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ABSTRACT

In  this  paper,  a  Lagrangian  Particle  Tracking  (LPT) 
approach  for  the  dynamic  simulation  of  a  solid-liquid 
fluidized  bed  is  evaluated.  This  approach  is  based  on 
Large Eddy Simulation (LES) of the liquid phase using 
Lattice-Boltzmann  Method  (LBM)  along  with  Discrete 
Elements Method (DEM) to account for particle-particle 
and particle-wall interactions. Translational and rotational 
motions  of  particles  are  solved  by  taking  into  account 
forces  due to drag,  lift,  added mass,  pressure and stress 
gradients, gravitational acceleration, and hindrance effects 
due  to  the  presence  of  other  particles.  The  coupling 
between phases is done in the so-called four-way coupling 
manner. The limitation of using LBM to solve the locally 
averaged  conservation  equations  is  overcome  by  an 
extended LBM scheme. The implementation of this model 
allows the numerical scheme to handle a wide range of 
particle  sizes,  particle  types  and  particle  loadings  from 
dilute  to  dense  mixtures.  Owing  to  its  inherently  high 
parallel  efficiency,  the present  model  opens possibilities 
for a more realistic simulation of such systems which will 
be difficult, if not impossible, for other models.

NOMENCLATURE

rp : particle radius
ρp : particle density
D : pipe diameter
ρf : liquid density
ν : liquid viscosity
g : gravity
σ : contact force spring stiffness
k : coefficient of restitution of contact energy
f C : Coulombic friction coefficient
Δ t : time step
ϕ : volume fraction of solids
u⃗ : liquid velocity
v⃗p , ω⃗p : velocity and angular velocity of particles

Rep=2
∥v⃗p−u⃗∥rp

ν : particulate Reynolds number
CD,CL ,CM : drag, lift and added mass coefficients
F⃗ p , T⃗ p : force and torque acting on a particle
F⃗p : backward coupling force from particles
f ϕ : non-conservation term

INTRODUCTION

Liquid fluidization is commonly used in many industrial 
processes and applications such as fluidized bed reactors 
and  bioreactors,  particle  classification  and  separation, 
fluidized bed heat exchangers (FBHX), leaching and water 
treatment (Yang, 2003; Gevrin et al., 2008).

The most important advantage of fluidized beds is the high 
level of mixing resulting in highly effective mass and heat 
transfers,  which  are  favorable  in  many  industrial 
processes. Besides their significant industrial applications, 
liquid  fluidized  beds  are  an important  research  topic  in 
studying  particle-particle  and  fluid-particle  interactions 
(Gevrin et al., 2008). 
Theoretical models for different parameters, such as bed 
expansion  in  fluidized  bed,  that  do  not  make  use  of 
empirical values and coefficients are limited to an amount 
of  spherical  particles  of  the  order  of  104 at  very  low 
Reynolds number (Yang, 2003). 
In a solid-liquid fluidized bed, velocity and  concentration 
of both phases undergo fluctuations whose frequency and 
magnitude  are  crucially  important  in  determining 
parameters  such  as  solid  and  liquid  mass  and  heat 
transfers, granular pressure, particle attrition and breakage 
(Pozo et al., 1993, Zenit and Hunt, 2000).
The performance of the models that have been developed 
to predict these parameters are usually unsatisfactory. This 
is mainly due to poor understanding of the nature of the 
mechanisms  that  produce  velocity  and  concentration 
fluctuations.  An example  of  such  poor  understanding is 
illustrated in the study of Zenit et al.  (1997) where they 
compared  the  experimental  collisional  pressure  data 
against many different modeling approaches.
In  this  paper,  three-dimensional  and  time-dependent 
simulations  of  a  solid-liquid  fluidized  bed  using 
Lagrangian  Particle  Tracking  (LPT)  and  Lattice-
Boltzmann  Method  (LBM)  have  been  performed.  The 
simulation  results  were  compared  against  experimental 
test cases and other numerical results from the literature. 

