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ABSTRACT 

Due to the random and complex geometrical shapes, most 

of the work on open-cell solid foams are experimental, and 

only a limited number of numerical studies are available in 

the literature. In the present contribution a sharp Immersed 

Boundary Method (IBM) is developed to fully resolve the 

random structure of the solid foam on a non-body fitted 

Cartesian computational grid. 3D image data from a 

Micro-CT (computed tomography) scan of an actual foam 

geometry is converted into unstructured triangular 

elements (surface mesh) and incorporated as immersed 

surface in the present sharp interface method. The novel 

feature of the fluid–solid coupling technique is the direct 

(i.e. implicit) incorporation of the no-slip boundary 

condition (with a second-order method) on the surface of 

the particles at the level of the discrete momentum 

equations. The use of a Cartesian grid for flow makes this 

method robust and computationally friendly. At the same 

time it avoids the tedious volumetric mesh generation 

process for very complex shapes. After presenting some 

verification cases, we perform simulation results for flow 

through a section of a typical random foam structure 

generated from a CT-scan technique. The Reynolds 

number is varied from creeping flow to Re ~ 40. Finally, a 

pressure drop correlation is proposed for this particular 

foam sample. 

NOMENCLATURE 

 

pd   equivalent particle diameter 

f   friction factor 

F    dimensionless drag force   

p   pressure 

aS   specific surface area 

t   time 

su   superficial velocity 

C   Convective Flux 

n   unit normal vector 

u   velocity 

x   position vector of cell-centre 

   fluid density 

   fluid viscosity 

   any flow variable 

   dimensionless distance 

   porosity 

p   pressure correction 

INTRODUCTION 

Open-cell solid foam packing represents a type of 

structured porous media that offer high specific surface 

area with a low pressure drop per unit length. Solid foams 

may be produced from a variety of materials like metal, 

ceramics, carbon, polymer, etc. Historically, solid foams 

made by metal are used mainly in heat transfer devices 

like heat exchangers, thermal energy absorbers, 

vaporizers, heat shielding devices etc. Due to their good 

mechanical and thermal behaviour solid foams have also 

gained attention in several other applications like high 

temperature filters, pneumatic silencers, burn rate 

enhancer, catalytic reactors etc. Over the last couple of 

decades open cell foams (metal or ceramics) has been used 

as catalyst support in fixed bed catalytic reactors. The use 

of foams improves gas-liquid contacting, by enhancing the 

mass-transfer rate with minimal pressure drop as 

compared to other packing structures. Also, for the case of 

exothermic reactors where heat needs to be removed from 

the bed, use of metallic foams enhances heat removal rate.  

A large number of experimental studies were reviewed by 

Edouard et al. (2008) and Dietrich et al. (2012). They 

reported very large deviations between the existing 

pressure drop correlations due to (1) morphological 

differences between different commercially available solid 

foams and (2) experimental inaccuracies. In contrast, 

numerical studies at pore scale level are capable to 

overcome all experimental uncertainties, but most of those 

studies have only focused on idealized unit cells to 

represent a solid foam. In recent years researchers used 

high resolution X-ray computed micro-tomography (μ-CT) 

techniques to reconstruct random complex foam structures 

to accurately calculate morphological properties (surface 

area, window opening, strut diameter, porosity etc.) and 

subsequently incorporate these into a CFD domain to 

study fluid flow [Petrasch et al. (2008), Magnico et al. 

(2009)]. 

 

In the present contribution we propose an efficient and 

accurate sharp interface Immersed Boundary Method 

(IBM) to fully resolve a random foam structure. The 

Immersed Boundary Method is a novel computational 

mailto:N.G.Deen@tue.nl


 

 

Copyright © 2015 CSIRO Australia 2 

technique which is an alternative to body conformal grid 

methods for flow over complex shapes. It avoids the 

challenging high quality grid generation process and the 

development of a CFD code for unstructured grids. 

Moreover, simple structured grid based codes are better 

than unstructured grid codes in terms of memory 

requirement to store the grid information, computational 

cost relating with convergence characteristics and the 

efforts involved to generate a good quality mesh. At the 

same time IBM can easily be coupled with other transport 

equations [Deen et al. (2014)]. On the other hand, body 

fitted grids has a great ability for local mesh refinement in 

zones of interest where sharp gradients occur. In case of 

structured meshes uniform grid refinement would be 

required, which would take away some of the advantages. 

