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ABSTRACT 

The description of the interaction between fluid dynamics 

and fast chemical reactions in gas-liquid systems is 

complicated by the fact that the gas phase is poly-

dispersed, namely it is constituted by bubbles 

characterized by a distribution of velocity, size and 

composition values. Phase coupling can be successfully 

described only if the modeling approach acknowledges the 

existence of this distribution, whose evolution in space and 

time is governed by the so-called Generalized Population 

Balance Equation (GPBE). A computationally efficient 

approach for solving the GPBE is represented by the 

Quadrature-Based Moment Methods (QBMM), where the 

evolution of the entire bubble population is recovered by 

tracking some specific moments of the distribution. In the 

present work, one of these methods, the Conditional 

Quadrature Method of Moments (CQMOM) has been 

implemented in the OpenFOAM two-fluid solver 

compressibleTwoPhaseEulerFoam, to simulate a 

chemically reacting gas-liquid system. To reduce the 

computational time and increase stability, a second-order 

operator-splitting technique for the solution of the 

chemically reacting species was also implemented, 

allowing to solve the different processes involved with 

their own time-scale. This modeling approach is here 

validated by comparing predictions with experiments, for 

the chemical absorption of CO2 in NaOH solution, 

performed in a rectangular bubble column.  

NOMENCLATURE 

 

d32 Mean Sauter bubble diameter (m) 

G Rate of bubble growth (m/s) 

h Collisional term of GPBE (1/m3s) 

L Bubble size (m) 

k Turbulent kinetic energy (m²/s²) 

Mk,l Generic moment of the NDF(mkmoll/m3) 

n Number density function (1/m4mol) 

N Number of nodes of quadrature (-) 

t Time (s) 

u Gas/liquid velocity (m/s) 

x Spatial coordinates (m) 

  

Greek letters 
 

 Gas volume fraction (-) 

 Turbulent energy dissipation (m/s³) 

 Kinematic viscosity (m²/s) 

 Density (kg/m³) 

𝜙 Bubble composition (mol) 

𝜙̇ Rate of mass transfer (mol/s) 

 

INTRODUCTION 

 

The simulation of reacting turbulent gas-liquid bubbly 

systems is complicated by the fact that the disperse phase, 

constituted by gas bubbles, is highly polydisperse, namely 

the bubbles are characterized by very different size, 

velocity and composition values. In addition the fate of 

these bubbles is closely linked to the evolution of the 

continuous liquid phase through the so-called phase-

coupling (Buffo and Marchisio, 2014). A plethora of 

methods is available for the simulation of such systems, 

and among them the most suitable method for simulating 

large-scale systems is the so-called Euler-Euler method 

(EEM). This method was originally formulated through a 

volume-average procedure, but can also be derived by 

applying the moment method to the main governing 

equation of multiphase systems, namely the generalized 

population balance equation (GPBE), as explained by 

Marchisio and Fox (2013). 

The final equations that have actually to be solved are the 

transport equations for some moments of the number 

density function (NDF) that defines the polydispersity of 

the system. These moment equations are “unclosed” and 

to overcome the closure problem the NDF is reconstructed 

by using a quadrature approximation. The methods based 

on this approach are called Quadrature-Based Moment 

Methods (QBMM). Different approaches have been 

developed and in this work the Conditional Quadrature 

Method of Moments (CQMOM) is used. The rationale for 

using this method is that, as shows in our previous work 

(Buffo et al., 2012; Buffo et al. 2013b), for reacting 

systems, especially when the chemical reaction is fast, the 

NDF has to account for two “internal coordinates”: bubble 

size and composition.  

