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ABSTRACT 

Bubbles found in nature or in industrial systems are often 
presumed to have immobile surfaces (i.e. a ‘no-slip’ 
boundary condition), due to surfactant adsorption.  Even 
trace amounts of surfactants in the bulk liquid can result in 
effective immobilisation, because of the preferential 
partitioning of surfactants at the interface.   
In froth flotation, used to separate valuable minerals from 
waste ‘gangue’, interaction of bubbles with particles is 
modelled to predict the possibility of achieving 
attachment.  The modelling often presumes a completely 
immobile bubble surface — although the alternative 
limiting condition of a fully mobile bubble surface (‘full 
slip’ boundary condition) is occasionally investigated.   
From recent experimental observations of a particle falling 
onto a submerged bubble it was concluded that the 
interface was partially mobile.  A closer inspection of the 
data revealed that a transition from the immobile to 
(partially) mobile state may be occurring locally.   
It is known that flow of liquid over the surface of a rising 
bubble can sweep adsorbed surfactants to the rear of the 
bubble, forming a ‘stagnant cap’.  A similar principle 
could apply, locally, as liquid is squeezed out of the gap 
between a bubble and an approaching particle.   
In flotation the particles are often much smaller than the 
bubbles.  The gas–liquid interface can then be 
approximated as a plane, and analytical solutions for the 
flow field are known.  I derived from these the shear 
stresses at the bubble’s surface in bipolar co-ordinates, for 
both parallel and perpendicular components of the 
particle’s motion.  Both cases attained shear stresses much 
greater than those required to form a stagnant cap.  The 
tangential particle motion induced stresses that would be 
sufficient to sweep surfactant out of the interaction zone, 
thereby locally enhancing the surface mobility.   
These new findings quantitatively support the existence of 
a transition of bubble surface mobility, mediated by 
motion of a nearby particle, and strongly dependent upon 
the particle’s trajectory.   

NOMENCLATURE 

c parameter in bipolar co-ordinates describing distance 
of particle from bubble surface, equal to 

p
2 2 Rδδ      (cf. Brenner, 1961; Chaoui & 

Feuillebois, 2003) 
di density of particle (i=p) or liquid (i=f) or bubble (i=b) 

fi correction to radial (i=r) or tangential (i=t) drag for 
microhydrodynamic effects 

g gravitational acceleration 
Gn+1 Gegenbauer polynomial of degree −½ 
hi metrical coefficient, for conversion between co-

ordinate systems:  derivative of i-ordinate itself with 
respect to distance along i-ordinate curve 

h metrical coefficient for ξ and η;  




 h
c

ξη
hh ηξ

)cos()cosh(
 

n summation index 
Q1 spherical harmonic function (see O’Neill, 1964) 
r radial position in sspphheerriiccaall  ccoo--oorrddiinnaatteess, with origin 

at bubble centre;  especially used to describe location 
of particle centre 

Rb bubble radius 
Rp particle radius 
t time 
T parameter related to the viscous relaxation time 
ui particle velocity in the i-direction 
uS Stokes velocity 
U velocity of bubble, or particle, or streaming bulk 

liquid 
U0, U2 spherical harmonic functions (see O’Neill, 1964) 
vi local fluid velocity in the i-direction 
w1 spherical harmonic function (see O’Neill, 1964) 
x fractional mobility of bubble surface 
z elevation off plane, a position ordinate in cciirrccuullaarr  

ccyylliinnddrriiccaall  ccoo--oorrddiinnaatteess 
 
δ gap thickness, the shortest distance between particle 

and bubble surfaces, at a given time 
η ordinate parameterising a family of circles in a pair of 

coaxial groups centred on the z-axis at )coth(ηc , a 

position ordinate in bbiippoollaarr  ccoo--oorrddiinnaatteess 
θ azimuthal angle, or ‘longitude’, measured around 

from x–z plane (anticlockwise looking down z-axis), 
used as position ordinate in cciirrccuullaarr  ccyylliinnddrriiccaall  ccoo--
oorrddiinnaatteess and bbiippoollaarr  ccoo--oorrddiinnaatteess 

Θ azimuthal angle, used as position ordinate in sspphheerriiccaall  
ccoo--oorrddiinnaatteess 

 dynamic viscosity of liquid phase 
ξ ordinate parameterising a family of circular arcs of 

revolution symmetrical about the x–y plane and z-
axis, and passing through z = +c and z = −c, a 
position ordinate in bbiippoollaarr  ccoo--oorrddiinnaatteess 

 radial distance in x–y plane, used as position ordinate 
in cciirrccuullaarr  ccyylliinnddrriiccaall  ccoo--oorrddiinnaatteess 