MODEL DESCRIPTION AND SIMULATION

The  approach  that  was  used  to  compute  the  transient 
behaviour  of  a  liquid  fluidized  bed  relies  on  several 
methods  which  were  already thoroughly detailed  in  the 
literature.  It  is  based  on  a  lattice-Boltzmann  numerical 
scheme  for  the  fluid  flow  coupled  with  Lagrangian 
tracking  of  particles.  The  coupling  between  phases  is 
realized in the so-called four-way coupling. It includes the 
effects  of  fluid  on  particle  dynamics,  the  effects  of 
particles  on  hydrodynamics,  the  effects  of  the  velocity 
disturbance  in the fluid on a particle generated by other 
particle, and the effects due to collision between particles.

Fluid flow computation

The  continuous  liquid  phase  is  modelled  using  an 
extended  lattice-Boltzmann  (LB)  numerical  scheme. 
Different from conventional LB schemes, the extended LB 
scheme solves the locally averaged conservation equations 
allowing a realistic simulation of particulate flows ranged 
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from  dilute  to  dense  volume  fraction.  The  effects  of 
subgrid-scale  (SGS)  motions  on  the  hydrodynamics  are 
modeled  using the Smagorinsky SGS model,  i.e.,  Large 
Eddy Simulation (LES).

Lattice Boltzmann Method

Eggels and Somers (1995) LB scheme has been extended 
to solve the locally averaged conservation equations (see 
Sungkorn and Derksen,  2012).  Instead of computing the 
physical  quantities  at  the  fluid  nodes  by  solving  the 
conservation  equations  directly,  it  accounts  for  velocity 
distribution functions from one fluid node to another. This 
is achieved by defining a lattice in which fluid nodes are 
bound to a finite number of neighbours and may exchange 
density of probability with them between time steps. This 
implies that exchanges of density of probability can only 
follow a finite  number of directions,  constrained by the 
lattice  definition.  In  the  three-dimensional  Eggels  and 
Somers  scheme,  velocity  is  discretized  in  18  directions 
following a face-centered-hyper-cubic (FCHC) lattice.
The collision operator is a local function applied to each 
lattice  node  that  calculates  the  exchanges  of  velocity 
distributions  with  the  neighbours  depending  on  current 
lattice  quantities.  The  solution  of  the  conservation 
equations is  achieved  by defining  the collision  operator 
properly.

Large Eddy Simulation

In the fluidized bed case, the mesh size is constrained by 
the size of particles as the Lagrangian tracking relies on 
the assumption that the particles are small compared to the 
phenomena of interest  and can be represented using the 
distributed-particle  concept  (Sungkorn  and  Derksen, 
2012).  In contrast  to the point-particle concept in which 
particles do not occupy space in liquid, displacement of 
particles in liquid is taken into account in the distributed-
particle concept.  The mesh size must be coarse enough to 
keep the point-particle concept valid and fine enough to 
correctly  resolve  the  liquid  hydrodynamics.  The  fluid 
lattice  is  thus  too  coarse  to  be  able  to  solve  the  small 
turbulent  scales.  The  dissipation  of  energy  via  the 
turbulence  must  then  be  modelled. This  is  done  by 
adjusting the local apparent viscosity to account for eddy 
viscosity term, following the Smagorinsky SGS model:

ν t=(CS Δ)2√S2 (1)

where CS  is the Smagorinsky constant,  Δ  is the filter 

width (here, it is set equal to grid spacing) and √S2  the 
resolved deformation rate. Here, C s  is set to 0.10. It has 
been pointed out by Hu and Celik (2008) that the so-called 
pseudo-  (or  particle-induced)  turbulence  possess  a 
universal  energy  spectrum,  with  identifiable  power-law 
decay (with  different  exponent  from the  classical  -5/3). 
The power law decay implies that the contribution of the 
small  scale  pseudo-turbulence  can  be  modelled  using  a 
dedicated  subgrid-scale  model.  For  now,  there  is  no 
reliable  and  accurate  SGS  model  readily  available  for 
multiphase flows, which is why a Smagorinsky model is 
used  here  (with  the  chosen  Smagorinsky  constant).  Its 
capability  is  justified  by  favourable  results  as  will  be 
shown later. A detailed description of the implementation 
of the Smagorinsky SGS model in the framework of LBM 
can be found in, for example, Derksen and Van den Akker 
(1999), and Sungkorn et al. (2011).