Following our previous work on this topic, our CQMOM 

implementation in the openFOAM solver 

compressibleTwoPhaseEulerFoam (Buffo et al., 

2013a) is used to simulate a reacting gas-liquid system, for 

which experimental data are available in the literature 

(Darmana et al., 2007). It is important to stress here that 

the model is fully predictive: all the model constants have 

been derived from theory and no fitting constants are 
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adjusted here to match experiments. The chemical system 

investigated is very simple: a rectangular bubble column 

is filled with a NaOH aqueous solution and nitrogen is 

fluxed. Then abruptly the gas feed is changed to carbon 

dioxide, which transfers to the liquid phase and reacts with 

NaOH. Experimental measurements concerning plume 

oscillation period, global gas-hold hold up, mean Satuer 

diameter of the bubbles, pH time evolution are compared 

with model predictions resulting is very good agreement.  

GOVERNING EQUATIONS 

As shown by Marchisio and Fox (2013) by applying 

specific moment transforms to the GPBE the governing 

equations of fluid motion of phase k are readily derived: 

 
𝜕

𝜕𝑡
(𝜌𝑘𝛼𝑘) + ∇ ∙ (𝜌𝑘𝛼𝑘𝒖k) = 0                                          (1) 

𝜕

𝜕𝑡
(𝜌𝑘𝛼𝑘𝒖k) + ∇ ∙ (𝜌𝑘𝛼𝑘𝒖k𝒖k) = −∇ ∙ (𝛼𝑘𝝉𝑘) −

𝛼𝑘∇𝑝 + 𝛼𝑘𝜌𝑘𝒈 + 𝑀𝑘                                                       (2) 

 

where 𝒖𝑘 is the Reynolds-averaged velocity for phase k. 

The stress tensor 𝝉𝑘for phase k is expressed as: 

 

𝝉𝑘 = 𝜇eff,𝑘 ((∇𝒖𝑘) + (∇𝒖𝑘)𝑇 −
2

3
𝑰(∇ ∙ 𝒖𝑘)),                   (3) 

 

where eff,k is the effective viscosity of phase 𝑘: 𝜇eff,𝑙 =
𝜇𝑙 + 𝜇𝑡,𝑙 , 𝜇𝑙 is the molecular viscosity of the liquid and 

𝜇𝑡,𝑙 = 𝜌𝑙𝐶𝜇
𝑘2

𝜀
, 𝑘 is the turbulent kinetic energy of the 

liquid phase and 𝜀 is the energy dissipation rate of the 

liquid phase. Both are calculated from the corresponding 

transport equations: 

 
𝜕

𝜕𝑡
(𝛼𝑙𝑘) + ∇ ∙ (𝛼𝑙𝑘𝒖𝑙) − ∇ ∙ (𝛼𝑙

𝜇𝑡,𝑙

𝜌𝑙𝜎𝑘
∇𝑘) = 𝛼𝑙(𝐺 − 𝜀)(4) 

 
𝜕

𝜕𝑡
(𝛼𝑙𝜀) + ∇ ∙ (𝛼𝑙𝜀𝒖𝑙) − ∇ ∙ (𝛼𝑙

𝜇𝑡,𝑙

𝜌𝑙𝜎𝜀
∇𝜀) = 𝛼𝑙 (𝐶𝜀,1

𝜀

𝑘
𝐺 −

𝐶𝜀,2
𝜀2

𝑘
)               (5) 

 

with the model constants are those of the standard 𝑘 − 𝜀 

model: 𝐶𝜇= 0.09, 𝜎𝑘= 1.0, 𝜎𝜀 = 1.3, 𝐶𝜀,1= 1.44, and 𝐶𝜀,2= 

1.92. The term 𝐺 is the turbulence production rate defined 

as: 𝐺 = 2𝜈𝑡,𝑙(𝑺: ∇𝒖𝑙), where the strain rate tensor is in turn 

defined as 𝑺 =
1

2
(∇𝒖𝑙 + ∇𝒖𝑙

𝑇).  