σ surface tension of gas–liquid interface 
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τij shear stress:  summation of stress due to momentum 
transfer in i direction due to j motion and the 
converse 

υn a function of particle velocity and position;  written 
as Un by Brenner (1961) 

φ polar angle, or ‘latitude’, as position ordinate in 
sspphheerriiccaall  ccoo--oorrddiinnaatteess, measured out from vertical 
axis, with origin at bubble centre;  especially used to 
describe location of particle centre 

ψ stream function 
 
The convention of Happel & Brenner (1983) is adopted 
here for naming the bipolar co-ordinates:  see Figure 1.  
Caution:  Brenner (1961) and a number of other 
researchers use the opposite nomenclature!   
Some authors use the reciprocal of the metrical 
coefficients (Happel & Brenner, 1983), termed “scale 
factors”.   
 

 
 
 
 
 
 
 
 
 

 

Figure 1:  Co-ordinate systems used.  (a)  Spherical co-
ordinates to describe particle position and motion.  (b)  
Bipolar or circular cylindrical co-ordinates to describe 
fluid motion and stresses in the interaction zone.  The 
bubble surface is approximated locally as a plane.   
 

 
 
 
 
 
 
 
 
 

Figure 2:  Schematic illustrating the co-ordinates, and 
relative fluid motions, for a bubble rising through a 
quiescent liquid.   
 

INTRODUCTION 

In describing the interaction of two solid particles the 
boundary condition at the respective surfaces is obviously 
the ‘no slip’ condition.  When one (or both) of the objects 
is fluid, the appropriate boundary condition becomes open 
to question.  Herein behaviour at the surface of a bubble is 
investigated when it is approached by a solid particle.   
Such considerations are directly relevant to a wide variety 
of processes, ranging from surf zone patch dynamics in 
the natural aquatic environment (Talbot et al., 1990), to 
bubble–particle interaction and attachment in industrial 
operations — e.g. dissolved air flotation (DAF) in water 
and wastewater treatment, froth flotation in mineral 
processing, and deinking flotation (Nguyen & Schulze, 
2004) — to experimental research carried out in devices 
such as the atomic force microscope (Manor, 2010).  

Moreover, the insights can be extended to application in 
other situations in which a dispersed fluid phase is subject 
to shear due to the local flow field, such as in 
microfluidics (Bremond et al., 2008).   
The interaction of bubbles with either particles or other 
bubbles is often of interest due to the possibility of 
achieving attachment or coalescence, respectively.  In 
froth flotation, used to separate valuable minerals from 
waste ‘gangue’, modelling often presumes a completely 
immobile bubble surface — although the alternative 
limiting condition of a fully mobile bubble surface (‘full 
slip’ boundary condition) is occasionally investigated (see 
Nguyen & Schulze, 2004).   
When considering a bubble rising through a liquid, as in 
Figure 2, it is accepted that surfactant can be swept to the 
rear of the bubble, creating a more mobile surface at the 
leading face of the bubble, and a less mobile (i.e. more 
immobile) interface at the back of the bubble, known as 
the “stagnant cap” (Clift et al., 1978; Li & Mao, 2001).   
Based on experimental observations I hypothesise that 
shear at the bubble’s surface due to the particle’s motion 
can induce local mobilisation of the gas–liquid interface.  
This is explored first by consideration of the fractional 
mobility for which the transient velocity of the particle 
obtained by computational prediction matches the 
experimentally observed behaviour.  Second, the shear 
stress experienced at the bubble surface in two different 
scenarios is computed:  for a particle approaching the apex 
of the bubble, and for a particle approaching off-axis, and 
‘sliding’ over the bubble’s surface.  These are compared 
with the shear stress on a rising bubble which might be 
expected to give rise to a stagnant cap due to distribution 
of surfactant as a function of the polar angle, φ.   

EXPERIMENTAL METHOD 

The original experimental measurements were made by 
allowing spherical glass beads to settle under the action of 
gravity onto a stationary bubble, held captive at the end of 
a capillary, the whole being carried out in a quiescent 
medium of ppuurriiffiieedd water at ambient temperature and 
pressure in the CSIRO Milli-Timer apparatus (Verrelli & 
Koh, 2010; Verrelli et al., 2011).  Although the particles 
were methylated to render their surfaces relatively 
hydrophobic, for the case of interest the approach 
trajectory commences sufficiently far from the vertical 
axis through the bubble’s centre that hydrodynamics 
prevents the two surfaces from coming close enough for 
any attractive (surface chemical) forces to take control.   
The bubble and particle diameters for the specific case 
presented herein are approximately 1.26 and 0.141 mm, 
respectively, both objects being close to perfect spheres.   
Further details of the experimental procedure can be found 
in the references given.   

