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ABSTRACT 

The numerical analysis of the mechanisms governing the 

flow in the porous region is of a priority interest for 

modeling porous media flows. The present study is a 

prerequisite for elaborating the efficient turbulence 

modeling techniques in porous media flows. The main 

objective of present study is to provide a detailed pore 

scale description of fluid flow and to analyze the 

formation of the coherent structures in the wake region 

close to the solid wall, subjected to the effects of the fine-

scale turbulence. The computation was performed in a 

three dimensional representative elementary volume 

(REV) of porous media that are composed of a periodic 

array of circular cylinders. Two flow-modeling strategies 

were employed: steady RANS and the transient LES 

approach. In the RANS modeling framework both 

standard k– and low Re-k-  turbulence models have been 

used. The porosity () of the porous REV has been varied 

from 0.3 to 0.8 and Reynolds number based on cylinder 

diameter (ReD) is varied from 100 to 40000. The effect of 

porosity and ReD on pore scale velocity distribution, 

overall macroscopic pressure gradient and turbulence 

statics have been investigated. The detailed flow 

characteristics obtained from the RANS and LES 

calculations within the porous REV have been compared. 

The results of comprehensive computations over three 

dimensional REV is compared with analytical solutions of 

the Darcy–Forchheimer law. The good agreement between 

computational predictions and the empirical laws 

demonstrated the validity of the numerical method to 

simulate the macroscopic flow behavior in porous media. 

 

NOMENCLATURE 

1C , 
2C , 

3C  model constants 

D   cylinder diameter 

f1, f2, f  low Re-k- damping functions 

H center to center vertical distance between 

two circular cylinders (m) 

ReD   Reynolds number based on particle diameter 

Ry   turbulent Reynolds number y ( /ky ) 

RT   turbulent Reynolds number ( /k ) 

k   turbulent kinetic energy (m2/s2) 
f

k   intrinsic volume average turbulence kinetic 

energy (m2/s2) 

L center to center horizontal distance between 

two circular cylinders (m) 

f
p    volume average pressure gradient (Pa) 

t   time step 

x,y,z  cartesian coordinates 

 

u    average fluid velocity (m/s) 

uD
    

Darcy velocity (m/s)
 

                medium porosity 

           fluid viscosity (kg/m.s) 

    fluid density (kg/m3) 

     kinematic viscosity (m2/s) 

                dissipation rate of k (m3/s2) 
f

   intrinsic volume average turbulence kinetic 

energy dissipation rate (m3/s2) 

t     turbulent (or eddy) viscosity (kg/m.s) 

ij    subgrid-scale stress 

ij    stress tensor 

Π   filter function 

Φ(x)  filter variable    

 

INTRODUCTION 

Numerous geologic and engineering phenomena are 

governed by flow and transport processes through porous 

media. Turbulence phenomena in engineering flows and 

process industries will forever pose intellectually 

stimulating challenges. This flow behaviour is of great 

interest in various processes such as fluidized bed 

combustors, heat exchangers, enhanced oil reservoir 

recovery systems, combustion in an inert porous matrix, 

underground spreading of chemical wastes and chemical 

catalytic reactors (Kundu et al. 2012, 2014). Porous media 

also with their various morphologies are a challenging 

area of ongoing study.   

In engineering and industrial flows at high Reynolds 

numbers, a complex interaction takes place between the 

instability due to the presence of the solid structure and 

the near-wall unsteady turbulence around the solid porous 

matrix. For accounting this interaction and predicting the 

unsteady hydrodynamics accurately, it is necessary to use 

reliable turbulence modeling approach. The large eddy 

simulation (LES) is appropriate and captures the turbulent 

flow physics in porous media at moderate to high Re. 

However, this approach is costly for design purposes at 

this stage (Shinde et al., 2014; Moussaed et al., 2014). 

