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ABSTRACT 

The Lattice Boltzmann (LB) method has been shown to be 

a highly efficient numerical method for solving fluid flow 

in confined domains such as pipes, irregularly shaped 

channels or porous media. Traditionally the LB method 

has been applied to flow in void regions (pores) and no 

flow in solid regions. However, in a number of scenarios, 

this may not suffice. That is partial flow may occur in 

semi-porous regions. Recently gray-scale LB methods 

have been applied to model single phase flow in such 

semi-porous materials. Voxels are no longer completely 

void or completely solid but somewhere in between. We 

extend the LB method to model multiphase flow (e.g., gas 

and liquid or water and oil) in a semi-porous medium. We 

compare the solution to test cases as well as applying it to 

real porous media. 

NOMENCLATURE 

ns fluid bounce-back fraction 

f LB distribution function, [dimensionless]. 

P LB pressure, [dimensionless]. 

r  LB lattice position, [dimensionless]. 

u LB velocity, [dimensionless]. 

e  LB discrete velocity vectors, [dimensionless]. 

F LB force, [dimensionless]. 

g LB interaction between phases [dimensionless]. 

cs LB speed of sound, [dimensionless]. 

w LB weights, [dimensionless]. 

 

 LB particle density [dimensionless] 

v LB kinematic viscosity [dimensionless] 

 
Sub/superscripts 

k multiphase component. 

i LB velocity direction. 

INTRODUCTION 

The Lattice Boltzmann method (LBM) has been 

developed over the past thirty years and has proven to be a 

numerically efficient and accurate method to model fluid 

flow in confined, topologically complex geometrical 

domains. LBM does not directly solve the Navier-Stokes 

equations but rather the Boltzmann transport equation. 

Through a Chapman-Enskog expansion it can be shown 

the solution obtained with LBM is equivalent to that 

which would have been obtained from a direct solve of the 

Navier-Stokes equation (Succi, 2001). LBM is now 

commonly applied to determine the permeability of 

complex porous media such as carbonate rocks, shales and 

so on (e.g., Liu et al, 2014). The inputs for these 

computations are a digital representation of the porous 

medium which usually comes from CT scans. Here each 

voxel corresponds to a solid region (not available for fluid 

flow) or void region (available for fluid flow). Suitable 

boundary conditions are applied at boundaries between 

solid and void voxels, to account for a no-slip boundary 

condition. Steady state fluid flows can then be obtained 

iteratively and from this the medium’s permeability. We 

refer to such a model as a black-white (BW) model. 

 

The typical resolution of CT scans is of the order of 1-10 

microns. However, in many mineral rocks, the grain size is 

much smaller than this – maybe of the order of 10-100 

nanometres or so. This means a given voxel will contain 

both solid and pore regions. Moreover, rocks are 

constituted of more than one material and these materials 

can have different slip conditions, which will affect 

resistance to fluid flow. This discussion implies a BW 

model will not be adequate for a range of rocks which are 

or current interest to those in the petroleum and natural 

gas industries. Rather a model which allows for differing 

amounts of flow depending on that voxel’s (fractional) 

solid constitution is required. This has been the motivation 

behind the development of so called “gray-scale” LBM 

models (Balasubramanian et al, 1987, Gao and Sharma, 

1994, Dardis and McCloskey, 1998). 

 

LBM is a class of cellular automata which is solved on a 

regular lattice (usually simple-cubic in 3D). On each 

lattice vertex/node a set of fluid particle distribution 

functions is defined. There are Q distribution functions 

defined on each node. LBM then consists of three main 

steps. The first step is called streaming in which all fluid 

packets (distributions) are moved to adjacent sites. This 

streaming can be correlated to the normal advection of 

fluid. The second step is called bounce-back which 

accounts for fluid-solid boundary conditions. Here fluid 

packets at boundary nodes are reversed in direction 

(actually a more complicated rule is used, but essentially 

this is the result). The final step in LBM is a collision step 

where fluid packets converging on a given node are re-

distributed according to a given rule. The LBM method 

then consists of iterating these three steps to give a 

solution. This procedure works well for a BW model. In 

the gray-scale models there are no fluid-solid boundaries, 

as such. All voxels are allowed a certain degree of flow. 