MODEL DESCRIPTIONS 

Overall conditions and assumptions 

The liquid medium is water, with a density of 1000 kg/m3, 
viscosity of 1 mPa.s (Newtonian), and surface tension of 
72 mN/m.  Industrial flotation cells commonly operate at 
somewhat elevated temperatures, in which case the 
viscosity would be reduced.  The particle’s density is 
taken as 2450 kg/m3, consistent with the soda–lime glass 
Ballotini used in the experimental work.  The bubble is 
constituted of air, with a density of practically 0 kg/m3.   
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In all of the modelling that follows, the bubble is assumed 
to be a rigid sphere.  No forces arising from surface 
chemistry are included — they are certainly negligible for 
large separation distances;  their omission even for the 
smallest gaps, δ, considered herein can be considered an 
approximation.   
All of the microhydrodynamic drag functions suppose that 
the bubble is much larger than the particle, so that the 
gas–liquid interface can be treated as locally flat.  This is a 
reasonable assumption, as the bubble is approximately 10 
times the size of the particle.   
Apart from where explicitly included as a separate term, 
effects of both fluid inertia and particle acceleration are 
assumed negligible (cf. Verrelli et al., 2012c).   
For all shear stress calculations an immobile surface is 
assumed, which yields an upper limit.  The shear stress 
would be practically zero for a fully mobile gas–liquid 
interface, assuming the viscosity of the gas phase to be 
negligible, and likewise for the viscosity of the interface 
itself (cf. Clift et al., 1978; Tan et al., 2009).   
Unless otherwise stated, all particle trajectories lie on the 
meridian of Θ = 0 (for which θ = 0 or π).   

Prediction of particle trajectory 

The trajectory of a particle as it encounters a bubble is 
predicted using an algorithm adapted from that originally 
due to Nguyen, presented by Verrelli et al. (2011) and 
variously applied thereafter (Verrelli et al., 2012a; 
Verrelli et al., 2012b).  The independent variables of r and 
φ track the particle’s centre.   
The governing equations are obtained from the Basset–
Boussinesq–Oseen (BBO) equation (Nguyen & Schulze, 
2004), neglecting the Basset force as particle accelerations 
are relatively small for the conditions presently studied 
(Verrelli et al., 2012c).  A system of four equations is 
obtained:   

T

φuuf

r

u

t

u rφr cos

d

d Sr
2


 ,  (1a) 

T

φuuf

r

uu

t

u φφrφ sin

d

d St 
 ,  (1b) 

ru
t

r


d

d
,  (1c) 

r

u

t

φ φ
d

d
  (1d) 

in which  

 
μ

ddR
T

9

2 fp
2

p 
 ,  (2) 

 
gu

μ

ddR

9

2 fp
2

p
S


 ,  (3) 

immobiler,mobiler,r )1( fxfxf  ,  (4) 

immobilet,mobilet,t )1( fxfxf  ,  (5) 

with the drag correction functions fr,... and ft,... for a 
perfectly mobile or immobile bubble surface estimated 
respectively from the four rational approximation formulæ 
of Nguyen & Evans (see Nguyen & Schulze, 2004) that 
were used previously (Verrelli et al., 2011).   

An indication of values of the various components of 
force implicit in equations 1a and 1b is presented in a 
companion paper (Verrelli et al., 2012c).   
I have made several notable changes to the equations and 
their solution since the previously described work (cf. 
Verrelli et al., 2012c).   
(i) The drag correction functions fr and ft are composed 
as interpolations between the two limiting cases of 
perfectly mobile and perfectly immobile bubble surfaces, 
based on the fractional bubble surface mobility, x, which 
in turn is a function of the gap, δ.  (The gap, δ, also 
indirectly accounts for particle speed.)  The function x was 
adjusted through a trial-and-error process to obtain a 
predicted velocity profile concordant with the empirically 
observed one.   
(ii) The governing system of equations was found to 
constitute a ‘stiff system’ whenever the predicted particle 
trajectory encountered small gaps, for which the 
microhydrodynamic resistances increased sharply.  Hence 
greatly improved computational efficiency was obtained 
by swapping from a Runge–Kutta algorithm to a variable-
order solver (implemented at order 5) based on numerical 
differentiation formulæ that is well-suited to stiff 
problems — namely the ode15s routine in MATLAB 
(Shampine & Reichelt, 1997).   
(iii) Tolerances in solving the differential equations were 
tightened.  The solution components were required to have 
fractional error of less than approximately 10−8 for all 
components greater than 1×10−11 in magnitude.   
(iv) The arguments of fr and ft were not altered for small 
gaps, less than 10 nm.   