LES was encouragingly used in turbulent flow in complex 

geometry (Palau-Salvador et al., 2008), submerged 
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vegetation (Stoesser et al., 2009), open channel flow, tube 

bundle (Rollet-Miet et al., 1999; Moussaed et al., 2014), 

wind flow around buildings of different configuration 

(Tutar and Oguz, 2002) etc. LES is able to provide an 

almost complete description of the instantaneous unsteady 

3D turbulent flow field, resolving large-scale unsteadiness 

and asymmetries (large eddies) resulting from flow 

instabilities. It is always desired to visualize the actual 

flow physics inside the complex porous matrix. Turbulent 

flow covers a wide range of spatial and temporal scales. 

The numerical resolution of these turbulence scales 

requires high grid resolutions. The time-dependent and 

high resolution simulations based on large eddy 

simulation (LES) and Reynolds Averaged Navier–Stokes 

(RANS) models are able to provide the desired detailed 

porous media flow field predictions. Majority of research 

studies on modeling turbulent flows in porous media are 

based on the two equation k- model. Large eddy 

simulation of porous media flow is scarce. In order to fully 

understand the physics of the transitional/turbulent flows 

through the porous media and to capture the unsteady flow 

phenomena in the porous REV it is necessary to use eddy 

resolving techniques. However, there is increasing interest 

in applying LES to complex problems because of its 

greater accuracy over RANS, particularly for phenomena 

like turbulent porous media flow. LES approach is 

characterized by a division of the flow fields into large and 

small scales by a filtering procedure (Pope, 2005). LES 

can directly solve the equations that describe the evolution 

of a large range of turbulence scales. Only the smallest 

scales are modeled by LES using subgridscale (SGS) 

models (Tajallipour, 2013). Study of turbulence flow 

modeling in porous media is limited in open literature. 

Moreover, large eddy simulation in porous media flow is 

very scare. Hence, a detailed numerical study of turbulent 

flow physics in porous media was presented.  

The present work describes the prediction of flow in a 

three-dimensional porous media using both RANS and 

LES approaches. In the steady RANS modeling 

framework, two distinct turbulence models, namely 

standard k-  and low Re-k- were used. The porous media 

studied, comprised an infinite array of circular cylinders 

and was characterized by medium porosity ( = 0.30.8). 

Numerical simulations were performed for flow over a 

wide range of ReD (ReD = 100-40000). 

  

TURBULENCE MODELING 

Reynolds Averaged Navier–Stokes (RANS) Turbulence 

Models  

The continuity and RANS equations for turbulent flow of 

an incompressible viscous fluid are as follows:  

Continuity equation: 
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RANS equation:  
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The Standard K-ɛ Turbulence Model  

k equation:  
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 equation :  
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In equations (3) and (4), Gk represents the generation of 

turbulence kinetic energy due to the mean velocity 

gradients, and is defined as follows:  

)5(2SG tk   

where S is the modulus of the mean rate-of-strain tensor 

and is defined as  
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The turbulent (or eddy) viscosity t is computed by 

combining k and  as follows:  
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The Low Re-K- Turbulence Model  

k equation   
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Within the framework of eddy viscosity by adopting 

Boussinesq approximations, the Reynolds stresses are 

expressed as (Kundu et al. 2013): 
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where, the turbulent viscosity is defined as 

  
 

2k
fCt 

              (12) 

The damping functions account for the low-Reynolds 

number effects with enhanced wall effects and are given as 

(Yang, and Shih, 1993): 
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The values of the model constants used for the numerical 

simulation are given as follows: 

44.11 C , 92.12 C , 09.0C ,Ck=1,

0.1k , 3.1  

 
Large Eddy Simulation (LES)  

LES is based upon the application of a spatial filtering 

operation (denoted by a bar) to the three dimensional (3D) 

unsteady Navier-Stokes (N-S) equations (Rollet-Miet et 

al., 1999). A filtered variable by the finite-volume 

discretization method is defined as: 
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Therefore, the filtered Navier-Stokes equation is: 
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where  ij
is the stress tensor defined as 
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and ij  is the subgridscale stress is defined as 
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Based on Boussinesq hypothesis (Hinze, 1975) and the 

