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ABSTRACT 

The Discrete Element Method (DEM) has become a 

valuable technique in modelling various industrial 

processes involving granular flows. There are a number of 

contact force models implemented in DEM that 

incorporate viscous or plastic dissipation but their 

validation is a difficult process given their performance is 

likely problem dependent. In this context, we examine the 

accuracy of two DEM viscous dissipation models (where 

the energy is dissipated through a dashpot mechanism) in 

simulating a simple inelastic oblique impact. We compare 

the rebound kinematics at various impact angles for a wide 

range of normal coefficients of restitutions for two types 

of dashpot models against previously validated plastic 

dissipation models. We discuss two important results. The 

first is that for high coefficients of restitutions both 

dashpot models behave similarly and compare well to 

plastic dissipation models.  However as the coefficient of 

restitution decreases (and the energy dissipation increases) 

both dashpot models produce increasingly damped 

tangential forces and velocities. This is entirely different 

behaviour to the validated plastic dissipation models 

which show increasingly oscillatory tangential forces and 

velocities as the coefficient of restitution decreases. The 

final key result is the appropriate choice of the damping 

coefficient in the viscous dissipation models to ensure the 

normal coefficient of restitution is correctly reproduced. 

INTRODUCTION 

The Discrete Element Method (DEM), originally 

developed by Cundall and Strack (1979) for quasi-static 

deformation of compact particle systems is now used for a 

wide variety of problems ranging from highly collisional 

rapid granular flows to quasi-static deformation problems 

with enduring contacts, see for example Thornton (2009). 

The particle-particle interactions depend on how the 

contact normal and tangential forces are calculated, i.e the 

choice of contact force model. There are a number of 

different contact force models that have been implemented 

in DEM simulations, all of which incorporate some form 

of viscous or plastic energy dissipation. However, it is 

currently unclear what significance the choice of contact 

force model has on the resulting flow or its properties. 

Indeed the choice likely depends on whether the problem 

is highly collisional and/or has enduring contacts. So the 

validation of DEM contact models is challenging but 

worthwhile given the importance of DEM in modelling 

industrial processes. As part of this validation process we 

have recently completed a study comparing the 

performance of various contact models for a simple 

problem of a sphere impacting obliquely with a target 

wall, see Thornton et. al (2012). We studied normal and 

tangential contact force models that can be categorised as 

either viscous dissipation or plastic dissipation models for 

a broad range of normal coefficient of restitutions. It was 

found that existing experimental evidence and theoretical 

models supported the plastic dissipation model behaviour 

but did not support the viscous dissipation behaviour. The 

aim of this paper then is to expand further on the 

limitations of the viscous dissipations models. Specifically 

we will show how and why the behaviour of the viscous 

models diverges from the plastic models as the normal 

coefficient of restitution, en reduces. We will also discuss 

the choice of dashpot coefficient in these viscous models 

in order to reproduce the normal coefficient of restitution 

correctly. 

DESCRIPTION OF CONTACT FORCE MODELS 

The most common contact force model is the linear 

spring-dashpot (LS+D) model introduced by Walton 

(1983). LS+D models are widely used as they are robust 

and easy to implement. Non-linear variations of the LS+D 

model have also been implemented e.g. Tsuji et al. (1992). 

These dashpot models dissipate energy through viscous 

means; therefore we will label them viscous dissipation 

models. Other contact force models, e.g. Stronge (1994) 

and Thornton (1997), dissipate energy plastically by using 

different loading and unloading spring stiffnesses. We will 

call these interaction models plastic dissipation models. In 

the following sections we describe the viscous dissipation 

models to be examined and compare their performance to 

a validated plastic dissipation model. 

 

Viscous Dissipation Models 

In the following sections we present a linear spring 

dashpot and a non-linear spring dashpot model.  