  

There exists a large variety of IBM methods and an 

excellent literature review on this was undertaken by 

Mittal and Iaccarino (2005). The present methodology is 

an extension of the implicit second order accurate IBM 

method proposed by Deen et al. (2012) for complex 

shaped object. In the current framework any complex 

shaped hollow or solid object can be placed in a structured 

Cartesian grid in the form of a surface mesh. After 

discussing the numerical methodology briefly, here we 

present few validation cases using simple geometries. 

Subsequently, it is applied to simulate flow through a 

section of a typical complex foam structure generated from 

a Micro-CT (computed tomography) scan through 3D 

imaging techniques. Simulations are performed in both the 

Darcy and Forchheimer regime. Finally, a pressure drop 

correlation as a function of Re for this specific foam 

structure is proposed which is useful for more coarse 

grained simulation techniques.  

MODEL DESCRIPTION 

Numerical Model and Solution Methodology 

The conservation equations of mass and momentum for an 

incompressible, Newtonian fluid read: 
 

0u               (1) 
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                  (2) 

 

where   and   are the fluid density and viscosity 

respectively. In the current Finite Volume (FV) 

implementation transport equations are time-integrated for 

each staggered computational grid cell and the discretized 

form of the momentum equation is obtained as: 
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where n indicates the time level and C indicates the net-

convective flux:  
 
 

 C uu            (4) 
 

A deferred correction method has been incorporated in the 

convection term, where both the First Order Upwind 

(FOU) scheme and the total variation diminishing (TVD) 

Min-mod scheme are used to calculate the convection 

flux. The flux based on the FOU scheme  FOUC is used as 

a predictor and treated implicitly, while the difference 

between the TVD and FOU schemes is used as a corrector 

that is treated in an explicit manner. The second order 

accurate central difference (CD) scheme is used for 

discretizing the diffusion terms. The discretized 

momentum equation is solved with a fractional step 

method, where at the first-step the tentative velocity field 
**u is computed from: 
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  (5) 

To find **u we need to solve a set of linear equations. To 

this end, we use a robust and efficient parallel Block 

Incomplete Cholesky Conjugate Gradient (B-ICCG) 

solver. The velocity at the new time level n+1 can be 

obtained from: 
 

 1 **n t
u u p



 
             (6) 

 

where 1n np p p   , represents the pressure correction. 

Since 1nu  need to satisfy the continuity equation, the 

pressure Poisson equation is obtained as: 
 

  **t
p u



 
   

 
         (7) 

 

which is again solved by the B-ICCG sparse matrix solver.  

 

Immersed Boundary Method 

In this paper, an implicit (direct) second order accurate 

IBM method proposed by Deen et al. (2012) has been 

extended for complex geometries. There exists a large 

variety of CAD mesh formats to represent complex 

geometries. In the current framework we have chosen a 

surface mesh with triangular elements to represent all 

immersed bodies. Triangular elements are stored in a STL 

(Stereo-Lithography) file format and are described as a 

raw unstructured triangulated surface by the unit normal 

and vertices (ordered by the right-hand rule) of the 

triangles using a three-dimensional Cartesian coordinate 

system [Fig. 1a]. The normal of each triangle always 

points outwards. 

 

Fig. 1b schematically represents the current IBM 

implementation. The enforcement of the no-slip boundary 

condition at the IB wall is handled at the level of the 

discretized momentum equation [Eq. 5]. In this direct 

forcing method at first all the cells are marked/ flagged as 

either “solid” (cell-center inside the solid body) or “fluid” 

(cell-center in the fluid zone). “IB-cells” are the special  

fluid cell which neighbor at least one solid cell and that 

neighboring solid cell named as “ghost-cell”. The 

following steps allow to mark the appropriate cells in 

staggered computational grid: 

 

(1) At first, the centroid of the each triangular surface 

elements are located in an Eulerian background grid. A 3D 
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bounding box is created around the background grid and 

all the cells in the bounding box are need to check if they 

are either solid or fluid-cells. For each cell in the bounding 

box,  grid lines are drawn connecting the cell center of that 

cell with each of its six neighboring cell centers. If any of 

these grid lines intersect the triangular element, the 

following dot product is evaluated for that pair of cells: 