This can be related to the solid fraction in that voxel, but 

other effects such as tortuosity, topology, mineral content 

etc can be included into the model to contribute to the 

voxel’s resistance to flow. To account for a voxel’s 

resistance to flow, we now impose a partial bounce-back 

rule on each voxel. This means at each voxel, a certain 

fraction of fluid packets (which were streamed into a 

node) will be bounced back. We denote the fraction of 
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fluid packets which are bounced back at a node by ns, 

where 0   ns  1 and each node can have a different ns.  

 

The gray-scale model just described has now been 

implemented to simulate single phase fluid flow in real 

rocks, which are made up of a number of different 

minerals (Li et al, 2014a). The mineral content for each 

voxel was extracted using a DCM methodology (see 

https://en.wikipedia.org/wiki/Data_constrained_modelling

) and then these fractional contents were used in 

combination with a simple rule to give an ns value for each 

voxel. Not only were the results numerically stable but 

they were also physically realistic which makes this 

method a suitable candidate for future studies. It is noted 

here this method can also be used to upscale permeability 

to larger sample sizes, as long as an effective fluid 

resistance can be obtained for individual elements. 

 

Multiphase fluid flow (e.g. oil and water or gas and oil) is 

of utmost importance in the petroleum industry. Two or 

three phase relative permeabilities are notoriously difficult 

to obtain experimentally. A numerical method which can 

calculate these permeabilities will be of significant benefit. 

With this in mind we now consider applying the gray-scale 

model to multiphase fluid flow. Multiphase LB models 

have already been developed. A previous publication of 

ours (Pereira, 2015) briefly reviews these methods as well 

as outlining the multiphase LB method we shall use 

(pseudo-potential LBM model).  Thus in the remainder of 

this paper we briefly describe the multiphase gray-scale 

LBM model. We compare it with some test cases as well 

as applying it to sample porous media. 

LB MODEL  

Single phase gray-scale LB model 

The LB model is a mesoscopic numerical method used to 

study incompressible fluid dynamics. Its main advantages 

over more conventional CFD techniques (which directly 

solve the Navier-Stokes equations) are its programming 

simplicity, computational efficiency and inherent 

parallelism due to a large amount of local computations. 

In addition, as mentioned in the Introduction, it naturally 

deals with complex porous media if suitable digital 

information is provided. Details of this method, applied to 

single phase flow, are available (Succi, 2001; Chen and 

Doolen, 1998) and thus we shall only focus here on the 

LB method applied to gray-scale models. 

 

As explained in the Introduction, LB consists of 

streaming, collision and bounce-back at boundaries. More 

complex and accurate boundary conditions such as half-

way bounce-back or linear interpolation boundary 

conditions are also possible. In the collision step particle 

distributions relax towards a given equilibrium 

distribution - a Maxwellian distribution. Then 

macroscopic properties such as fluid density, fluid velocity 

and the stress tensor can be derived from the particle 

distributions. If we are dealing with only a single fluid, 

one set of particle distributions is defined, i.e. f(r, u, t) 

which denotes the distribution of particles travelling with 

a particular velocity u at time t at lattice node r. We will 

only consider a three dimensional (3D) model in this 

paper so that we implement the common D3Q19 model 

which indicates that there are 18 possible vectors, ei, in 

which particles may move in addition to the null vector. 

These 18 possibilities are the vectors (1, 0, 0), (0,1,0), 

(0,0,1), (1,1,0), (1,0,1), (0,1,1).  