Limiting case of axial approach at small gaps 

When the gap is small, the lubrication approximation 
applies.  The specific case of a spherical solid approaching 
a plane wall in a quiescent fluid, under the action of 
gravity, was derived by Taylor (presented by Hardy & 
Bircumshaw, 1925).  After correction for buoyancy, 
Taylor’s equation is  










 
  t

μ

gRdd
δδ

t 9

)(2
exp

pfp
0

,  (6) 

from which it can be found that  

δ
μ

gRdd

t

δ
uu r 9

)(2

d

d pfp 
   (7) 

(see also Parkinson, 2010).  It is apparent that for small 
gaps the particle’s velocity is directly proportional to the 
gap.   

Connexion between surface shear stress and mobility 

The shear stress at a free surface must be balanced by 
other forces, which typically arise from a gradient in 
surface tension, due to a non-uniform distribution of 
surface active agents (“surfactants”) at the interface.  The 
relationship is given by (Leal, 2007)  

φ

σ

R
τ

Rrφr d

d1

bb



.   (8) 

The surfactants can be intentionally-added detergents, 
‘opportunistic’ organic species, or other molecules.  A 
decent surfactant can readily depress the static surface 
tension of water from its pure value of ~72–73 mN/m to, 
say, 60 mN/m even at very low (sub-micromolar) 
concentrations in the bulk (Tan et al., 2009; Tan et al., 
2005).   
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For a bubble rising through a stagnant liquid, as in Figure 
2, the manifestation of different surface mobility due to 
the relative liquid motion is a longstanding theory.  The 
analytical equations for this situation are readily available, 
and so it serves as a useful benchmark for the more 
complicated scenarios to follow.   
For a rising bubble the change in surface tension from the 
nose to the tail of the bubble can be calculated from 
equation 8 by integrating the shear stress, if it is known:   

 


π

0

b d.Δ
b

φτRσ
Rrφr

.   (9) 

Thus a change in surface tension of order 10 mN/m, 
together with Rb, gives a pprreelliimmiinnaarryy indication of the 
magnitude of shear stresses that could be expected to 
induce localised mobilisation of the bubble surface by 
depletion of surfactant in the interaction zone.   
For a stationary bubble approached by a particle, the 
integration is performed along a line at the bubble surface 
in the bubble–particle interaction zone, viz.   

 


p

0
0

d.Δ

R

zzρ ρτσ .   (10) 

The interaction zone will have a diameter similar to that of 
the particle itself.  For simplicity, herein Δσ is only 
calculated for the forward half of the interaction zone.   
 

Shear stress on surface of a rising bubble 

The formula for evaluating the shear stress acting at the 
surface of a rising bubble with an immobile interface is 
presented in standard texts (Bird et al., 1960), viz.  

4
b

b2

)sin(3










r

R

R

φUμ
τ φr ,  (11) 

and at the bubble’s surface this reduces to  

b2

)sin(3

b R

φUμ
τ

Rrφr





.   (12) 

Note that the shear stress experienced at the immobile 
interface is the same irrespective of whether the bubble 
rises through a quiescent medium, or whether the liquid 
streams past a stationary bubble — the difference is 
merely in the frame of reference chosen.   
Equations 11 and 12 can also be obtained by 
differentiation of the velocity components vr and vφ in 
spherical co-ordinates for uniform translation of a sphere 
in uniform flow, parallel to the flow direction (see Bird et 
al., 1960; Happel & Brenner, 1983), given that (Bird et 
al., 1960)  





















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


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
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



φ

v

rr

v

r
rμττ rφ

rφφr
1

.   (13) 

 
The value of U has been taken as the terminal rise velocity 
of a bubble of the given diameter.  This could, in 
principle, be estimated using a limiting analytical formula 
or an empirical correlation:  for example, reference to the 
formula for the Stokes velocity in equation 3 indicates that 
the shear stress will vary approximately as  

  gφddRτ
Rrφr )sin(bfb

b



   (14) 

at small Reynolds numbers.   
The work of Savic and other researchers indicates that 
stagnant cap effects first become obvious for an Eötvös 
number (or Bond number), g Δd (2Rb)

2 / σ, of ~9, at which a 
10 % enhancement in the terminal rise velocity may be 
observed (Clift et al., 1978).  For an air bubble in water 
this corresponds to a diameter of approximately 8 mm, for 
which Stokes’ equation is not appropriate.  With reference 
to the chart presented by Clift et al. (1978), U is 
~0.22 m/s.  This yields a Reynolds number of 1760, which 
is much larger than would ideally be allowed for given the 
assumptions implicit in equation 12 (cf. Clift et al., 1978);  
nevertheless, it seems to be a common compromise of 
precision for the sake of practicality (e.g. Leal, 2007).   
The change in surface tension that could be achieved in 
this scenario is estimated by substituting equation 12 into 
equation 9, whence  

Uμσ 3Δ  .   (15) 

Shear stress on surface of a bubble for particle 
exhibiting motion perpendicular to bubble’s surface 

For a sphere moving perpendicular to a rigid, immobile 
planar surface, the full flow field was derived by Brenner 
(1961) in terms of a stream function, viz.  