The term Mk in Eq. (2) describes coupling of the 

momentum balance equations that is derived based on a 

force balance acting on the bubbles in the liquid, defined 

by: 

 

𝑀𝑙 = −𝑀𝑔 = 𝑀𝐷,𝑙 + 𝑀𝐿,𝑙 + 𝑀𝑉𝑀,𝑙         (6) 

 

where forces on the right-hand side refer to drag, lift and 

virtual mass (of which in this work only the first is 

considered). The drag model considered in this work is 

based on the following expression: 

 

𝐶𝐷 = (1 − 𝛼𝑔)𝐶𝐴  max [
24

𝑅𝑒eff
(1 + 0.15𝑅𝑒eff

0.687),
8

3

𝐸𝑜

𝐸𝑜+4
]

           
The effective Reynolds number is defined as follows: 

 

𝑅𝑒eff =
𝜌𝑙𝑑32|𝑢𝑙−𝑢𝑔|

𝜇eff
, with 𝜇eff =  𝜇𝑙 + 𝐶𝐵𝜌𝑙

𝑘2

𝜀
       (8) 

 

In Eq. (8) two corrections are applied to the standard drag 

force coefficient expression. The first one is related to the 

so-called crowding or swarm effect. When bubble are 

densely packed (i.e. 𝛼𝑘 > 0.2) their momentum boundary 

layers start interacting, resulting in non-linear effects on 

the drag force. The perceived drag force that each bubble 

“sees” is therefore higher that what predicted for a single 

isolated bubble, as witnessed by the larger gas hold-ups 

usually measured in “crowded” bubble columns. The 

second one is instead related to the so-called micro-scale 

turbulence, namely the turbulence on a length-scale 

smaller than the bubble size (that is therefore not resolved 

by the standard 𝑘 − 𝜀 model). Extensive comparison with 

experiments on a numerous apparatuses has allowed the 

identification of the two parameters as follows: 𝐶𝐴 = −1.3 

and 𝐶𝐵 = 0.002. 

As mentioned the bubble population is described through 

a NDF, so that the following quantity 

 

𝑛(𝐿, 𝜙; x, 𝑡)d𝜙 d𝐿 

 

represents the expected number of bubbles per unit volume 

with size ranging between L and L+dL and composition 

ranging between  and +d. In this work, an isothermal 

air-water system is investigated and composition is 

described by using the absolute number of moles of the 

chemical component contained in the bubble that transfer 

from one phase to another. In the test case investigated 

here, this chemical component is carbon dioxide, since 

nitrogen is assumed to be insoluble in the aqueous 

solution.  

As well known the evolution of the NDF is dictated by the 

GPBE which reads as follows: 

 
𝜕𝑛

𝜕𝑡
+ ∇ ∙ (𝒖𝑔 𝑛) +  

𝜕

𝜕𝐿
(𝐺 𝑛) + 

𝜕

𝜕𝜙
(𝜙̇ 𝑛) = ℎ       (9) 

 

where 𝒖𝑔 is the bubble velocity, G represents the 

continuous rate of change of bubble size due to mass 

transfer, 𝜙̇ is the continuous rate of change of bubble 

composition (i.e. moles of carbon dioxide) due to mass 

transfer and h is the term related to the discontinuous jump 

in bubble size and composition due to collisional events, 

such as coalescence and break up.  

Sub-models containing the physics of such phenomena are 

needed to express these terms; the details can be found 

elsewhere (Buffo et al., 2013a). Here it is important to 

mention that all these sub-models are based on the local 

value of the turbulent dissipation rate, provided by the 

solution of the Eulerian two-fluid model. The mass 

transfer coefficient (and so the continuous change of 

bubble size) is estimated by means of the Danckwerts’ 

penetration theory, in particular by considering the eddy 

renewal time equal to the Kolmogorov time-scale as 

prescribed by the Lamont and Scott (1970) model. In this 

work, turbulent fluctuations are considered as the only 

mechanism responsible for bubble coalescence and 

breakage; the coalescence efficiency is evaluated as the 

ratio between the contact and drainage time-scales, 

whereas bubble break up is assumed to result always in 

two bubbles with different sizes (prescribed by a β-PDF 

daughter distribution function) and equal compositions. 