 

( ) nc nv x x                                 (8) 
 

where cx  is the position vector of the cell in the bounding 

box and nx  is the position vector of its neighboring cell, 

n  is the surface normal of the triangular element. If  v ≤ 0, 

cell ‘n’ is marked as a solid-cell, else ‘c’ is marked as a 

solid-cell. In a flag matrix the marked cells are represented 

as integers: solid-cells get flag -1 and fluid-cells get flag 0. 

This procedure will create a close hollow shell of solid 

flags around the IB. For proper enclosing, the size of the 

bounding box should be based on the relative size between 

the triangular element and Eulerian grid. For instance if 

the size of the triangular element is in the range to the size 

of the mesh, a stencil size of 3×3×3 is sufficient.  

 

(2) IB-cells are marked in a similar way. A cell ‘c’ will 

be flagged as a IB-cell when one of its neighbor (‘n’) is a 

solid cell and v ≤ 0 ( Eq. 8). In the flag matrix the IB-cells 

are initially identified by integer 1 and later changed to a 

hash code, which is discussed later. 

 

(3) Until now we have flagged all the solid-cells 

enclosing the solid body and all the IB-cells. Now we need 

to assign solid flag inside the solid body, which were 

initially flagged as fluid cell. This has to be done by 

sequential tracing in any of the three directions: for 

instance if we move along the positive x-direction, then 

any fluid-cell with index [i][j][k] that has a neighboring 

solid-cell at index [i-1][j][k] will be marked as a solid-cell. 

The procedure automatically stops when it reaches the 

solid cell in the other end of the body as it is guarded  by a 

IB-cell. If the triangular surface mesh and/or the initial 

marking of the solid and IB-cells are not close this method 

will fail. 

 

The no-slip boundary condition on the IB is enforced 

directly through the IB-cells. The algebraic form of the 

discretized momentum equation [Eq. 5] at cell-center 'c' in 

Fig. 1b can be expressed as: 

 

c c nb nb c

nb

a a b              (9) 

 

where ϕ corresponds to one of the fluid velocity 

components and 'nb' indicates the cell-center of 

surrounding neighboring cells. The coefficients 'a' depend 

on the fluid properties and the chosen grid resolution. All 

the explicit terms are collected in bc. For a perspective of a 

IB-cell 'c' , the no-slip condition is imposed by changing 

the central coefficient ac and neighboring coefficients anb 

of Eq. 9. In the Fig. 1b  IB-cell 'c' neighbors a ghost-cell 

'w’ and a fluid-cell 'e’. The value of ϕ in the ghost-cell 'w'  

is expressed as a linear combination of relevant fluid-cells 

in such a way that it satisfy no-slip boundary condition at 

the wall ('s'). For this purpose a quadratic fit is used: ϕ = 

pξ 2+ qξ + r, where ξ is the dimensionless distance from 

ghost-cell 'w' as shown in Fig. 1b. The values of 

coefficients p, q and r are obtained from the known values 

of ϕ at the IB, which leads to:  
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The modified coefficients ( â ) for Eq. 9 came out as: 
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Note that Eq. 9 is also formed for solid-cells (and ghost 

cell) and to enforce zero velocity the central coefficient 

(ac) is set to 1, while all other coefficients (i.e. anb, bc) are 

set to 0. 

 

From the above methodology proposed by Deen et al. 

(2012) it is clear that to implicate IB in the Cartesian grid 

we only need the ξs values at the IB-cells. It can easily be 

calculated by the intersection between the triangular 

element and grid line(s) as shown in Fig. 1b. For a 

stationary IB, to reduce the computational time drastically, 

we stored  ξs for each IB-cells in a hash table format (Fig. 

1b), which is a data structure where a key maps to 

associated values. As shown in Fig. 1b all the IB-cells are 

numbered and these numbers are stored in the flag matrix. 