Smagorinsky model (Smagorinsky, 1963), the 

subgridscale turbulent stresses are expressed as 
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The filtered strain rate tensor for the resolved scale is 

defined by  
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The subgrid-scale eddy viscosity, can be estimated by the 

Smagorinsky model as follows: 

    )22(2 5.02

ijijst SSC    

where Cs is the Smagorinsky coefficient (Rodney et al., 

2003) , and  is the characteristic sub-grid length scale  
 

Computational Model and Boundary Conditions 

In the present study, the porous media was formed by a 3D 

infinite periodic array of circular cylinders. The fully 

developed macroscopic turbulent flow (incompressible 

Newtonian fluid) was assumed to be uniform and parallel 

to the xdirection. Due to the symmetry (in y and z 

directions) and periodicity (in x direction) of the model, 

only one structural array cell (representative elementary 

volume, REV) with dimensions of 2H×1H×0.5H  was 

chosen as the computational domain (Fig. 1). The 

Reynolds number based on cylinder diameter (D) i.e., 

DuDD Re was varied between 100 and 40,000. 

The porosity of the domain,
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varied between 0.3 and 0.8 (i.e. D/H = 0.94, 0.87, 0.80, 

0.71 and 0.51).     

 

 
Figure 1: 3D porous representative elementary volume 

(REV). 

 

The computational domain was constructed of a non-

uniformly spaced staggered mesh system consisting of 

1,083,700 nodes and 1,035,950 hexahedral cells. 

Preliminary calculations were made to compare the results 

against those obtained using coarse to fine mesh element 

having 528600, 1,083,700 and 1,362,322 nodes 

respectively for some selected cases. Very fine mesh 

resolution yielded no significant changes in the LES 

results, moreover it takes high computation time and cost, 

which proving that the originally used grid resolution was 

sufficient. The control volume finite difference method 

(CVFDM) was used for all simulation runs. The flow 

characteristics were obtained by solving the governing 

flow equations using ANSYS-FLUENT14. The flow 

governing equations on the computational domain were 

discretized using second-order finite-volume schemes. For 

the time integration a central second-order implicit 

differencing scheme was employed. The pressure and 

velocity field coupling was done by the SIMPLE 

algorithm. The RANS flow calculations were performed 

with k- turbulence model using enhanced wall functions 

and with low Re-k- formulation. The unsteady LES 

calculations were performed using the Smagorinsky–Lilly 

SGS model (Lilly, 1966). The time-step used for all the 

simulation was (t =) 10-4 s. The convergence criterion is 

set to 10-4 for all simulations. The relaxation parameters 

for all variables 
),,,( kpu

 were kept equal to 0.8.  

 

Fully periodic boundary conditions were applied over 

REV for relevant variables. The periodic boundary 

conditions for the REV are as follows: 

H 
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Symmetry boundary conditions were considered at z = 0 

and z = H/2: 
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Stationary wall (no-slip) boundary conditions are used for 

the arc-shaped corner boundary and center cylinder walls: 
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All fluid properties, including density and viscosity, are 

assumed constant for all simulations. 

RESULTS 

Microscopic Turbulent Flow Field 

The simulated results of span wise velocity magnitude, 

pressure and turbulence kinetic energy contours for  = 

0.8, are shown in Figs. 2–3, in the computed REV. The 

fluid passes through the upper and lower surfaces of the 

cylinder having higher velocity magnitude, and flow 

separation takes place at the downstream of the front face 

of the cylinder. A larger wake region is formed at the 

downstream of the circular cylinder. The vortex or eddy 

formation is also observed at the corner circular surface in 

the upstream direction, where flow separation also takes 

place. The size of the vortex increases with an increase in 

ReD and is dissipated upon travelling to downstream. At 

low ReD the intensity of wake formation is low due to the 

fluid flowing smoothly over the entire circular cylinder. 