Liquid hydrodynamics

The LB scheme due to Eggels and Somers (1995) focuses 

only on single-phase flows. For the liquid hydrodynamics 
in  liquid  fluidized  beds  in  which  particles  occupy 
significant  amount  of  space  in  the  liquid,  the 
hydrodynamics of the liquid phase must be solved using 
the locally average conservation equations which cannot 
be recovered using conventional LB schemes. Hence we 
have reformulated the conservation equations. This results 
in the conservation equations resemble their single-phase 
conservation counterparts with an additional factor due to 
the  presence  of  particles  ( f ϕ ).  The  factor  due  to  the 
presence of particles are explicitly computed at each time 
step. Since we typically use an extremely small time step 
(in the order of 10-4 s), it can be argued that the change of 
the volume fraction is relatively small. More details about 
the new scheme can be found in  Sungkorn and Derksen 
(2012).  In  summary,  the  conservation  equations  being 
solved in this work are in the forms:

∂ρf

∂ t
+∇⃗⋅(ρf u⃗)= f ϕ

∂ρf u⃗
∂ t

+∇⃗⋅(ρf u⃗ u⃗)=∇⃗⋅Π−
1

(1−ϕ)V f

F⃗p+ f ϕ u⃗

(2)

(3)

where

f ϕ
=

ρf

1−ϕ (∂(1−ϕ)

∂ t
+ u⃗⋅∇⃗(1−ϕ)) (4)

 f ϕ is accounted by modifying the collision operator.
In the absence of robust turbulence modulation model that 
applies  in  a  fluidized  bed,  turbulence  modulation 
(interactions with the small flow scales) by the particles is 
not  included,  however  the  particles  still  contribute  to 
increasing  or  decreasing  turbulence  via  the  momentum 
coupling with the solid phase.

Solid phase computation

The  translational  and  rotational  motions  of  individual 
particles  are  tracked  by  solving  Newton's  equation  of 
motion.  The  effects  of  fluid  on  particle  dynamics,  the 
effects  of  particles  on  hydrodynamics,  the  effects  of 
particles  of  the  velocity  disturbance  in  the  fluid  on  a 
particle by other particles, and the effects due to collisions 
between  particles  are  accounted  for  in  our  simulations. 
This results in a so-called four-way coupling.

Particle dynamics

The effects  of the fluid on particles are  modelled using 
Lagrangian tracking with the distributed-particle concept. 
The translational  and rotational  motions  of  particles  are 
solved based on Newton's second law of motion. The net 
force acting on the particle includes the net gravity force 
FG, forces due to the stress  and pressure gradients FS, drag 
force FD, slip-rotation lift FLR and slip-shear lift FLS forces 
and,  added mass force  FA. The model  also includes the 
hindrance  effect  due  to  the  presence  of  other  particles 
(exponent  β  in  equations  (6)  and  (7)).  The  quantities 
between the particle centroid on the Lagrangian frame of 
reference and the liquid on the Eulerian frame of reference 
are interpolated using a trilinear interpolation scheme. The 
forces acting on particles are shortly described hereafter, 
all  the  details  about  their  expressions  can  be  found  in 
Sommerfeld (2000). The effect of small fluid scales on the 
particles  is  neglected,  which  means  that  the  simulated 
particle trajectory is filtered. However, in our whole set of 
simulations, the Stokes number remains between 20 and 
50, and according to Pozorksi and Apte (2009), for such 
high  Stokes  numbers,  small  scales  do  not  contribute 
significantly to the particle motion. That is why no random 
walk or other finer model was used in the simulations. To 
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make sure this is also true in our filtered flow, the Stokes 
number  based  on  the  LES  turbulent  viscosity  was 
calculated:

St=
1
18

ρp

ρf
Rep ,t=

1
18

ρp

ρf

2 rp u
ν t

(5)

where ν t / ν  varies between 2 and 13, so Stokes number 
is between 1.5 and 10. A value of 1.5 may imply a small 
contribution from the filtered scales, but this value is only 
reached  locally  and  even  in  this  case,  collisions  will 
contribute significantly more to particle motion and energy 
dissipation.
Three different expressions for the drag coefficient ( CD ) 
are triggered depending on particulate Reynolds number. 
Those  are  Stokes  drag  for Rep<0.5 ,  Schiller  and 
Naumann (1933) for 0.5≤Rep<1000  and turbulent drag 
with constant drag coefficient for Rep≥1000 . Hindrance 
by the solids is accounted by rescaling the drag force for a 
dilute media by (1−ϕ)−β , where ϕ  is the local volume 
fraction of solids and β  is (Di Felice, 2007):