  2/3
1

1 )()(









hc

ξGηυ

ψ
n

nn

,  (16) 

in which the υn are complicated functions of particle 
velocity and position, while Gn+1 is a Gegenbauer 
polynomial of degree −½.  The summation was evaluated 
up to n = 100.   
The stream function is expressed in bipolar co-ordinates*, 
so it would be most convenient to evaluate the shear stress 
in this domain, if the appropriate formula were known.  
The formula could not be found in the literature, and 
therefore was derived from first principles, following the 
guidance in Happel & Brenner (1983), to obtain  
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.   (17) 

Mathematica version 8.0.1.0 (Wolfram Research) was 
used to perform the calculations.  MATLAB version 
7.12.0.635 (R2012a) (The MathWorks) was used for 
subsequent processing.  The appropriate input velocity 
and gap pairs were obtained using the methodology 
described under ‘Prediction of particle trajectory’ for a 
particle dropping along the z-axis (φ = 0).   
At the bubble’s surface, τηξ has the same magnitude as τρz, 
but the opposite sign.   
 
The alternative technique of mapping ψ to circular 
cylindrical co-ordinates, and then differentiating twice as 
per (Brenner, 1961)  

z

ψ

ρ
vρ 




1
  (18a) 

                                                                 
* Sometimes called “bispherical co-ordinates” (e.g. O’Neill, 

1964).   
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
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  (18b) 

and (Bird et al., 1960)  
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
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μττ
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using Mathematica did not meet with success — neither 
using analytical methods nor with numerical 
differentiation.   

Shear stress on surface of a bubble for particle 
exhibiting motion both parallel and perpendicular to 
bubble’s surface 

Under the limiting condition of creeping flow, the linear 
form of the governing equations allows the fluid flow field 
for a mixture of simultaneous particle translations and 
rotations to be obtained by a simple arithmetic summation 
of the individual behaviours for elementary motions 
(Goldman et al., 1967; O’Neill, 1964; Pasol et al., 2006).  
Although creeping flow could not strictly be said to exist 
at all times in the presently investigated scenarios, and is 
not an inherent feature of Oseen’s derivation (Happel & 
Brenner, 1983), it becomes a fair simplification especially 
as the gap is reduced.   
For the present purposes, therefore, it suffices to estimate 
the total shear stress from the individual contributions 
assuming firstly pure radial motion and secondly pure 
tangential motion of the particle with respect to the 
bubble’s surface.   

Shear stress arising from perpendicular component of 
motion 

Following the foregoing argument, the shear stress for 
purely radial motion presented in equations 16 and 17 can 
be used to estimate the contribution of this motion for the 
mixed case.   

Shear stress arising from parallel component of motion 

Naïve estimates 

Naïve estimates of the peak shear stress at the surface can 
be obtained by treating the system as if it were two 
parallel plates, whence (Bird et al., 1960)  

δ

U
μ

r

v
μτ 
Δ

Δ
naive .  (20) 

Rigorous estimates 

The full flow field for purely tangential motion of a sphere 
beside a plane was derived by O’Neill (1964)† in terms of 
components of the velocity vector in circular cylindrical 
co-ordinates, viz.  

)cos(
2

02
1 θUU

c

QρU
vρ 








 ,  (21a) 

  )sin(
2 02 θUU
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vθ  ,  (21b) 
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1 θw
c

QzU
vz 







  ,  (21c) 

in which Q1, U0, U2 and w1 are spherical harmonics, which 
are complicated functions of the bipolar co-ordinates ξ and 

                                                                 
† See also Chaoui & Feuillebois (2003) and Pasol et al. 

(2006).  All three references contain misprints, so care must 
be taken.   

