient proporticiathe
shear modulus of the bed material. The pressurdiegt
is shown in Fig. 5, along with the average pres
gradient within the interior of the bed. The aver
pressure gradient is shown as dakliees, where th
interior was defined asy=0.1m to y=0.25m.
Although there wereconsiderable gradient fluctuatio
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within the bed, the average pressure gradient auasdf to
scale in an exact linear manner with the shear g, as
shown in Fig. 6The pressure distribution over the surf
of the bed is also shown in Fig. 7t = 1 s for ug = 100
and ug = 1000. The pressure distribution is very simi
in both cases, approximately linear in the vert
direction, differing only by the magnitude the gradient.

Shear modulus (Pa)
0 200 400 600 800 1000
T T T T 1

0.0E+0
-1.0E+3
2.0E43 - %
-3.0E43 | ‘
-4.0E43 |
-5.0E+3
-6.0E43 [

-7.0E+3

Average pressure gradient (Pa)

X

-8.0E+3 -

Figure 6 — Average pressure gradient over the be
t = 1 s against bedhear modulu

The pressure gradieint the simulationwas found to
be much greatethan for gas flow through a bed
regular, non-elasticparticles. The Reynolds number -
this system is-250, so the pressure gradient for ideali
gas flow through a bed of spherical particles car
determined using the Ergun equa (Ergun, 1952):

1—¢&\plv|? (150(1 — &)u
Vp—( = ) - o, H 178 (23)

wheree¢ is the voidage fraction, d the sphere diamep

the gas density andthe gas viscosity. For the paramei
used in this set up, the Ergun relation gives aquee
gradient over the bed of1Pa/m, in comparison to
0(1000)Pa/m in the simulations. A near fit to the
pressure gradient against shear modulus relatidfign6

has an non-zero intercept @(10)Pa/m, so ordinary
porous flow behaviour returnis the limit ug - 0. The
excess pressure gradigherefore arises from the elas
component of the model.

Figure 7 - Pressure distribution over elastic porous
with shear moduliius, of 100 (left) and 1000 (right)
t=1s.



Inspection of the simulations showed tthis excess
pressure gradient was not caused bytic expansion over
the bed, as the degree of deformatwithin the porous
bed was found to be very similar over the rangshefar
modulii used. A closewp view of the top part of the bed
shown in Fig. 8 foug = 100 andug = 1000 at the start
of the simulation,t =0.5s andt = 1.0s. The dashed
circles in these figures indicate the initial pwsitof one
of the spheres within the bed for comparison. Thd
deformed approximatel§0 mm in the \ertical direction,
with almost negligible differencdeetween both cas:

t=10¢s

Figure 8 — Comparison of bed deformatifor ug = 100
and pug = 1000 att = 0.0,0.5,15s.

The boundary conditions, Eq. (15), are there
responsible for this excess pressure, greatly asingthe
relative gas-solid drag thoughiscoelastic interactior
This effect scales linearly with shear modulusstaswn in
Fig. 6. The flow of viscoelastic fluid through pos
media has received attention both experimen
(Slattery, 1967) and computatalty (Ariel, 1993).
However, to our knowledge such a system with fliexi
viscoelastic boundaries has not previously beenetiext
and such a linear draglation between pressure gradi
with shear modulus has not previously been estadd
Further investigation of this system is plannedftty
understand the physical nature of this drag rel

CONCLUSION

The level set method can be extended to model
interaction between a Newtonian fluid and an etestiid.
This can be implemeed by varying the stress tensor o
the computational domain depending on the signhe
level set function. The stress tensor depends onlyhe
local strain rate within the fluid, but includeshéstory-

dependant part within the solidJse of a smoothing
function causes viscoelastic Voigtehaviour of the
material over the boundabetween the interfac.

Two test cases wersimulated using the moc.
Elastic falling bodies showed good qualitative behavi
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in interaction with solidboundarie, as well as in response
to change in shear moduluft. was also found that
boundarydominated flow through a porous bed showe
linear relation between pressure gradient and ¢
modulus. These basic cases highlight the capalifithe
model to fully resolve theoupled dynamicsof elastic
solids with a fluid flow field showing the potential of tr
model for possible application a wide range of
industrial applications.
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