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ABSTRACT 

  The kinetic theory of granular flow (KTGF) for dilute 

flows of smooth spheres is widely used in continuum 

modeling of gas-solid flows. In reality, granular particles 

are frictional and can achieve a state of dense packing, and 

these features must therefore be considered to improve the 

simulation of the hydrodynamics of dense gas-particle 

flows. In this study, the KTGF is extended to rough 

particles in dense systems, which includes rotation, sliding 

and sticking collisions using a simple moment method 

(Jenkins and Richman, 1985). The new KTGF has been 

incorporated into our in-house two-fluid model (TFM) 

code for the modeling of dense gas-solid fluidized beds. A 

critical comparison of a hard-sphere discrete particle 

model (DPM) and a TFM with the new KTGF in a 

pseudo-2D gas-fluidized bed is presented. 

NOMENCLATURE 

e normal restitution coefficient 

p pressure, Pa 

v  velocity, m/s 

F force, N 

m  mass, kg 

T torque, Nm 

 density, kg/m3 

 granular temperature, m2/s2 

0 tangential restitution coefficient 

 particle diameter, m 

 energy dissipation rate, kg/(m·s3) 

A inter-phase momentum transfer coefficient 

 stress tensor, Pa 

 volume fraction 

 rotational velocity, rad/s 

 thermal conductivity, kg/(m·s) 

INTRODUCTION 

Gas-solid fluidized beds find a widespread application in 

processes involving combustion, separation, classification, 

and catalytic cracking (Davidson et al., 1985). 

Understanding the dynamics of fluidized beds is a key 

issue in improving efficiency, reliability and scale-up. 

Owning to enormous increase in computer power and 

algorithm development, fundamental modelling of 

multiphase reactors has become an effective tool.  

    In this work, an Euler-Euler approach (Kuipers et al., 

1992; Gidaspow, 1994) has been used for the modelling. 

The Eulerian two-fluid model (TFM) can predict the flow 

behavior of granular systems with linear dimensions of the 

order of several meters. It has emerged as a very promising 

tool as a result of its compromise between computational 

cost and amount of detail provided. In TFM, both the gas 

phase and the solid phase are treated as fully 

interpenetrating continua which are described by separate 

governing balance equations of mass and momentum. The 

challenge of this model is to establish an accurate 

hydrodynamic and rheological description of the solid 

phase. State-of-the-art closures have been obtained from 

the kinetic theory of granular flow (KTGF), initiated by 

Jenkins & Savage (1983), Lun et al. (1984), Jenkins & 

Richman (1985), Lun et al. (1991), and Nieuwland (1995). 

The original KTGF models of Jenkins and Savage (1983), 

Lun et al. (1984), Jenkins and Richman (1985) and 

Gidaspow (1994) are derived for nearly elastic particles 

with translational motion only. Comparisons between 

TFM simulations based on this KTGF and more detailed 

discrete particle model (DPM) simulations of gas 

fluidization have been reported in the literature 

(Goldschmidt et al., 2004; Wang et al. 2013; Bokkers et 

al., 2004) and show good agreement for sufficiently 

smooth particles. 

    In reality, however, most granular materials are 

frictional. The roughness of the granular materials has 

been shown to have a significant effect on stresses at least 

in the quasi-static regime (Sun & Sundaresan, 2011). 

During a collision of rough particles, the particles can start 

to rotate due to surface friction. Thus, kinetic energies may 

be exchanged both translationally and rotationally. 

Attempts to quantify the friction effect have been 

somewhat limited in the past. In this work, the KTGF is 

extended to rough spheres, including particle friction and 

rotation. The rheological properties are explicitly 

described in terms of friction effects. This model has been 

incorporated into our in-house Euler-Euler code. 

Simulations of gas-solid fluidized bed are carried out. 

DPM is used as a research-tool to validate the new model.  

NUMERICAL MODELS 

Two fluid model 

The two fluid model describes both gas phase and solid 

phase as fully interpenetrating continua. The continuity 

equations for gas and solid phases are given in equation 

2.1 and 2.2. The momentum equations are given by 2.3 

and 2.4.  
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    The gas and solid phases are coupled through the 

interphase momentum transfer coefficient 
A . To describe 

the solid phase, KTGF with friction is used. In this work, 

particle surface friction and rotation are considered 

explicitly. In order to describe the solid phase rheology 

thoroughly, an extra energy balance equation for the 

rotational granular temperature was derived. 
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The definitions of the translational and rotational granular 

temperatures are 2 3t C  , 2 3r I m   , 

where I  is particle’s moment of inertia, C  is the 

fluctuating translational velocity and   is the fluctuating 

angular velocity. 
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Rotational energy dissipation rate:  
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Rotational shear viscosity:  
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Table 1: Closure equations. 