The turbulence increases downstream of the circular 

cylinder with an increase in ReD, and the intensity of large 

wake region is generated in the form of eddies. At higher 

Reynolds number (ReD = 40,000) complete flow 

separation takes place in the downstream section of the 

cylinder. The size of vortex at the downstream gets 

compressed gradually with a decrease in porosity, as the 

passage for fluid flow narrows down. 

Fig. 2-3 shows that the maximum velocity magnitude is 

observed at the centre of the upstream section and upper 

and lower faces of the circular cylinder at a fixed value of 

. However, the flow gets separated from the back of the 

circular cylinder. A pair of stagnation points was formed 

at the centre of the upstream and the downstream face of 

the circular cylinder.  A larger wake region is formed at 

the downstream of the circular cylinder which will 

contribute for larger pressure drop for the same mass flow 

rate through the porous media. In the remaining fields, it is 

observed that the pressure increases at the front of the 

circular cylinder and decreases at the upper and lower 

faces.   

As compared to LES the RANS simulations showed the 

excessively smooth turbulent structures within the REV, 

near the wall and around the cylindrical surface. The 

turbulent structures are overestimated. LES captures the 

turbulent flow features significantly well especially the 

near wall turbulent characteristics. The velocity and 

turbulent spectra are fluctuating in nature. From LES 

results, the spectra of instantaneous streamwise velocities 

show that a large region of low velocity is detached from 

the surface of cylinder into the wake and transported 

towards the stagnation point. The high magnitude velocity 

blobs occasionally entered into this region. These eddies 

are largely affected by the pore diameter and curvature of 

the wall. It seems that the turbulence kinetic energy is 

produced exclusively within the shear layers above the 

lateral surfaces of the cylinder, where the mean strain rate 

was quite high, which is different from that of the RANS 

model.  

 

 

 
 

Figure 2: Simulated microscopic pressure, velocity and 

TKE contours of RANS simulation at  = 0.8 and ReD = 

40000.  
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Figure 3: Simulated microscopic pressure, velocity and 

TKE contours of LES simulations at  = 0.8 and ReD = 

40000. 

 

This is because of the fact that the conventional k–ε model 

involves a k production term (Pk) (Eq. 9), which is 

coupled with the effective viscosity formulation. For a 

decelerating flow around the front stagnation point, 

extremely high production rate of k is observed, which 

leads to the overestimation of the level of turbulence 

kinetic energy (Kuwahara et al. 1998; Kundu et al. 2014). 

This limitation can be overcome by LES approach which 

provides a reasonable turbulence kinetic energy 

distribution within the REV.  

 
Computation of Macroscopic Turbulence Kinetic 

Energy and Dissipation Rate 

LES and RANS simulated results of nomalized TKE are 

shown in Fig. 4 for  = 0.8. Similar trends were observed 

for other porosities. It is found that the normalized 
f

k increases with an increase in ReD and a decrease in 

. It was observed that when  < 0.6, the increment is 

greater than unity even at lower ReD. As the porosity 

decreases at a certain ReD, the fluid flow passage gets 

reduced leading to an increase in the local fluid velocity 

gradient. This, in turn, dictates the rate at which the mean 

flow mechanical energy gets transferred into turbulence 

kinetic energy. This causes the larger production rate of k 

within the REV. As a consequence, the normalized kinetic 

energy increases. It is also found that the turbulence gets 

intensified at a comparatively low ReD, especially for low 

porosity. 

 

 
Figure 4: Normalized turbulence kinetic energy versus 

ReD using various turbulence models. LES (); Low 

Re k (); Std k (). 

 

It is observed that the LES and low Re-k- models show 

similar logarithmic patterns as compared to standard k- 
model, which shows a flat increment with ReD. The low Re 

k- and LES predictions are reasonably well but standard 

k- model under predicts the normalized 
f

k for all 

values of . The normalized 
f

k for LES and low Re-k- 

model agreed significantly well in higher ReD (>103). 