Recurring to the definition of the mixed order moment of 

the NDF: 

 

𝑀𝑘,𝑙(𝐱, 𝑡) =  ∬ 𝑛(𝐿, 𝜙; 𝐱, 𝑡)𝐿𝑘𝜙𝑙+∞

0
d𝐿 d𝜙     (10) 
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It is possible to rewrite the GPBE in terms of mixed order 

moments as follows: 

 
𝜕𝑀𝑘,𝑙

𝜕𝑡
+ ∇ ∙ (𝒖𝑘,𝑙𝑀𝑘,𝑙) + ∫ 𝑘

+∞

0
𝐿𝑘(𝐺 𝑛) d𝐿 +

 ∫ 𝑙 𝜙𝑙+∞

0
(𝜙̇ 𝑛) d𝜙 = ℎ𝑘,𝑙          (11) 

 

where the velocity associated to the generic moment 𝒖𝑘,𝑙 

and the collisional term ℎ𝑘,𝑙 are defined below: 

 

𝐮𝑘,𝑙 =  
∬ 𝒖𝑔𝑛 𝐿𝑘𝜙𝑙d𝐿 d𝜙

+∞

0

𝑀𝑘,𝑙
         (12) 

ℎ𝑘,𝑙 = ∬ ℎ 𝐿𝑘𝜙𝑙+∞

0
d𝐿 d𝜙         (13) 

 

Since the collisional term is a complex functional of the 

NDF, there is a closure problem in the derived transport 

equations for the moments. By applying the so-called 

quadrature approximation (McGraw, 1997), the following 

functional assumption for the NDF is implicitly used: 

 

𝑛(𝐿, 𝜙) =  ∑ ∑ 𝑤𝑖1

𝑁2

𝑖2=1

𝑤𝑖1,𝑖2

𝑁1

𝑖1=1

𝛿[𝐿 − 𝐿𝑖1
]𝛿[𝜙 − 𝜙𝑖1,𝑖2

] 

 

where the N1 weights 𝑤𝑖1
, the N = N1N2 conditional 

weights 𝑤𝑖1,𝑖2
 and the N nodes of quadrature [𝐿𝑖1

; 𝜙𝑖1,𝑖2
] 

are calculated from a specific set of mixed order moments 

with an efficient inversion algorithm. As it is possible to 

notice N1 is the number of nodes used for size and N2 for 

the composition conditioned over the i1-th value of size. 

More details on this method can be found in the work of 

Yuan and Fox (2011).  

An illuminating example is represented by the case with 

N1=3 and N2=1: six pure moments with respect to size are 

needed to calculate the three weights w1, w2 and w3 and the 

three nodes L1, L2 and L3 (i.e., M0,0, M1,0, M2,0, M3,0, M4,0, 

M5,0), then another three mixed-order moments are needed 

to calculate the three conditional weights 𝑤1,1, 𝑤2,1 and 

𝑤3,1 and conditional nodes 𝜙1,1, 𝜙2,1 and  𝜙3,1  (i.e., M0,1, 

M1,1, M2,1). The moment set employed with this solution 

contains the most important global properties of the gas-

liquid system. For example the global gas volume fraction 

can be calculated from M3,0 whereas the mean Sauter 

diameter 𝑑32 can be calculated as the ratio between M3,0 

and M2,0. A detailed description of the algorithm and its 

application to gas-liquid systems can be found in the work 

of Buffo et al. (2013a,b) and we report here a very short 

summary. At each time step, the transport equations for the 

moments are solved, and the mean Sauter diameter is 

therefore determined. This value is in turn used to solve 

the momentum balance equations for the disperse and 

continuous phases. Then volume fractions for both phases 

are calculated and the loop is closed by moving on to the 

next time step.  