β=3.7−0.65exp (−1.5− log10 Rep

2 ) (6)

Two lift forces are considered, one due to the shear in the 
fluid  flow  ( CL

(S) ),  and  the  other  due  to  the  relative 

rotation between the particles and the fluid ( CL
(R ) ). The 

actual laws that are used change for different flow regimes 
based on the particulate Reynolds number (Sommerfeld, 
2000).  The  net  gravity  force  acting  on  each  particle  is 
described with contribution from the local-average density 
of mixture. The effects of the pressure and stress gradients 
in  the  fluid  on  each  particle  is  reformulated  for  the 
computational efficiency.  The added mass force is taken 
into account with a coefficient ( CM ).  The translational 
motion of particle is solved in the form:

(ρp+CMρf )
D v⃗p

D t
=

3
8r p

ρf CD(1−ϕp)
−β

∥⃗u−v⃗ p∥(u⃗−v⃗ p)

+
3
4

ρf CL
(S)

(u⃗− v⃗p)×(∇⃗×u⃗)

+ 3
4r p

ρf CL
(R) ∇⃗×u⃗−ω⃗p

∥∇⃗×u⃗−ω⃗p∥
×∥u⃗−v⃗p∥( u⃗− v⃗p)

+ρf(1+CM)
D u⃗
D t

+(ρp−ρ̄) g⃗+(V p)
−1 F⃗ p

(7)

In  equation  (7),  F⃗ p  contains  all  the  forces  acting  on 
particles that do not come from their interactions with the 
fluid flow. In the case of the fluidized bed, these are the 
collisions.
The rotational motion is tracked by solving the following 
equation:

2
5

rp
2
ρp

d ω⃗p

d t
=

3
8 π

r p
2
ρf CR∣∇⃗×u⃗−ω⃗p∣(∇×u⃗−ω⃗p )+(V p)

−1
T⃗ p

(8)

The effects of particle on the continuous fluid phase are 
done by exerting forces  F⃗p  (i.e., drag, lift, added mass, 
forces due to pressure and stress gradients) and displacing 
the fluid through f ϕ .

Soft Sphere Collisions

Contact  forces  are  modelled  using  the  Soft  Sphere 
Collision (SSC) model which defines a relation between 

the contact force acting on a particle and the overlap of its 
original  shape  with  external  objects.  The  particles  are 
spherical and their radii do not evolve over time, so the 
overlap can be seen as a particle deformation. In the glass 
bead fluidized bed, particles hardly deform. However, it is 
necessary  for  simulation  stability  to  allow  particles  to 
overlap a  little (< 5% of their radius),  as  it  numerically 
relaxes their contact interactions which have really short 
time scales in the physical bed.
Normal and tangential contact forces are considered. Both 
force components are modelled through a spring stiffness 
and  a  damping  coefficient.  Moreover,  a  Coulomb-type 
friction  law  is  applied  to  the  tangential  direction.  The 
derivation of these numerical parameters from the physical 
collision parameters is explained by  Van Der Hoef et al. 
(2006).  The  same  approach  is  followed  here,  and  the 
simulation is finally characterized by three parameters: the 
normal  spring  stiffness,  the  friction  coefficient  and  a 
restitution  coefficient.  The  restitution  coefficient,  with 
which the value of the damping coefficient is calculated, 
accounts for the energy that is dissipated during collisions 
due to the deformation of the particles (it is the ratio of the 
energy after collision over the energy before collision).

Simulation setup

The coupling is thus achieved through a force balance on 
the solid  phase and through an extension of the lattice-
Boltzmann scheme for the liquid phase. The effect of the 
turbulence is included in the expression of the apparent 
turbulent viscosity of the liquid using Smagorinski SGS 
model. The interactions between solids and with the walls 
are simulated following the soft-sphere collision model. In 
the end, all the physics that play a significant role in the 
liquid fluidized bed are modelled in the simulation.
The  simulations  were  performed  for  2 mm  glass  beads 
fluidized with water in a 10.16 cm (in diameter) circular 
pipe. The scaling is indicated in Table 1. As the geometry 
is constrained by the discretization of space directions, the 
circular  section  of  the  pipe  is  approximated  with  steps. 
The grid resolution is also constrained. As the assumption 
of point particles is only valid if the beads are sufficiently 
smaller  than  the  lattice,  so  that  interpolation  of  fluid 
properties at the position of the particle center has physical 
meaning:  local  flow around  particles  is  modeled  in  the 
expressions of the forces in Lagrangian tracking but does 
not impact fluid nodes directly. In the end, the fluid mesh 
in the pipe section is relatively coarse.