 

Here  is the rotational to translational granular 

temperature ratio. The expressions for A1, A2, A3, A4, A9, 

A11, A12, L1, L2, L3 can be found in Appendix A.  

Discrete particle model 

In DPM, the gas phase is described in the same way as in 

TFM (equations 2.1 and 2.3). However the solid phase is 

treated more detailed. The motion of every particle in the 

DPM is computed with Newton’s second law of motion, 
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where 
pm , 

pv , T are particle mass, velocity, and torque 

acting on the particle. The sum of all external forces acting 

on a particle Fexternal is calculated using: 
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where 
pV  is the volume of particle. We use a linear spring-

dashpot contact force, where the friction coefficient  is 

limiting the tangential contact force: 

 

,

,

,t

,

,    (sticking)

,    (sliding)

contact n n n ab n ab

t t t ab t

contact

contact n ab

k

k

 

 



  

 
 



F n v

v
F

F t

     (10-11) 

Where 
nk , 

abn , 
n , 

n , 
abv , 

t , 
t   are respectively the 

spring stiffness in the normal direction, the normal unit 
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vector, the overlap and damping coefficient in the normal 

direction, relative velocity at the contact point,  and the 

overlap and damping coefficient in the tangential 

direction. We do not include a rolling friction. We refer to 

Hoomans et al. (1996) for details on the DPM model. 

MODEL VALIDATION 

Simulation settings 

The DPM and TFM models have been implemented in our 

in-house codes. Because DPM is a much more detailed 

model, we use it to validate the newly-built TFM model 

based on kinetic theory. In the simulation, a no-slip wall 

boundary condition for side walls is used for the gas 

phase. At the bottom inlet, a uniform gas velocity is 

specified, whereas at the top outlet, atmospheric pressure 

(101.325 Pa) is prescribed. For the solid phase, a partial 

slip boundary condition is used for the side walls. 

Currently we use a relation for the solids velocity gradient 

and an expression for the pseudo Fourier fluctuation 

energy flux at the wall as given by Sinclair and Jackson 

(1989). The simulation settings are chosen based on those 

for relatively rough glass spheres (Goldschmidt, 2004) in a 

small system, and are given in Table 2. We note that the 

partial-slip boundary conditions employed in the TFM 

simulations are relatively time-consuming, especially for a 

quasi-2D system with large surface-to-volume ratio. As a 

consequence, the DPM and TFM simulations currently 

have comparable runtimes of the order of a few days for a 

total simulation time of 25 s, but no optimization attempts 

have been made yet on the TFM code. 

 

Parameters                                Values 

Particle type glass beads  

Particle density, kg/m3 2526.0 

Particle diameter  (mm), 2.0 

Initial bed height (m), 0.09 

Domain size (m), 0.09 × 0.012 × 0.36 

Grid number (x × y ×z )                 15 × 2 × 60 

p-p collisional parameters, en=0.97, β0=0.33, μ=0.1 

p-w collisional parameters, ew=0.97, βw=0.33, μw=0.1 

Specularity coefficient, 0.01 

Superficial gas velocity, 

Simulation time 

Flow solver time-step 

2.5 Umf (m/s) 

25 s 

10-4 s 

Table 2: Properties of particles and simulation settings. 

Results and discussion 

In this paper, the classical granular temperature due to 

random motion of individual particles in small regions 

during a small period is used. The global granular 

temperatures in the domain are calculated by, 
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where 
cellN  is the number of cells in the domain. 

The instantaneous porosities at different time obtained by 

different models are shown in Figure 1. It can be seen 

from the figure that large bubbles and densely packed 

regions are formed as a result of more energy dissipated 

due to particle rotation. Slugging fluidization is observed 

for both models. Thus, both models agree quite well.  

 

(a)      12.4s                14.2s              16.1s 

     
(b)       12.4s                14.2s              16.1s 

    
   

Figure 1: Instantaneous porosity in the fluidized bed. (a) 

TFM, (b) DPM. 

 

Figure 2 shows the average particle height in the bed. 

The simulated results from TFM are very similar to those 

obtained from DPM, both for the average bed height and 

for the fluctuations in bed height. 
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Figure 2: Comparison of simulated average particle height 

(see main text for details). 

 

Figure 3 shows that good agreement between the TFM 

and DPM models can be obtained for the averaged 

translational and rotational granular temperature. The 

rotational granular temperature from TFM is somewhat 

higher than that from DPM. This can have two causes. 

First, in this dense situation the approximation of only 

binary collisions in KTGF starts to break down. Second, 

and probably more importantly, we assume a zero gradient 

of rotational granular temperature near the wall. This is 

not true in the real case. This indicates the need for 

development of accurate boundary conditions also for the 

rotational granular temperature. 