Linear Spring Dashpot Model (LS+D) 

In the linear spring dashpot model (LS+D) the normal and 

tangential forces are calculated using the following 

equations below, 
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where Fn is the normal force, Ft  is the tangential force, Fte 

is the elastic component of the tangential force, is the 

overlapm is the mass, kn is the normal spring stiffness, vn 
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is the normal surface velocity and vt is the tangential 

surface velocity. The dashpot coefficient  depends on en 

and is given by Eq. (6) or Eq. (7). The tangential force is 

calculated using the relative tangential displacement 

increment at timestep n with tangential spring stiffness 

                                   

nt kk 
 

 

where is a material quantity dependent on Poisson‟s 

ratio  
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The tangential force is limited by Coulomb friction where 

  is the friction coefficient.    

Hertz Mindlin Spring Dashpot Model (HM+D) 

A non-linear spring-dashpot model can be implemented in 

which the normal spring is Hertzian and the tangential 

spring is provided by the „no slip‟ theory of Mindlin 

(1949). This model is referred to as the HM+D model. The 

normal and tangential contact forces are calculated using 
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where the spring stiffnesses now depend on overlap 
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and E* and G* depend on Young‟s modulus E, shear 

modulus G and    
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The PLS(B) Plastic Dissipation Model 

We compare the viscous models against the PLS(B) 

plastic dissipation model introduced in Thornton et. al 

(2012). This plastic dissipation model was shown to 

compare well against the validated theoretical model of 

Thornton (1997). The PLS(B) model incorporates 

dissipation in both the loading and unloading phases by 

adjusting the normal spring stiffness in loading (k1) and 

unloading (k2)  with en. The tangential spring stiffness in 

this model is defined as the normal unloading spring 

stiffness k2 multiplied by  
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PROBLEM DESCRIPTION 

An inelastic collision between a single spherical particle 

and a planar target wall is examined at different impact 

angles. The sphere approaches the wall without rotation, 

adhesive or gravitational forces as described in Thornton 

et.al (2012) and shown in Figure 1. 

 

 
Figure 1: Schematic diagram of the impact geometry. 

 

Figure 1 illustrates diagrammatically a typical oblique 

impact of a sphere with a target wall. The sphere 

approaches the wall with an initial translational velocity Vi 

at an impact angle i. After interaction with the wall the 

sphere rebounds at an angle r with a rebound 

translational velocity Vr and a rebound angular velocity 

r. Vi and Vr are the velocities of the sphere centre. The 

corresponding surface velocities at the contact are denoted 

by vi and vr. 

 

We examine impact angles only in the range 0  i  45 

as sliding occurs throughout the entire impact for i  > 45 

(and therefore the results are identical for all models). To 

simplify comparisons between the different contact force 

models, we consider a constant normal  impact velocity Vni 

= 5 m/s and simulate impacts at angles i = 1, 5, 10, 15, 

20, 25, 30, 35, 40 and 45 degrees. For all models we 

consider an elastic sphere of radius R = 25 mm, density  

= 2650 kg/m3 and mass m = 0.1734 kg. The interface 

friction is  = 0.1, E = 70 GPa and  = 0.3. Following 

Thornton et. al. (2011) we characterise the rebound 

kinematics by the normalised impact angle  and the 

normalised rebound tangential surface velocity   
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RESULTS 

The rebound kinematics for the viscous models previously 

described are presented and discussed as en decreases from 

0.9 to 0.25. Where appropriate the tangential force 

evolution curves are also presented for further insight. For 

the simple impact problem studied we compare our results 

against the partially latching spring model PLS(B) 

introduced in Thornton et. al (2012).  

Viscous Model Behaviour As Coefficient of Restitution 

Reduces 

In Thornton et. al. (2012) we presented results for the 

rebound  kinematics for both the viscous models (LS+D, 

HM+D) and compared them against various plastic 
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dissipation models including PLS(B). Figures 2, 3 and 4 

show the rebound kinematics for the LS+D, HM+D and 

PLS(B) models respectively and are reproduced here from 

Thornton et. al. (2012) to aid in further analysis and 

discussion. Interpretation of these figures is also discussed 

in Thornton et. al. (2012).  