η, which in turn depend on the bubble–particle separation 
(for a given position in space).  Each of Q1, U0, U2 and w1 
involve infinite summations, in which the coefficients are 
usually obtained by linear programming.  Herein an 
alternative explicit method adapted from that of Chaoui & 
Feuillebois (2003) has been employed, with a starting 
precision of 500 digits, in order to avoid solving large 
matrices to find the coefficients.  The summations (not 
shown here) were evaluated up to n = 100 for the largest 
gap and up to n = 1000 for the smallest gap considered, 
with a sliding scale in between.  Ideally the summations 
for the smallest gap would be evaluated up to n ~ 3000, 
but this was computationally prohibitive;  nevertheless, 
the error due to this approximation is estimated to be 
significantly less than 1 %, and thus satisfactory for the 
present purposes.   
In order to compute the shear stress on the plane, we could 
evaluate τξη (equivalently, τηξ) or τρz (equivalently, τzρ).  
The latter option was found to be less robust, and so the 
velocity components in bipolar co-ordinates will be 
required.  Again the relevant formulæ could not be found 
in the literature.  Following the guidance in Happel & 
Brenner (1983) the ξ-component of fluid velocity was 
derived from first principles as  

 





hc

vξηvξη
v

zρ
ξ

)sin()sinh(1)cos()cosh(
.  (22) 

Substitution of vξ into equation 17 then yields the shear 
stress at the bubble’s surface.  Again the calculations are 
carried out using Mathematica.  The code was executed in 
parallel on CSIRO’s Burnet cluster.   
Input velocity and gap pairs were obtained using the 
methodology described under ‘Prediction of particle 
trajectory’ to enhance the resolution of the experimentally 
observed trajectory, using an empirical function for x.  
Using the predicted data was especially important for gap 
estimation.   

RESULTS 

Observed and predicted trajectories 

The stimulus for the present working hypothesis was the 
observation of individual particles dropping onto a 
stationary bubble, which matched neither the predictions 
for a fully mobile bubble surface nor those for an 
immobile surface (Verrelli et al., 2011).  One of those 
interactions is re-examined below.   
The observed particle trajectory is indicated in Figure 3, 
coloured according to its instantaneous speed.  This is 
compared against the predicted trajectories for the limiting 
cases of a fully immobile (x=0) or fully mobile (x=1) 
bubble surface.  The hybrid case is intermediate, and is 
discussed below.   
The respective particle speeds as functions of polar angle 
are plotted separately in Figure 4.  Previously it was 
concluded that the observed behaviour lay “intermediate” 
to that of the ‘no slip’ and ‘full slip’ cases (Verrelli et al., 
2011) — i.e. partial slip.  Upon closer examination it 
appears rather that the observed particle initially behaves 
in close accordance with the immobile case, and then 
abruptly changes to a different mode of motion, more akin 
to the mobile case.   
This suggests that a ttrraannssiittiioonn occurs at the bubble 
surface, from immobile to mobile, due to the particle’s 
approach.  This possibility was raised by Lowengrub and 
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Cristini (see Leal, 2004) and Manor (2010).  (Although 
the particle does not quite achieve the speeds seen in the 
mobile case, we might suppose that this is a legacy of the 
earlier surface immobility.  It turns out that the ‘memory 
effect’ is actually very short.  While bubble deformation 
has been neglected herein, such action would be expected 
to affect the particle speed too.)   
Through a trial-and-error process a hybrid trajectory was 
obtained to match the observed behaviour, by specifying x 
as a function of δ ‡, as shown in Figure 5.  At large gaps 
the mobility is taken as zero (although it may merely be 
close to zero), while for the smallest gaps the mobility 
approaches unity.  The fact that this ‘correction’ provides 
the closest match to the observed particle speeds suggests 
that the particle’s approach has indeed induced local 
mobilisation of the bubble surface.  However, for both 
rigour and improved understanding we look next at the 
surface shear stresses.   
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Figure 3:  Comparison of observed trajectory and velocity 
(left) with predictions for immobile & mobile (centre) and 
partially mobile (right) bubble surfaces.  The predicted 
trajectories are offset, for clarity.  Bubble diameter = 
1.26 mm.  Particle diameter = 141 µm.  [An extended 
version of Fig. 8 from Verrelli et al. (2011).]   
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Figure 4:  Particle speed as a function of polar angle for 
the observed and predicted trajectories shown in Figure 3.  
[An extended version of Fig. 16 from Verrelli et al. 
(2011).]   

                                                                 
‡ It is not claimed that x is exclusively a function of δ.  Indeed, 

the working hypothesis is that x is a function of the local 
shear stress at the bubble’s surface.  However, the shear 
stress is difficult to calculate, so δ stands in here as an 
expedient surrogate parameter.   
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Figure 5:  Fractional bubble surface mobility, x, as a 
function of particle–bubble separation for the “hybrid” 
case presented in Figure 3 & Figure 4.   
 