(a) 

 

(b) 

 

Figure 3: System-average granular temperatures in TFM 

and DPM simulations: (a) translational granular 

temperature; (b) rotational granular temperature. 

 

    For the solid circulation pattern, due to coalescence, the 

bubbles increase rapidly in size. As a consequence, a zone 

of increased bubble development, initially close to the 

wall near the gas inlet, is displaced towards the center of 

the bed with increasing height above the gas inlet. 

Particles appear to flow upwards in regions of more 

intense bubble activity and downwards in regions of lesser 

bubble activity, which results in the formation of a 

pronounced global solids circulation pattern. Figure 4 

shows that this kind of time-averaged macroscopic solids 

circulation pattern is qualitatively captured by the 

simulations and compares the solids circulation patterns of 

glass beads obtained from different simulation methods. 

 

Figure 4:  Comparison of time averaged solids circulation 

pattern (10-25 s), left-DPM modeling, right-TFM 

modeling. 

 

    Time-averaged porosity profiles from different models 

are shown in Figure 5. From the figure, it can be seen that 

small bubbles originate at the bottom of the bed, grow in 

size due to coalescence and move towards the central axis 

as a result of resistance at the center (Kunii and 

Levenspiel, 1991). 

 

 

Figure 5:  Comparison of time averaged porosity (10-25 

s), left-DPM modeling, right-TFM modeling. 
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Figure 6 shows a comparison of time-averaged particle 

velocity components. For the lateral x-velocity 

component, particles show positive and negative 

velocities, in agreement with the pronounced global solids 

circulation pattern. The axial z-velocity is positive in the 

center regime and negative near the walls, which indicates 

that particles move upward in the center and flow down 

near the wall. 

         

 
 

 

Figure 6: Comparison of time-averaged particle velocity 

components. 

 

CONCLUSION & OUTLOOK 

We developed a new KTGF for rough spheres. A detailed 

comparison between TFM using this new KTGF and a 

more detailed DPM model is performed, including 

translational and rotational granular temperatures, solids 

circulation pattern, axial and radial velocity profiles. For 

the first time, good agreement between two models is 

obtained for the rotational granular temperature. However, 

much work remains to be done. Despite the good 

qualitative agreement with DPM simulations, we find that 

it is essential to develop and implement correct boundary 

conditions for the rotational temperature and velocities of 

particles near the walls. . 
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APPENDIX A 

All the basic integrals which could be solved analytically 

using Mathematica, are listed as follows, 

 

*

/2 2 2

1 2 3

sin cos
(1 )

(1 cos )

u u
u

u

a d





 
 

 
 

                 

*
3

2 2 3

0

sin cos
(1 )

(1 cos )

u u
u

u

a d





 
 

 
 

  

*

/2 3

3 2 3

sin cos
(1 )

(1 cos )

u u
u

u

a d





 
 

 
 

  

*

/2 2 3
3 2

4 2 7/2

sin cos
(1 )

(1 cos )

u u
u

u

a d





 
 

 
 

  

*
3 2

3 2

5 2 7/2

0

sin cos
(1 )

(1 cos )

u u
u

u

a d


 

 
 

 
  

*

2 4
3 2

6 2 7 2

cos sin
(1 )

( cos 1)

u u

u

a





 


 
 

  

*

/2 3 3

10 2 4

sin cos
(1 )

(1 cos )
u

u u
u

u

da d






 

 
 

 
  

*
5

14 2 4

0

sin cos
(1 )

(1 cos )

u u
u

u

a d


 

 
 

 
  

*

/2 3

15 2 4

sin cos

(1 cos )

u u
u

u

a d





 


 


  

*
3

16 2 4

0

sin cos

(1 cos )

u u
u

u

a d


 


 


  

*

/2 2 2

17 2 4

sin cos

(1 cos )

u u
u

u

a d





 


 


  

1 1 1 2 2A ( )a a     

2 2

2 1 3 2 2(1 )A ( ) ( )a a        

3 1 4 2 5A ( )a a     

2 2

4 1 6 2 5(1 )A ( ) ( )a a       

9 1 17 2 16A ( )a a     

2 2

11 1 10 2 14A ( ) ( )a a    

2 2

12 1 15 2 16A ( ) ( )a a    

 

2 1 11

0
1 12

9

50A 10A 10A 3
32

50( 1)( 2) A (3 )
25

10 3 4 A 3

s tg
L




  
 




  

  
    

   

 

 
 2 0 3 4

1
1

56 ( 2)
60(1 4 ) 2A 5A

5 1
s tL g




 
 



 
     

 

 

3 0 1 3
1

8 )12
(1 ) 50(1

(2
)A

5 3(1 )
s tL g

 
  



 
     


 

 

 

 

Note that for solid spheres we have: 2.5 r t    , 

   1 2 01 2,  1 7e        . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