 

As can be seen from Figures 2 and 3 both viscous models 

behave similarly as en reduces. So the choice of viscous 

model has only a minor effect on the rebound kinematics. 

The key point we want to expand on in this paper is in 

understanding the difference in behaviour between the 

viscous models and the plastic models as en reduces, 

particularly for en < 0.5. To do this we need to consider 

both the rebound kinematics and the tangential force 

evolution curves. These differences are noted by first 

examining the rebound kinematics results for en = 0.25 in 

Figures 2, 3 and 4. Figure 4 shows that for en = 0.25 an 

additional oscillation in vtr occurs in the PLS(B) results 

which is not observed in either the LS+D or HM+D results 

in Figures 2 and 3. In addition at low en values the viscous 

dissipation models produce a moderately negative vtr that 

varies slowly with impact angle. In contrast, the PLS(B) 

model exhibits an oscillatory behaviour in vtr, with 

positive and negative values larger in magnitude. We 

noted too in the course of our study that as en reduced 

further, more oscillations in vtr occur for the PLS(B) 

model while for the viscous models further damping of vtr 

occurs.  
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Figure 2: Normalised rebound tangential surface velocity 

  vs normalised impact angle   for the LS+D model. 
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Figure 3: Normalised rebound tangential surface velocity 

  vs normalised impact angle   for the HM+D model 

 

To explore the differences in behaviour between the 

viscous and plastic dissipation models as en reduces it is 

useful to examine the tangential force evolution with time 

for both viscous models and compare these evolution 

curves to the PLS(B) model. The tangential force Ft at the 

end of the collision (assuming no sliding occurs) is 

directly related to the rebound tangential velocity. So it is 

relevant to examine these evolution curves towards the 

end of the collision particularly as en reduces.  
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Figure 4: Normalised rebound tangential surface velocity 

  vs normalised impact angle   for the PLS(B) model. 

 

Figures 5 and 6 show the tangential force evolution curves 

for the LS+D model at en = 0.5 and en = 0.25 respectively.  

Figures 7 and 8 show these curves for the HM+D model. 

For the two viscous models the behaviour is generally 

similar. As en reduces the initial tangential force at the 

start of the contact increases and then decays away. This 

large initial tangential force is explained easily by 

examining Eqs. (1) or (2). As en reduces the dashpot 

coefficient  increases (as discussed in the next section) 

so the initial tangential force Ft also increases. It also 

occurs sooner in the contact. In fact for the LS+D en = 

0.25 results the maximum tangential force occurs at the 

start of the contact (when the velocity is largest and the 

damping term in Eq. (1) most dominant). Both viscous 

models show a significant decay in the tangential force 

towards the end of the impact before sliding occurs as 

impact angle and en reduce. The LS+D and HM+D models 

mimic a highly damped mass-spring system at low en 

where the damping component of Ft dominates the elastic 

component Fte in Eq. (1) or Eq. (2), i.e 

 

ttt vmkF 2  .         (4) 

 

Focusing now on the LS+D results, we note the variation 

in Ft in Figures 5 and 6 towards the end of the collision 

(just before sliding occurs) with impact angle and en is 

directly correlated with the variation in rebound tangential 

velocity vtr in Figure 2. This correlation is explained by 

Eq. (4), i.e the tangential force towards the end of the 

impact is closely related to the tangential velocity at the 

end of the impact vtr 

 

trtt vmkF 2  

 

because of the dominant dashpot component in the 

tangential force equation. This domination increases as en 
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reduces. A similar correlation is noted for the HM+D 

model by examining Figures 7 and 8 and Figure 3. 
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Figure 5: Tangential force vs time for the LS+D model, en 

= 0.5 for various impact angles i . 
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Figure 6: Tangential force vs time for the LS+D model, en 

= 0.25 for various impact angles i . 
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Figure 7: Tangential force vs time for the HM+D model, 

en = 0.5 for various impact angles i . 
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Figure 8: Tangential force vs time for the HM+D model, 

en = 0.25 for various impact angles i . 