3 

Quantity Physical value Simulation

rp 1 mm 0.258

ρp 2540 kg/m³ 20.3

D 10.2 cm 26,2
ρf 1000 kg/m³ 8

 ν  10⁻⁶ m²/s 10⁻⁵

g 9.81 m/s 5.69 × 10⁻⁵

 σ  - 0.0516

k - 0.97

f C - 0.3

Δ t 150 µs 1

Table 1: Scaling of the LBM simulations.



Fluid boundary conditions

For the fluid, bounce-back boundary conditions are used at 
the pipe walls. At the top of the domain, a zero-gradient 
condition is imposed, while inlet velocity is imposed by an 
immersed boundary condition.
Due to the coupling with the solid phase, it is not easy to 
impose  the  fluid  velocity  using  a  “bounce-back  + 
momentum” expression. In this case, it is circumvented by 
using a zero-gradient condition associated to a forcing on 
the fluid nodes that is proportional to the error on the fluid 
velocity.
The expression of the forcing is  as  follows  (in  its  non-
dimensional form, so Δ t=1 ):

F⃗ in=2ρf (u⃗ in−u⃗) (9)

The coefficient of proportionality is set to 2ρf  according 
to Eggel and Somers’ (1995) scheme, so that the applied 
forcing corresponds exactly to the amount of momentum 
that must be added to each fluid node. The imposed fluid 
velocity is set to u⃗in=

1

8 ∑n δ u⃗0 , where δ  equals to 1 in 
the domain and 0 outside, and n  is the summation index 
over the eight nodes in the inlet plane that share either a 
face or a corner with the node at which velocity is set. u⃗0  
is constant. The imposed profile is thus mostly flat, but it  
has lower velocity near the walls. This avoids  potential 
instabilities or production of waves that could come from 
the slight compressibility of the LBM scheme.

Boundary conditions for particles

Walls are accounted in the collisions in the same way as 
the  particles.  The  contact  force  applied  to  particles  is 
calculated based on the overlap between the walls and the 
particles which makes the walls behave like infinite radius 
particles that do not move.
This same boundary condition is used at the inlet and at 
the outlet, so that particles cannot go out of the domain. 
The outlet boundary does not play any significant role in 
the simulation as particles are nor supposed to reach the 
outlet in fluidized bed conditions. As the inlet behaves like 
a wall for particles but allows the liquid to go through, it  

acts like an ideal screen.
The  wall  seen  by  the  particles  is  cylindrical,  so  that 
particle bouncing directions are consistent with the actual 
particle-pipe interaction. That means that, considering that 
bounce-back  boundary  condition  is  located  halfway 
between two fluid nodes, the boundary condition for the 
fluid  and  the  boundary  condition  for  particles  are  not 
exactly at the same place. The staircase section of the fluid 
and the circular one for particles are chosen so that they 
have the same area (hence the pipe radius that is not a n 
integer number in Table 1). The effect of this boundary has 
been  checked  by  running  simulations  with  the  actual 
cylindrical  wall  and  some  simulations  with  staircase 
boundaries  for  both  fluid  and  particles.  No  perceivable 
effect was observed on Richardson-Zaki law.

Particle properties

The solid particles are supposed to model a glass bead bed, 
however, the prevalent parameters that play a role on the 
fluidization  regime  (homogenous  or  bubbly)  are  the 
particle diameters and densities, and the concentration of 
the bed (Patankar and Joseph, 2001). That means that the 
interaction  of  particles  via  collisions do not  need  to  be 
simulated  exactly  provided  that  the  basic  behaviour  of 
collisions  is  respected.  Physically,  the  spring  stiffness
( σ )  is  not  a  property  of  the  material  and  is  hard  to 
measure.  Numerically,  if  the  stiffness  is  too  high,  the 
particles  bounce  faster  than  what  the  time  scheme 
supports,  so  the  simulation  becomes  unphysical  and 
unstable. Nevertheless, as the resulting physics are not so 
much  sensitive  to  this  parameter,  it  is  only set  so  that 
particles do not overlap too much (less than 1 % of their 
radius). It is the same for restitution coefficient ( k ). As it 
does not need to be precisely set, a relatively high value is 
used  to  satisfy  the  intuitive  behaviour  that  glass  bead 
collisions do not consume much energy, but it is not scaled 
to  match  material  properties.  The  values  used  in  the 
simulations are indicated in Table 1.
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Figure  1: Snapshots of a central section of three fluidized beds with 45000 glass beads (cf. Table 1) at  
different fluidization velocities (9.45 cm/s, 15.25 cm/s and 18.14 cm/s) after steady state was reached