Shear stress on a rising bubble 

Before estimating the bubble surface shear stresses 
induced by motion of a nearby particle, let us first 
evaluate the shear stresses for a rising bubble, in order to 
obtain a benchmark for subsequent comparison.   
For an 8 mm bubble rising at 0.22 m/s the shear stress at 
the gas–liquid interface, if it were immobile, is given in 
Figure 6 as a function of φ.  From equation 15 the 
maximum change in surface tension that could be 
expected over the surface of the bubble is 00..6666  mmNN//mm.  
This low value suggests that either:   
• surfactant coverage at the surface varies from bare to 

close-packed, but the surfactants used in the literature 
depress the surface tension only very weakly 
(unlikely);  or   

• the surfactants are only slightly depleted from the 
nose of the bubble under the scenario described 
(reasonable (cf. Leal, 2007; Li & Mao, 2001));  or   

• the evaluation of shear stress is a gross underestimate 
due to inertial effects in the liquid (possible).   

For all bubbles in the range 2 to 10 mm in diameter, the 
terminal rise velocity is approximately the same, at 
~0.2 m/s (Clift et al., 1978).  Hence, from equation 15 the 
only difference is not in Δσ itself, but rather in the 
distance over which the change in σ occurs.   
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Figure 6:  Shear stress on surface of rising bubble of 
diameter 8 mm, with U = 0.22 m/s.   
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Shear stress for particle approach along z-axis 

The simplest form of particle motion that can be described 
is the axisymmetric case in which the particle moves 
along the z-axis, and hence the particle velocity has only a 
radial component.   
Shear stress at the bubble surface for a 0.150 mm particle 
dropping onto a bubble along the vertical axis is given in 
Figure 7.  The peak shear stress and particle speed are 
given in Figure 8.  The particle speed approaches 
equation 7 as the gap decreases.  Even though the peak 
shear stress grows at small gaps to be much greater than 
that found for a rising bubble, it acts over a much shorter 
distance.  Integrating the shear stress at the surface over  
within the interaction zone according to equation 10 
implies a change in surface tension of approximately 
00..0055  mmNN//mm, which seems inadequate to achieve any 
perceptible mobilisation of the interface according to the 
foregoing benchmarks.   
 

10
-8

10
-7

10
-6

10
-5

10
-4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Radial cylindrical ordinate, off axis,  [m]

S
he

ar
 s

tr
es

s 
at

 b
ub

bl
e 

su
rf

ac
e,

  
 [

Pa
]

 

 

G
ap

, 
  

 [
m

]

1E-9  

1E-8  

1E-7  

1E-6  

1E-5  

1E-4  

1E-3  

1E-2  

 

Figure 7:  Shear stress at the surface of a large bubble on 
which a 150 µm particle is impinging at the z-axis, as 
functions of distance off the z-axis, for various gaps.   
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Figure 8:  Peak shear stress and transient particle speed, 
U = ur, as functions of δ for the scenario in Figure 7.   
 

Shear stresses for particle approach off z-axis 

The next level of complication is to allow for particle 
trajectories following from an off-axis approach.  As 
mentioned previously, the flow field can then be obtained 
as the summation of individual contributions from the 
radial and tangential components of the motion.   

Contribution due to perpendicular movement 

Surprisingly, ur for the off-axis approach depicted in 
Figure 3 is only very slightly different from the behaviour 
of the particle settling toward the bubble’s apex described 
in the previous section, as shown in Figure 9, not 
deviating much from equation 7 at small separations, 
despite a moderate variation in the radial component of 
the particle weight force (see Verrelli et al., 2012c).  
Hence it can be expected that the contribution of this 
component of the motion for the off-axis approach will be 
similar in magnitude to the results already presented in 
Figure 7 and Figure 8.   
In contrast, the tangential velocity maintains a large 
magnitude even down to the smallest gaps encountered in 
the trajectory of interest.  That suggests the motion 
parallel to the bubble’s surface will control the interfacial 
shear stress.   
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Figure 9:  Particle speed components for 150 µm particle 
approaching along z-axis (perpendicular motion), and 
141 µm particle approaching off-axis (predominantly 
parallel motion) as in Figure 3.   
 