TEST CASE, OPERATING CONDITIONS AND 
NUMERICAL DETAILS 

In the test case simulated in this work a simple chemical 

reaction is experimentally investigated in the rectangular 

bubble column reported in Fig. 1. The column has a width 

of 200 mm, depth of 30 mm and height of 1500 mm. The 

front, back and both side walls are made of 10 mm thick 

glass plates, while the top and bottom part are made of 

stainless steel. During the experiment the column is filled 

with liquid up to a level of 1000 mm. The continuous 

liquid phase is an aqueous solution of NaOH containing 

therefore hydroxyl ions, whereas the disperse gaseous 

phase is carbon dioxide.  

 

 
Figure 1: Sketch of the experimental set-up. 

 

 

 
 

Figure 2: Schematic representation of the operator-

splitting approach. 

 

 
Figure 3: Time evolution of the chemical species 

involved in the reaction resulting from the numerical 

simulation. 

 

Experiments are performed by employing the following 

protocol. The column is first filled with an aqueous 

solution containing hydroxyl ions, nitrogen is introduced 

until the flow pattern is fully developed and then carbon 

dioxide in the form of gas bubbles is introduced in the 

bottom of the column (with a prescribed NDF exhibiting a 

log-normal size dependency), and the following reactions 

take place, while carbon dioxide is transferring from the 

gas to the liquid: 

 

CO2(g) →  CO2(aq) 

CO2(aq) + OH− ⇄  HCO3
− 
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HCO3
− + OH− ⇄  CO3

= 
 

During experiments the pH is monitored and its time 

evolution is used for validation.  

Numerical simulations of fast chemical reactions may be 

computationally demanding due to the small time step 

usually required to solve such problems.  

 

 
Figure 4: Instantaneous contour plots of the chemical 

species involved in the reaction after 10 s. From left to 

right dissolved CO2, OH−, HCO3
−, CO3

=. 

 

 
Figure 5: Instantaneous contour plots of the chemical 

species involved in the reaction after 80 s. From left to 

right dissolved CO2, OH−, HCO3
−, CO3

=. 

 

 
Figure 6: Instantaneous contour plots of the chemical 

species involved in the reaction after 200 s. From left to 

right dissolved CO2, OH−, HCO3
−, CO3

=. 

 

To speed up the simulations it is often convenient to 

decouple the fast reaction kinetics from the fluid 

dynamics, through the use of an operator splitting 

approach. With this method, it is possible to integrate in 

time the different terms of a transport equation, each one 

with the proper numerical scheme; i.e., the reaction source 

term can be solved by means of a high-order ODE 

integrator specific for stiff/non-stiff problems, while the 

other terms can be solved with the standard first-order 

Backward Euler scheme. This method is capable of 

increasing the simulation stability and reducing the 

computational costs, since a larger time step can be used.  

For the present test case, a second order accurate operator 

splitting method, the so-called Strang Operator Spitting, 

has been implemented in openFOAM and used in all the 

simulations. A schematic representation of the algorithm 

is reported in Fig. 2.  

It is important to mention that the expressions used in this 

work to estimate the reaction kinetics and the enhancement 

factor 𝐸 are the same used in the work of (Darmana et al., 

2007) and are here not reported for the sake of brevity. 

Figure 3 reports a typical example of the specie 

concentration time evolution predicted by this kinetic 

model: as carbon dioxide transfer to the liquid it is 

consumed by the first chemical reaction. When the 

concentration of hydroxyl ions becomes very low, the 

concentration of the bicarbonate ion starts increasing, and 

only when the second reaction reaches equilibrium the 

carbon dioxide concentration in solution starts increasing. 

For further details, readers may refer to this work.  