 

In contrast, Figures 9 and 10 show the tangential force 

evolution curves for the PLS(B) model at en = 0.5 and en = 

0.25 respectively. The tangential force behaviour differs 

remarkably from that observed in the LS+D and HM+D 

models. The PLS(B) results in Figure 9 show that using en 

= 0.5 leads to oscillatory tangential forces whose 

frequency increases with decreasing impact angle. 

Reducing en further leads to increasingly oscillatory 

tangential forces for the PLS(B) model. There is also very 

little dissipation as en reduces, unlike the viscous models. 

The reason for this increasing oscillation as en reduces is 

explained by considering the ratio of the tangential spring 

stiffness to the normal loading spring stiffness for the 

PLS(B) model. From Eq. (3) this ratio is 
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which increases as en reduces. That is, in the PLS(B) 

model the tangential spring stiffness increases relative to 

the normal loading stiffness as en reduces. This results in a 

stiffer system in the tangential direction leading to the 

increased tangential force oscillations. In the viscous 

models this stiffness ratio 1 does not change as en 

changes (since a constant normal stiffness k is used in the 

viscous models). In addition the dashpot term dominates 

the tangential force as en reduces. 
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Figure 9: Tangential force vs time for the PLS(B) model, 

en = 0.5 for various impact angles i . 
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Figure 10: Tangential force vs time for the PLS(B) model, 

en = 0.25 for various impact angles i . 
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It was noted in Thornton et al. (2012) that the plastic 

dissipation models are well supported by experimental 

evidence. The authors are not aware of any experimental 

evidence (which albeit is focussed on elastoplastic 

materials) to support the force evolution exhibited by the 

viscous dissipation models. A possible exception to this is 

Behera et al. (2005) who studied fragmentation and 

damage of an agglomerated disc impacting a plate. It may 

be that the viscous dissipation models are more suited to 

friable materials that fracture at the contact. 

 

The Correct Dashpot Coefficient In the Viscous Models 

In studying the sensitivity of the rebound characteristics to 

en for the LS+D model we initially used the traditional 

dashpot coefficient equation from Schafer (1996), 
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Eq. (6) provides the value for  in Eq. (1) in order to 

produce a desired en in the collision. In reducing en 

(increasing ) we found an increasing discrepancy between 

the measured and desired en values. Figure 11 shows the 

measured vs desired en values for LS+D simulations that 

were run with impact angle i = 0o. (The measured en 

values were calculated by taking the ratio of the normal 

rebound and normal impact velocities).  As the desired en 

value reduces the difference between the measured and 

desired en values increases. In fact we found we were 

never able to produce a measured en < 0.15 when the 

traditional Eq. (6) was used for the dashpot coefficient in 

the LS+D model. 

 

Schafer (1996) originally derived Eq. (6) for the LS+D 

model by calculating the velocity in a damped harmonic 

oscillator at the time when the displacement returns to 

zero. This velocity along with the known initial velocity 

was then used to derive the expression for  as a function 

of en in Eq. (6). Schwager and Poschel (2007), however, 

highlighted that DEM interactions finish when the force 

returns to zero, not when the displacement returns to zero 

(unless adhesion is to modelled). The velocity used in the 

en derivation should therefore be measured when the force 

returns to zero, not when the displacement returns to zero. 

 

To highlight this distinction Figure 12 shows the 

displacement, velocity and force vs contact time for en = 

0.5 for i = 0o using the LS+D model. The time when the 

displacement first returns to zero is denoted as t1 and the 

time when the force returns to zero is denoted as t2. Figure  

12 shows the rebound velocities at times t1 and t2 differ 

and therefore the en values differ. The limitation with Eq. 