Contribution due to parallel movement 

For the parallel movement the fluid flow field is no longer 
axisymmetric, and hence neither is the shear stress at the 
bubble surface.  For a particle translating along the 
meridian of Θ = 0, it is intuitive that the maximum shear 
stress will act along this same meridian, with θ = 0 or 
θ = π.  In Figure 10 this is evaluated for θ = 0 only (i.e. 
‘positive’ values of );  the stresses for θ = π in equations 
21 (i.e. ‘negative’ ) are presumed to be an approximate 
mirror image — at least for the smaller gaps (stresses for 
the largest gaps being in any case negligible).  The shear 
stresses in Figure 10 are considerably larger than those in 
Figure 7;  moreover they act over a somewhat longer 
distance.   
In Figure 11 the peak shear stresses are plotted as a 
function of the gap.  These are only slightly lower than the 
naïve estimates from equation 20.   
As shown in the case of the perpendicular approach, it is 
important to integrate the shear stresses over  to get an 
indication of the change in surface tension that the shear 
stress could induce.  Figure 12 shows the integrated 
values as a function of the gap.  The total Δσ for the 
interaction along the meridian is expected to be 
approximately ddoouubbllee the amount shown in Figure 12, 
which is only for the leading half of the interaction zone, 
and omits the trailing half.  Total Δσ values of order 110000  ttoo  
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110011  mmNN//mm are predicted.  These are clearly a sizeable 
fraction of the surface tension of water (~72 mN/m), and 
can be expected to be sufficient to deplete surfactant from 
the central part of the interaction zone.   
It would be expected that the gap at which the fractional 
mobility was seen to increase sharply in Figure 5, viz. 
~0.05 mm, would correspond to non-negligible values of 
Δσ in Figure 12, but the estimated values appear 
negligible.  The reason is uncertain at this stage, and 
further investigation would be beneficial.  One possibility 
is that the adventitious ‘surfactants’ present in our 
experimental system depress the static surface tension 
much more weakly than commercial detergents.  Perhaps 
even trace inorganic ionic species structure at the gas–
liquid interface (cf. Zimmermann et al., 2010) and 
stabilise it against shear stresses without decreasing the 
surface tension much.   
A second possibility is that the short time of the 
interaction (milliseconds) means that the ddyynnaammiicc surface 
tension should be considered, rather than the ssttaattiicc 
(equilibrium) value.  A given concentration of surfactant 
results in a much smaller reduction in the dynamic surface 
tension from that of pure water:  changes are typically 
< 1 mN/m (Tan et al., 2005).  Hence even the smaller 
shear stresses may be able to have a significant effect on 
the local interfacial concentration of surfactant.   
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Figure 10:  Shear stress at the surface of a large bubble on 
which a 141 µm particle is impinging off the z-axis (as per 
the ‘hybrid’ trajectory in Figure 3), as functions of 
distance off the z-axis, for various gaps.   
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Figure 11:  Transient tangential particle speed, uφ, and 
corresponding peak shear stress as functions of δ for the 
scenario in Figure 10.   
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Figure 12:  Approximate change in surface tension along 
meridian of Θ = 0 for θ = 0 as a function of δ for the 
scenario in Figure 10.   
 

APPLICATION 

In many of the applications alluded to in the 
‘Introduction’, such as industrial froth flotation, the bulk 
fluid flow regime is turbulent.  Yet the solutions presented 
here are based on formulæ derived predominantly for 
creeping flow.   
We may take some reassurance from the fact that even 
while the bulk fluid flow may be turbulent, at close range 
the flow is laminar.  For example, Liu & Schwarz (2009) 
estimated the thickness of the boundary layer surrounding 
a bubble to be approximately 1 mm.  Moreover, with 
regard to the present results, consideration of the particle’s 
tangential speed, uφ, as a function of particle–bubble 
separation, δ, presented in Figure 9 and Figure 11, 
confirms that creeping flow is attained within the gap for 
small particle–bubble separations, and is a reasonable 
approximation for the domain of δ treated herein.   
As the present work is the first to quantitatively estimate 
decreases in bubble surface mobility due to nearby 
particle motion along realistic trajectories in any flow 
regime, it is sensible to commence with a slightly 
idealised analysis.  Notwithstanding these justifications, it 
would be of interest to extend the analysis to fully account 
for inertial effects.  As discussed by Verrelli et al. 
(2012c), such an objective is difficult to realise by the 
present approach, and instead a numerical simulation of 
the flow field based on the Navier–Stokes equations is 
recommended for that extension.  Such a formulation 
would also allow the effect of other complicating features, 
such as bubble surface deformation or the adsorption and 
desorption of surfactant, to be evaluated.   

CONCLUSION 

Experimental evidence has been presented for localised 
mobilisation of a bubble’s surface due to the motion of a 
nearby particle.  Through numerical simulation a 
compatible change in the fractional mobility as a function 
of separation between particle and bubble was deduced.   
Equations for the shear stresses acting at the bubble 
surface due to the liquid flow — caused by the particle’s 
motion nearby — were derived from the exact analytical 
solutions for the full flow field in the liquid for two ideal 
cases:  perpendicular translation of the particle and 
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parallel translation.  The estimates of shear stress were 
much higher for the latter case;  integration in one 
dimension over the surface showed that this corresponded 
to a change in surface tension that suggests depletion of 
opportunistic surfactant molecules in the interaction zone, 
and hence mobilisation of the interface.   
The results are important for fundamental understanding 
of interfacial dynamics, and have direct implication to 
micro-scale modelling of the interaction and attachment 
processes occurring in major industrial processes such as 
flotation.   
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