These numbers represent a hash code or key for the hash 

table where all six (for 3D) ξs values are stored. Please 

note that if a IB-cell shares only one neighboring solid-

cell (which happens for most of the IB-cells) only one 

value of ξs is needed and the rest are irrelevant (stored 0 in 

the code). Once the hash table is generated, triangular 

surface mesh is no longer needed  for  stationary body 

case.  

VERIFICATION  AND VALIDATION  

 

The above frame work has been rigorously verified and 

validated for a large range of problems. However in this 

current paper only two cases are shown, which will now 

be discussed. 

    

Flow past periodic arrays of cubes with different 

orientation 

To verify the current implementation, a STL surface mesh 

for a cube is placed at the center of 3-D periodic 

computational domain. The fluid is accelerated from rest 

by applying a constant body force or average pressure 

gradient in the x-direction. Two separate simulations are 

performed using the surface mesh for cubes of the same 

size but with different orientation in the plane normal to 

the flow [Fig. 2]. For an ideal case the flow field must be 

the same for the two cases. The simulation settings are 

tabulated in the Table 1.  
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Figure1: Incorporation of the no-slip boundary condition at the surface of Immersed Body (IB). The IB is represented by a 

surface mesh of triangular elements (line segment in 2D). (a) The surface mesh for a sphere is made by triangular elements. 

In the STL file format the vertex of each triangle along with surface normal are stored to generate the solid surface. The 

surface normal always points outward. (b) The current IBM implementation procedure for irregular shaped bodies is 

schematically shown in 2D. At the beginning the computation cells are flagged either as ‘solid cell’, ‘fluid cell’ or ‘IB-cell’. 

The intersection between the grid line and the IB surface i.e. ξs  is required to implement the no-slip boundary condition and 

is stored in a Hash Table format. Hash codes are stored in the flag matrix for ghost cells and each of these point to a table 

where six ξs values are stored. 

 

Table 1: Simulation settings for flow past periodic arrays 

of cubes.  

Parameters Values Unit 

Computational grid                                 60 × 60 × 60 (-) 

Grid size                                           10-3 m 

Cube length 21 × 10-3 m 

Time step 10-4 S 

Fluid density 1.0 kg/m3 

Fluid viscosity 0.001 kg/(m s) 

Applied pressure gradient 5.0 Pa/m 

 

Fig. 2 shows the axial velocity profile normalized by the 

maximum velocity at the mid-plane (perpendicular to the 

flow) for the two different cases. The obtained superficial 

velocities respectively are 1.7802  m/s and 1.7788 m/s. A 

negligible difference is found between the two cases 

(deviates only 0.08%), which indicates a proper 

implementation. The slight deviation can be attributed to 

different spatial resolution per unit length of the cube and 

boundary effects. 

Flow past periodic static arrays of spheres 

For the creeping flow regime, Zick and Homsy (1982) 

proposed a semi-analytical method to obtain the drag 

acting on spherical particles for simple periodic arrays and 

tabulated the dimensionless drag force  (F) as a function 

of porosity (ε). 

 
3

f s

s p

F
F

u d


           (12) 

 

where Ff→s is the total force exerted on a single particle, us 

represent superficial velocity, and dp is the diameter of the 

particle. It provides a very good test case to validate the 

present model. 
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Figure 2: Axial velocity contours at the mid-plane (perpendicular to the flow direction) for flow past a periodic array of 

cubes. To check the current implementation the surface mesh for cubes of different orientation (rotated 450 parallel to the 

flow direction) are used and placed in same periodic computational domain. A constant pressure gradient is applied and for 

proper implementation it is expected to obtain same flow field. Superficial velocities are calculated and a very negligible 

difference about 0.08% is found which is due to the different special resolution per unit length of the cube and boundary 

effects. 

 

By changing the diameter of the sphere the solid volume 

fraction of system is varied and using periodic boundary 

conditions the drag force can be obtained under fully 

developed flow conditions. The fluid is accelerated from 

rest by applying a constant body force or an average 

pressure gradient in the x-direction. The magnitude of the 

pressure gradient is chosen in such a way that the flow 

field still remains in the creeping flow regime (Re << 1). 

Two different Eulerian grids namely (G1 and G2) have 

been used, whereas for both cases the same very fine 

surface mesh for the sphere was used [Fig. 3]. The 

simulation settings are tabulated in the Table 2. 