(6) is that it is derived using the velocity at time t1 (when 

the displacement returns to zero). However for DEM 

simulations (that do not model adhesion), the velocity at 

time t2 should be used (when the force returns to zero). 

 

For the LS+D model, Schwager and Poschel (2007) 

derived the following solution for en as a function of 

when the velocity is calculated at the time when the 

force returns to zero (i.e at time t2 in Figure 12)
 

2

1

12

12
arctan

1

ln
2

2

2





































 








foren

 

2

1
1

12

12
arctan

1

ln
2

2

2






















 







foren

 

1

1

1

1

1
ln

1

ln

2

2

2






























































 












foren          (7)

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

desired en

m
e
a
s
u

re
d

 e
n

 
Figure 11: Measured versus desired en values using LS+D  

 

Figure 13 shows the comparison between Eq. (7) for  
labelled as „Poschel‟ in the figure versus the traditional 

Eq. (6) labelled as „Schafer‟ in the figure. As en reduces 

the differences in  increase with Eq. (7) providing a much 

larger  as en reduces. The traditional Eq. (6) producing   
values no greater than 1.0. We note the measured en values 

in Figure 11 for the LS+D simulations are reproduced 

closely by Eq. (7).  
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Figure 12: Displacement, velocity and force evolution 

curves using LS+D with en = 0.5. 

 

While Eq. (7) is the correct equation for  in the LS+D 

model, it is difficult to implement in a DEM code which 

typically requires en as the inputted parameter rather than  
(since en is a known material quantity). We therefore used 

curve fitting techniques on Eq. (7) to formulate the 

following expression for  as a function of en  
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5.0 ne                                   (8) 

 

where the coefficients hi are tabulated in Table 1. Figure 

13 also shows this fitted curve.  
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Figure 12: Dashpot coefficient   vs en using  Eq. (6) 

(Schafer), Eq. (7) (Poschel) and Eq. (8) (Fitted). 

 

It may be possible to derive an analytic expression for  in 

the HM+D model but this is currently beyond the scope of 

this work. Schwager and Poschel (2008) formulated an 

expression for en in terms of  for a similar system to the 

HM+D model presented in this paper. This expression was 

also dependant on the impact velocity. 

 

i hi 

1 0.2446517 

2 -0.5433478 

3 0.9280126 

4 -1.5897793 

5 1.2102729 

6 3.3815393 

7 6.3814014 

8 -34.482428 

9 25.672467 

10 94.396267 

 

Table 1: Coefficients hi used in Eq. (8) for   

CONCLUSION 

We have explored limitations of the viscous dissipation 

models as the energy dissipation increases by examining 

how the rebound kinematics and collisional force 

evolution curves vary as en reduces. For en  0.5 the 

viscous models produce increasingly smaller tangential 

surface velocities due to the dominant dashpot term in the 

tangential force equation. This is in contrast to validated 

plastic models which produce increasingly oscillatory 

behaviour in the tangential surface velocities as en reduces. 

Existing experimental evidence and theoretical models 

support the plastic behaviour but do not support the 

viscous behaviour. In addition, the traditional equation for 

the dashpot coefficient originally proposed by Schafer 

(1996) for the LS+D model does not reproduce the correct 

en values for non-adhesive interactions. The dashpot 

coefficient equation provided by Schwager and Poschel 

(2007) has been demonstrated to correctly reproduce the 

en values and a more easily implementable form of this 

equation has been formulated. 

 

We have limited our analysis to a spherical particle 

impacting against a rigid planar wall for brevity. We 

expect similar differences between the models to carry 

over for cases where both bodies are deformable (such as 

two particles colliding). Further details related to this area 

can be found in Wu et. al (2009) where impacts between 

deformable bodies was examined. While validation does 

not exist for non-spherical particle impact we would also 

expect the trends discussed in this paper to be similar for 

non-spherical particle impact. These trends are dependant 

on the choice of contact force model which, in turn, is 

independent of particle shape. This is an interesting area 

for further exploration with the primary challenge being 

validation. 
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