We solve the following LB equation at every node for the 

distribution function with velocity ei: 

  )(1.t),(ft),(f
τ

1
t),(fΔt)tΔt,(f eq

iiiii rrrer   

The term fi
eq is the equilibrium Maxwell distribution given 

by 

)( 2,
2c2c

)(

c
1ρwf

2

s

4

s

2

i

2

s

i
ii 







 








eqeqeqeq
uuueue  

where wi are weights which are defined for the given 

D3Q19 model. In Eq.(1),   represents a relaxation time 

and it can be shown to be related to kinematic viscosity 

via  = cs
2( - 1/2) where cs is the sound speed and cs

2 

equals  1/3. The pressure, p, in this model is given by the 

equation of state P = cs
2. The LB equation (1) is known 

in the literature as single relaxation time (SRT) scheme, 

because only one relaxation time is involved. 

 

The relationship to macroscopic parameters such as 

density and velocity are given by 
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To model forces (such as body forces to mimic gravity or 

even surface forces between different phases when we 

model two or more phases) we add an explicit forcing 

term to the LB equation (1). This forcing term is defined 

by He et al (1998) 
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where F is the force. The macroscopic velocities are 

modified in this case to  
i

ii /2fρ Feu and ueq = u. 

This implementation of an applied force is not only 

accurate, but also exhibits correct time evolution of the 

flow. 

 

Typically LB methods solve on (100%) void nodes and 

don’t solve on solid nodes. To simulate no-slip boundary 

conditions, at boundaries between void and solid nodes, a 

bounce-back step is performed which simply reverses the 

direction of the streamed distribution function. In the gray 

LB methods, one solves at all nodes. Since there are no 

solid nodes, as such, a full bounce back is not performed. 

Rather, on any given node a certain fraction of the fluid 

packets that are streamed into that node are bounced back. 

This fraction of fluid packets which are bounced back at 

any given node is given by ns and so equation (1) is 

replaced by 
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The last term with the circumflex on the distribution 

function indicates the distribution function to be added is 

in the opposite direction to i. The parameter ns is between 

0 and 1, and can be related to voxel compositional and/or 

topological properties (among other things).  The 

macroscopic velocity is now  
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Equation 5 represents the gray-scale LB model (Walsh et 

al,  2009) and has been validated both for test cases such 

as the Brinkman equation and on real samples (Li et al, 

2014) with good accuracy. For example, in Fig. 1 we show 

comparisons between the analytic solution of the Darcy-

Brinkman equation and LB simulations. The Darcy-

Brinkman equation models laminar flow through a 

channel which has a non-zero resistance (or drag). It is 

given by 
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where is the resistance to flow in some local region, B 

is the Brinkman viscosity and G is the body force. The 

solution of this equation is 
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where 
B

r  /  and  2ns. Figure 1 shows a good 

overall correlation between LB simulations and Eq. (8) for 

various ns values. There is a bit of discrepancy near the 

walls (at H=1 and H=51) for the larger ns values. A 

detailed resolution study and its effects on limiting the 

error between the analytic and LB solution is beyond the 

scope of this work, but will be carried out and reported in 

a future publication. 

 

Figure 1: Comparison between Brinkman flow analytic 

solution for single phase flow and LB gray-scale model. 

Curves are analytic solutions and symbols are LB results 

for various ns values with G = 1.36x10-6.  

Multi-phase gray-scale LB model 

Figure 1 gives us some confidence in the single phase 

gray-scale LB model so that we now proceed to applying 

an extension of it to two (or more) immiscible phases. In 

principle there can be n phases. To model this with our LB 

method we now define n sets of distributions functions, 

which represent each immiscible phase - f1(r,u,t) ... 

fn(r,u,t). For each phase we solve the LB equation at node 

i. So for the kth phase (where k  1,...n) we need to solve 

the LB equation (1), with k (possibly different) relaxation 

times. Values for various macroscopic variables in this 

model then follow almost analogously to the single phase 

equations for density, viscosity and momentum flux for 

each phase.  