However, no experimental results relevant to the porous 

REV are available in literature for comparison purpose.  

 

 
Figure 5(a): Normalized turbulent kinetic energy versus 

(1)/1/2 using different turbulence models. LES (); 

Low Re k (); Std k ().  

 

For an infinite porous medium formed by staggered 

cylinders at high ReD, the variation of turbulent kinetic 

energy with medium porosity is shown in Fig. 5(a). The 
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simulated normalized 
f

k predicted by LES and low Re 

k- model shows good agreement for  < 0.8. However, a 

deviation was observed  at lower porosity ( = 0.8). The 

normalized dissipation rate 
f

 for different porosities 

is shown in Fig. 5(b). At higher values of  ( = 0.6 and 

0.8) the predicted values of normalized 
f

  by all the 

three different models followed similar trends. However, 

the results deviate at lower porosity (  0.5). Even at 

lower porosity the low Re-k- results are closer to the LES 

data.   

 

 
Figure 5(b): Normalized energy dissipation versus 

(1)/1/2 using different turbulence models. LES (); 

Low Re k (); Std k (). 

 
Computation of Pressure Drop across the REV 

The pressure distribution within the porous matrix is 

significantly influenced by the pore diameter. The pressure 

contours predicted by LES and RANS low Re k model 

are shown in Figs. 2–3. It is observed that the pressure 

magnitude is high at the upstream face of the cylinder near 

to the stagnation point and at the downstream corner 

section of the REV. The macroscopic pressure gradient 

across the porous media as calculated using RANS low Re 

k  and LES methods are presented in a dimensionless 

manner.  

The pressure drop across the porous REV can be 

estimated by the Ergun’s equation. The Ergun’s equation 

including the Forchheimer drag in the porous matrix of 

pore diameter of Dp, is given as (Kundu et al. 2013, 

2014):  
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At higher ReD, the viscous term disappears and the fluid 

inertial effect becomes significant. Therefore, at ReD > 

3000, Eq. (28) gets reduced to  
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The variation of dimensionless macroscopic pressure 

gradient with medium  is shown in Fig. 6. A linear 

relationship is anticipated with a coefficient of 1.75. The 

coefficient 2.2 is estimated by fitting the simulated data 

predicted by the turbulence model.  The numerical results 

of the LES and RANS models agree well with the 

extended Forchheimer-Darcy’s law within the porosity 

range, 0.8    0.5, but at lower porosity, large deviation 

is observed. 

 

 
Figure 6: Dimensionless macroscopic pressure gradient 

versus (1)/3 using different turbulence models. LES 

(); Low Re k (); Std k (). 

CONCLUSION 

In the present work comprehensive numerical simulations 

were performed for flow through porous media using 

steady RANS and transient LES methodology. The flow 

through porous media was formulated with three 

dimensional infinite periodic arrays of circular cylinders. 

Computations were performed over a wide range of 

porosity (0.3  0.8) and Reynolds number based on 

cylinder diameter (100 ReD 40000). Extensive flow-

fields, turbulence kinetic energy (TKE) and pressure 

distribution across the porous REV were presented to 

illustrate the complex pore flow phenomena. It was 

observed that the predicted flow-fields and TKE is 

strongly influenced by three-dimensional porous media 

with varying porosity and ReD. Flow over the circular 

cylinder undergoes strong attenuation and enhancement of 

the turbulence and leads to flow separation and vortex 

formation. The pressure fields predicted by both RANS 

and LES were in good agreement; however, velocity and 

TKE fields were deviated. The anisotropic turbulent flow 

physics was not predicted by RANS simulation because of 

the unsteady nature of wakes formed within the REV. The 

unsteadiness was effectively captured using LES 

technique. The low Re k- results agreed well with the 

LES predictions. The macroscopic pressure gradient 

across the REV was computed as a function of porosity 

and ReD. The numerical comparisons showed that the low 

Re k– results are the closest to the LES predictions.  
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