 

 

 
 

 

Figure 3: Creeping flow past a simple cubic packing of 

spheres (1 - ε = 0.215): single sphere in the periodic 

computational domain. Contours of axial velocity 

normalised by the maximum velocity are shown at the 

mid-plane (parallel to flow), along with the triangular 

surface mesh. 

 

Table 2: Simulation settings for flow past static arrays of 

spheres at creeping flow regime.  

Parameters Values Unit 

Computational grid: G1 

                                 G2 

32 × 32 × 32 

64 × 64 × 64 

(-) 

(-) 

Grid size:                  G1 

                                 G2 

10-3 

5 × 10-4 

m 

m 

Time step 10-4 S 

Fluid density 1.0 kg/m3 

Fluid viscosity 0.05 kg/(m s) 

 

 

In the Fig. 3, velocity contours for a typical simulation 

case is shown along with STL surface mesh for sphere and 

background Eulerian mesh.  

Table 3 summarizes the different simulation cases. The 

average non-dimensional drag is tabulated  as a function 

of the solid volume fraction (1- ε) and can be compared 

with analytical results of  Zick and Homsy (1982). A very 

good match is found between the analytical and current 

numerical result. 

FLOW THROUGH A TYPICAL RANDOM FOAM 

STRUCTURE  

After developing and validating the numerical code the 

attention has been turned to its application for simulating 

flow past a typical random foam structure.  In Fig. 4(a) the 

surface mesh for a typical section of the foam is shown. It 

is created using 3D image data generated from a Micro-CT 

(computed tomography) scan of an actual foam geometry 

[https://grabcad.com/library/auxetic-foam-sample-1]. The 

section of the foam is chosen such that the main 

morphological properties like porosity (ε = 0.925) and the 

specific surface area (Sa = 116.6  m-1) remain in a limit of 

±0.5% compared to the large sample.  

https://grabcad.com/library/auxetic-foam-sample-1
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Table 3: Comparison of the current numerical results with 

the semi-analytical results for Stokes flow through simple 

cubic arrays of spheres.  

1- ε dp (m) F(-) 

Present 

F(-) 

Zick and Homsy 

(1982) 

ΔF/F 

(%) 

0.524 0.0320 G1: 41.873 

G2: 41.866 

42.14 0.63 

0.65 

0.449 0.0304 G1: 27.794 

G2: 27.802 

28.10 1.09 

1.06 

0.343 0.0278 G1: 15.392 

G2: 15.381 

15.40 0.05 

0.12 

0.215 0.0238 G1:   7.415 

G2:   7.403 

7.44 0.36 

0.52 

0.126 0.0199 G1:   4.324 

G2:   4.317 

4.29 -0.74 

-0.58 

0.064 0.0159 G1:   2.821 

G2:   2.731 

2.81 -0.41 

-0.73 

0.027 0.0119 G1:   2.011 

G2:   2.009 

2.01 -0.13 

-0.03 

 

 

 

Figure 4: (a) Real foam sample in CFD domain. Periodic 

boundary condition is applied only in the x-direction, 

whereas free-slip boundaries are used on all other 

boundaries (b) Normalized x-velocity contours for the 

case of Re ~ 40.  

The intention here is to find the pressure drop as a 

function of superficial velocity (Re) for a fully developed 

flow condition. A periodic boundary condition is applied 

in the x-direction , whereas free-slip boundaries are used 

on all other boundaries. As the foam sample is not 

periodic, we apply two empty layers of Eulerian grid cells 

both in the +x and –x direction beyond the physical 

extension of the foam. As a result numerically it represents 

an infinite domain in the x-direction where  a number of 

same foam blocks are placed (in the x-direction) adjacent 

to each other with a small gap of four computational cell 

between them. The current scenario is not very different in 

comparison with flow through a continuous foam sample, 

considering the randomness in the foam geometry. Similar 

to previous cases the flow field is generated by applying a 

constant pressure gradient in the x-direction. By changing 

its magnitude, Re is varied from creeping flow regime to a 

value of Re ~ 40, where Re is calculated based on 

superficial velocity (us) and the characteristic length scale, 

which is chosen based on the equivalent spherical 

diameter as,  
 

6 s
p

s

V
d

A
             (13) 

Vs and As are the solid volume and surface area in the 

domain respectively. To check grid independence three 

Eulerian grids (G1, G2 & G3) of different resolution are 

used and drag forces are compared for Re ~ 40. The 

simulation settings are tabulated in Table 4. It is found 

that the G2 grid is sufficiently fine to have grid 

independent results [Table 5].  