RESULTS

The  simulation  results  were  compared  to  experimental 
data  of  Hashemi  (2012).   He  used   a  10.16 cm  (in 
diameter)  fluidized  bed  to  measure  solids  concentration 
and concentration fluctuations maps for 2 mm glass bead 
particles  ( ρs=2540  kg/m³)  at  different  fluidization 
velocities. Liquid superficial velocity was obtained using 
an  orifice  plate  and  differential  pressure  transducers. 
Solids  instantaneous  concentration  distribution  was 
measured  using  Industrial  Tomography  System  (ITS) 
Z8000 high speed electrical impedance tomography (EIT) 
equipment along with a dual-plane tomography sensor. For 
each set  of  experiments,  8000 concentration maps  were 
collected with the sampling rate of 820 Hz at each velocity 
from each sensor plane.
The  experimental  profiles  showed  lower  concentration 
regions in the center of the bed. These lower concentration 
regions are also reported in the literature and correspond to 
bubbly structures in inhomogeneous liquid fluidized bed 
(Foscolo and Gibilaro, 1984; Patankar and Joseph, 2001). 
Foscolo  and  Gibilaro  (1984) showed  that  at  specific 
conditions,  liquid  fluidized  bed  will  change  from 
particulate  to  aggregate  fluidized  bed.  In  their 
experiments,  this  transition  results  in  mushroom  shape 
void fraction in the bed and produces low concentration 
regions  at  the  center  of  the  bed.  According  to  their 
classification, the 2 mm glass bead liquid fluidized bed is 
in the transition region. This is illustrated by the numerical 
results presented in Figure 1 that show an inhomogeneous 
regime  where  bubbles  do  not  have  a  well  defined 
mushroom  shape.
The  Richardson-Zaki  equation  for  hindered  settling 
velocity  has  been  widely used  for  solid-liquid  fluidized 
beds (Yang, 2003):

uin=u t(1−ϕ)
n

(10)

where  uin ,  ut  and  ϕ  are  fluidization  velocity, 
terminal settling velocity and solid average concentration. 
Based  on  Richardson-Zaki  law,  Zenit  et  al.  (1997) 
determined the value of  n=2.4  for glass bead particles 
based  on  their  experimental  data.  Figure  2 shows  the 
comparison  of  fluidization  velocity  versus  solids 

concentration for LBM simulations and Richardson-Zaki 
laws for 2 mm glass beads. The average concentration  is 
calculated by averaging the time averaged concentration in 
a pipe section between the bottom and the top of the bed. 
Calculating the average velocity  similarly, it matches the 
average  imposed  inlet  velocity.  The  dashed  line  on  the 
figure  also shows a  fitted Richardson-Zaki  law with  an 
exponent  of  2.15.  The  results  show  a  good  agreement 
between  experimental  and  numerical  results  with 
Richardson-Zaki law.

CONCLUSION AND PERSPECTIVES

A fully  coupled  simulation  based  on  Discrete  Element 
Method for the solids and Lattice-Boltzmann Method for 
the liquid has been used to simulate a liquid fluidized bed. 
It  shows  a  relatively  good  agreement  with  the  data 
available  in  the  literature,  both  qualitatively  and 
quantitatively.
The  discrepancies  can be  explained  by the  coarse  steps 
that describe the pipe wall  boundary condition which is 
the major  limitation of the simulation scheme. In future 
works, more modelling efforts will be necessary to model 
the  pipe  wall  in  a  more  physical  way,  such  as  using 
interpolated  immersed  boundary  method  (IBM). 
However,  the  preliminary  results  presented  here  are 
already really encouraging.
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