 

To model immiscibility between phases we implement the 

pseudo-potential model (Shan and Chen, 1993) which 

employs nearest neighbour inter-particle potentials to 

model the interactions between components. In a sense 

this follows physical reality at the microscopic level where 

molecules interact via short-range Lennard-Jones type 

potentials. In the original Shan-Chen model (Shan and 

Chen, 1993) lattice nodes which have a separation of less 

than or equal to 21/2 units are coupled together. The 

interaction potential between components is 

accommodated via a force, Fk which is introduced through 

the added force term (Eq. (4)). The equilibrium velocity is 

re-defined to accommodate multiple phases, i.e., uk
eq = u'. 

Here u' is a combined velocity and to satisfy momentum 

conservation must be 
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The fluid-fluid interaction for phase k at lattice node r is 

then given by 
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where gkk' is the interaction potential (or coupling 

parameter) between dissimilar components. The weights w 

depend on the separation between interacting nodes with 

w(1)=1/6 and w(2)=1/12. Note, we assume the coupling is 

zero for similar components. The pressure in this model is 

given by the equation of state 
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One of the issues with this nearest neighbour 

implementation is that it leads to large spurious currents 

which are a numerical artefact.  These numerical artefacts, 

if not reduced to a minimum, will lead to large numerical 

instabilities.  Thus we shall attempt to reduce these 

numerical instabilities. It has been found (Porter et al, 

2012) extending the range of the pseudo-potential leads to 

a significant reduction (up to 1000 times) of these 

spurious currents. The range of pseudo-potential can in 

principal go to infinity but this of course comes at a 

computational cost. We have implemented here both 6th 

order (including all neighbours less than or equal to 2 

units away) and 8th order (including all neighbours less 

than or equal to 81/2 units away) pseudo-potentials. This 

increases the number of neighbours to be sampled from 18 

(Shan-Chen) to 32 (6th order) to 64 (8th order), but greatly 

enhances the numerical stability of the method. Weights, 

which are required in Eq. (9), for the additional neighbour 

pairs have been given by Sbragaglia et al (2007). 

 
The final step in the gray-scale, multiphase LB model is to 

incorporate the effect of voxel resistivity to flow. We 

assume the resistivity of a particular voxel can be different 

for different phases. Physically this may be the case if 

there are different materials in a voxel which have 

different slip conditions with different fluids. So equation 

(5) becomes: 
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The macroscopic velocity for each phase is defined 

similarly to equation (6) with suitable ns
k, fk and Fk values 

used for each component.  
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RESULTS 

This multiphase LB model has previously been validated 

(Pereira, 2015) for a number of test cases (i.e., Laplace’s 

law, contact angles, capillary pressure) as well as on 

packed beds and real porous media samples. Good 

agreement was found in test cases and the multiphase 

flows in packed beds and real porous media exhibited 

physically realistic characteristics. So here we concentrate 

on the gray-scale, multiphase model results.  

For the simulations presented here we use 

which implies themass 

of phase 1 is 1.0 while mass of phase 2 is 2.0. The surface 

tension g12 between phases is 4.0. Note, that unless we use 

the numerically stable multiphase model described above, 

we would not be able to have a disparity in these values 

(between the phases) and such a large g12 value.  

Multiphase channel flow 

We initially look at two-phase channel flow, i.e. phase 1 

displacing phase 2 in a narrow channel (width 42 units, 

depth 22 units and length 152 units). We tried a range of 

ns values to see how the flow changed. Figure 2 (which is 

a slice taken at the middle of the smallest dimension) 

shows flows for a variety of ns values with a given body 

force. For the cases ns = 0.05, 0.1, 0.3 and 0.5 we use a 

body force of 6.8 x 10-3 while for ns = 0 if we use such a 

large body force the simulation is numerically unstable 

(i.e. too large speeds are generated). Thus for ns = 0 the 

largest body force we can use (for a numerically stable 

simulation) is 6.8 x 10-4
.  We also use a longer channel for 

ns = 0 to accommodate higher speeds. For ns = 0.7 a body 

force of 6.8 x 10-2 is applied. 