 

Figure 5: Non-dimensional pressure drop (f) as a function 

of Re for this particular foam sample ( ε = 0.925).  

 

To obtain the pressure drop correlation we start from the 

ansatz form of pressure drop: 
 

 
2

2 s s

p p

p
a u b u

l d d

 
          (14) 

where actually a = g(ε) and b = h(ε). Note that since we 

are using a single foam sample with a single value of ε, for 

our case a and b are constant. The pressure drop will be 

normalized using viscous scale, and as a result the friction 

factor f , in our case is defined as: 

 

2/

/
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s p

p l
f a b

u d


                                   (15) 
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Similar non-dimensional form for Ergun equation reads, 

 

2

3 3

150(1 ) 1.75(1 )
ReErgunf

 

 

 
       (16) 

 

In Fig. 5 the numerically obtained friction factor is plotted 

as a function of Re. By curve fitting for this specific foam 

sample (ε  = 0.925) we found that a = 2.9363 and b = 

0.1545. Similarly using Eq. 16 one can obtain aErgun = 

1.066  and bErgun = 0.1658, which indicates that in this 

range of Re the Ergun correlation underpredicts the 

pressure drop. The current simulations results are also 

compared with existing experimental correlation. Dietrich 

et al. (2012) reviewed experimental pressure drop 

correlation/ values by about 20 authors including around 

100 different foam samples and proposed a pressure drop 

correlation. It consists of more than 2500 experimental 

values and  most of the data point lies  within an error 

range of  ±40% of the proposed pressure drop correlation. 

In the current non-dimensional form of representation it 

reads: 

 
2

3 3

247.5(1 ) 2.175(1 )
ReDietrichf

 

 

 
   (17) 

 

Hence, aDietrich = 1.759  and bDietrich = 0.2061. Fig. 5 

shows that for moderate Re the present simulation results 

lie well within the error range of the experimental 

correlation. 

 

Table 4: Simulation settings for flow past a section of a 

typical solid foam sample.  

Parameters Values Unit 

Computational grid: G1 

                                 G2 

                                 G3 

180 × 150 × 150 

320 × 200 × 200 

480 × 300 × 300 

(-) 

Grid size:                  G1 

                                 G2 

                                 G3 

3.125×10-4 

2.34375×10-4 

1.5625×10-4 

m 

Time step 10-5 s 

Fluid Density 10.0 kg/m3 

Fluid Viscosity 0.003 kg/(m s) 

 

Table 5: Grid independence study at Re ~ 40. Calculated 

friction factor (f) and its deviation from the finest grid 

(G3).  

Parameters Values Deviation (%) 

f  :            G1 

                G2 

                G3 

9.39639 

9.19439 

9.15177 

2.67 

0.47 

0.00 

 

 

CONCLUSIONS 

 

A sharp implicit Immersed Boundary Method (IBM) for 

complex geometries is developed to study the 

hydrodynamics for flow through a random open-cell solid 

foam at pore-scale level. The immersed body can be 

incorporated as a triangulated surface mesh on a Eulerian 

Cartesian background mesh. The method provides a 

versatile and accurate framework for flow through 

complex geometries. Surface meshes for ordered bodies 

are created and used to check the accuracy of the current 

simulation framework. The simulation results match well 

with existing literature data. Finally the current IBM based 

CFD model is used to simulate flow through a typical 

solid foam structure. A pressure drop correlation as a 

function of Re is derived for this typical foam structure. It 

is found that the Ergun correlation underpredicts the 

pressure drop. However for moderate Re the simulation 

results lie well within the error range of experimental 

correlation [Dietrich et al. (2012)] composed using a large 

number of foam sample. The internal pore structure of 

solid foam influence significantly its hydrodynamic 

behavior and the present method is very helpful for 

accurate prediction of pressure drop for a specific foam 

sample. 
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