   

   
Figure 2: Two phase flow in a channel of width 41 units 

and depth 21 units for varying ns.  The A phase (orange 

hue) begins at the bottom of the channel (where the two 

orange stripes can be seen). a) For ns = 0 and after 725 LB 

time steps, b) for ns = 0.05 and after 1000 LB time steps, 

c) for ns = 0.1 and after 2100 LB time steps, d) for ns = 0.3 

and after 13000 LB time steps and e) for ns = 0.5 and after 

50000 LB time steps, f) for ns = 0.7 and after 19500 LB 

time steps. 

 

The shape of the interfaces in Fig. 2 result from a 

combination of the surface tension, applied body force and 

applied ns value. In Fig. 2a although the ns value is zero, 

the comparatively large body force results in a large fluid 

velocity, which yields a highly curved (parabolic) interface 

profile. As the ns value is increased, the interface becomes 

less curved and more flattened, in keeping with the results 

from Fig. 1. A larger body force needs to be applied as the 

ns value is increased because ns is directly related to fluid 

drag (Balsubramaniam et al, 1987, Dardis and McCloskey, 

1998).  

 

According to Darcy’s Law the average velocity in a 

porous medium is given by 

)13(.


Gk
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So the average velocity is proportional to the permeability, 

k. In the gray-scale models (Walsh et al, 2009) the 

permeability is related to ns via  
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We can determine the average velocity quite easily in 

these simulations by tracking the location of the advancing 

interface (fluid front). Doing this for the four different 

simulations (at the same G value) and plotting the average 

velocity as a function of ns gives Fig. 3. Note, we have 

also added the ns = 1 value which gives zero channel 

speed (see equation (6)). We obtain a linear relationship 

between the average channel velocity and (1-ns)/ns, as 

predicted by equation (15).  Furthermore, from the 

gradient of the graph and assuming an average A-phase 

density of 0.75, we predict the body force is 6.9 x 10-3, 

which agrees well with the body force we have applied in 

these cases.  

 
Figure 3: Plot of the average channel velocity of phase A 

versus (1-ns)/ns. Red circles come from LB simulations 

and dashed line is a best fit to these results (with gradient 

4.6 x 10-3). 

Multiphase flow with ns values which depend on phase 

We now consider the physically interesting possibility of 

ns values which vary depending on the phase which is 

present. This possibility is important because in certain 

materials, the slip velocity is certainly fluid dependent, 

i.e., a non-wetting fluid will have a different slip velocity 

to a wetting fluid. Thus a particular voxel may present 

different resistance to different fluids. 

 

We therefore set up a multiphase channel flow simulation 

in a similar way to above. The only difference now is that 



 

 

Copyright © 2015 CSIRO Australia 5 

the ns value corresponding to phase A is zero while the ns 

value corresponding to phase B is 0.1. The time evolution 

for this case is shown in Fig. 4. Interestingly, two fingers 

develop in the channel. This is indicative of viscous 

fingering, which is a well-known physical phenomenon 

when a less viscous fluid displaces a more viscous fluid 

(Chen, 1987).  It has previously been shown that the 

interface between the fluid phases is (mathematically) 

unstable to small sinusoidal perturbations (Paterson, 

1981). It is quite significant that such a result naturally 

develops from this LB simulation. At the moment, this 

simulation becomes numerically unstable after 1000 LB 

times steps. A detailed study of this case is beyond the 

scope of the present work, but will be reported on in a 

future publication. 

  

  

Figure 4: Evolution of channel flow in case where the ns 

value depends on the phase present. We use ns(A)=0.0, 

ns(B)=0.1 a) Initially, b) after 300 LB time steps, c) after 

600 LB time steps and d) after 1000 LB time steps. 

Flow in the presence of semi-permeable objects 

Given good agreement for channel flow between theory 

and our simulation we now proceed to some other 

important tests. We consider multiphase flow around 

cylindrical objects (tows) of higher ns value compared to 

the bulk (Spaid and Phelan, 1998). In these simulations 

the domain is periodic in all directions, so we focus on the 

flow around and through the semi-permeable tows. There 

are five tows spaced equi-distantly apart (see white circles 

in Fig. 5a). These tows are given an ns value of 0.07 for 

the A-phase and 0.0 for the B-phase. Everywhere else both 

phases are given an ns value of 0.0.  

 

Figure 5 shows the progress of the flood (from bottom to 

top) through and around the tows. As the flood proceeds 

the tows cause the flow to slow down (when the flow is 

through them). They also leave small voids in the tow 

regions which subsequently fill.  

   
Figure 5: Evolution of flow through and around circular 

tows. a) Initially, b) after 3000 time steps and c) after 6000 

times steps. 

Spaid and Phelan (1998) have shown that the interface 

location, )(t , (between phases) can be predicted from 

Darcy’s Law as follows  

)16(,)( t
Gk

t


  

where is the porosity (one minus the tow volume divided 

by total volume).  We can track the interface position in 

this simulation and plot it as function of time (see Fig. 6a). 

(The interface between phases is calculated by finding the 

point where the largest gradient in the A phase density 

occurs along the vertical line which goes through the 

centre of all cylinders.) The black dots are the LB data and 

the red dashed line is a linear best fit to the data. The data 

follows a line reasonably well. However there are 

deviations due to (i) the initial transition to steady state 

conditions and (ii) oscillations in the profile as the 

interface reaches a tow (where it slows down) and then 

after it passes the tow (it speeds up).  

 

 
Figure 6: a) Plot of interface position versus time for the 

porous tow simulation shown in Fig. 5. b) Composition 

plot from a real CIPS sample (red denotes solid regions 

and blue represents void regions with a whitish hue in 

between these limits). 
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Multiphase flow for real samples 

Finally we consider multiphase flow through real rock 

samples. These samples are from a CIPS (calcite in situ 

precipitation system) core sandstone sample which 

consists of calcite and quartz (Li et al, 2014b). The 

composition plot of this sample is shown in Fig. 6b. The 

sample is 200 x 200 x 5 LB units, with periodic boundary 

conditions in all directions. We consider a flood with the 

A-phase fluid reservoir at the left-hand edge of the sample, 

with the B-phase initially residing in the sample and a 

body force of 6.8 x 10-3 is applied in the positive x-

direction. Figure 7 shows the progress of the flood at 

various time intervals. 

  

  
Figure 7: Progress of multiphase flood through a CIPS 

sample (whose composition is shown in Fig. 6b). a) Initial, 

b) after 10000 LB time steps, c) after 20000 LB time steps 

and d) after 40000 LB time steps. 

 

In the composition map (Fig. 6b) for the CIPS sample one 

can see two small high composition regions close to the 

left edge. As a consequence soon after the flood begins 

(Fig. 7b) the middle region close to the left edge is 

bypassed and the flood begins with two main fingers along 

the top and bottom edges of the sample. These fingers 

grow as the flood proceeds. Another high composition 

region which is roughly in the middle of the sample 

prevents the two fingers from coalescing, which means a 

significant amount of the B-phase remains in the sample. 

This is typical of real oil floods, where fingering of the 

invading phase can lead to low overall yields.  

CONCLUSION 

In this study we have introduced a multiphase, gray-scale 

LB method which models multiphase fluid flow through 

semi-porous materials. The important quantity in this 

model is the fluid bounce-back fraction, ns. This quantity 

can be defined for each voxel in the sample and also each 

phase in the sample and relates to the resistance to flow 

that a particular voxel presents to fluid. 

 

We have applied the model to a few test cases (channel 

flow, flow around tows) and the agreement with theory is 

good. This gives us confidence in future applications of 

the model. We have also applied the model to cases where 

the ns value depends on the fluid passing through. Here we 

observed something that was indicative of viscous 

fingering. This is a significant result and requires further 

investigation to understand completely. Finally, we 

applied the model to multiphase flow through a real rock 

(CIPS) sample. Here we observed that the invading phase 

bypassed regions of high composition. Although this is 

expected, it indicates the model is capable of correctly 

modelling multiphase fluid flow. In the future this model 

will be applied to bigger (fully three-dimensional) samples 

to determine real, multiphase relative permeability curves.  
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