As mentioned, the numerical simulations were carried out 

as follows: preliminary an inert gas is fluxed into the 

column filled with a NaOH solution with an initial pH of 

12.5 until 𝑡 = 30 s, in order to have the same initial 

condition of the reacting experiment, in which the fluid 

flow was developed through the flow of pure nitrogen. 

After this initial time interval, pure CO2 is fed through the 

gas sparger at a superficial velocity of 7.7 mm/s (i.e. 2.2 

ml/s per needle) and the calculation of the reaction kinetics 

is activated: through the mass transfer mechanism, some 

of the CO2 contained in the gas bubbles will move to the 

liquid with the consequent start of the reversible two-step 

reactions reported above.  

The final mesh employed in the simulations was 

constituted by 62×19×128 cells in the three directions. For 

the small section at the bottom where the gas entered the 

inlet boundary condition was used, whereas at the top the 

outflow boundary condition was used. All the other 

surface were described as walls (with no-slip condition).   

RESULTS AND DISCUSSION 

The evolution of the volume-average species 

concentrations during the reaction calculated by our model 

is depicted in Fig. 3, whereas Fig. 4 to 6 show contour plots 

at different time steps of the chemical species involved. As 

it is clear from the picture, all the dissolved CO2 

immediately reacts with hydroxide ions (OH−) in the 

beginning of the process and it is directly converted into 

carbonate (CO3
=). This means that in this phase the 

bicarbonate ion (HCO3
−) concentration is almost equal to 

zero in all the domain, as Fig. 4 shows. Then, 

approximately after 80 s from the start of the reaction, the 

carbonate concentration reaches a maximum and then 

decreases; simultaneously, the bicarbonate concentration 

starts to increase. This situation can be observed also in 

Fig. 5, where the instantaneous contour plots for the 

chemical species involved in the reaction are represented. 

After about 190 s from the beginning of the reaction 
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experiment, the concentration of the bicarbonate ions 

reaches the initial OH− concentration while CO3
= goes to 

zero almost everywhere in the reactor. At this point, the 

chemical reaction rates diminish and the dissolved CO2 

starts to accumulate in the liquid in the entire column, as it 

is possible to see in Fig. 6.  

This behavior can be also seen in Fig. 7, where the 

experimental time evolution of pH in one point of the 

domain is compared with the numerical prediction. After 

80 s we observe a change in the curve slope, which is 

caused by the shift of equilibrium of the second reaction 

(around pH 11) in favor of bicarbonate. Another change in 

pH slope is observed at about 190 s, when the first reaction 

is shifted towards dissolved CO2, at pH approximately of 

7.5. Through the comparison between experiment and 

simulation shown in Fig. 7 it is possible to conclude that 

the model is able to properly predict the time evolution of 

the reactions. From the qualitative point of view, the 

predicted pH curve shows a similar trend, with the change 

in the slope as observed in the experiment. From the 

quantitative point of view instead, it is possible to notice 

that the two curves are overlapped in the first 60 s, as also 

the comparison between simulation and experiment for the 

OH− concentration reported in Fig. 8 shows. However, 

after 60 s the predicted pH evolution is slightly lagging 

behind compared to the experimental one; possible reasons 

of such disagreement can be the description of the second 

reaction, which is modeled with a finite rate through a high 

kinetic constant, instead of being considered 

instantaneous. 

 

 
Figure 7: Comparison between predicted and 

experimental pH evolution in one point of the domain, 

located at 𝑥 = 0.1 m, 𝑦 = 0.15 m and 𝑧 = 0.95 m. 

 

 

Figure 8: Comparison between predicted and 

experimental time evolution of OH− concentration during 

the first 60 s of the reaction in one point of the domain, 

located at 𝑥 = 0.1 m, 𝑦 = 0.15 m and 𝑧 = 0.95 m. 

 

Table 1 shows further comparison with the experimental 

data, in terms of some fluid dynamics quantities such as 

global gas hold-up and plume oscillating period (POP). 

The global gas hold-up is simply calculated by averaging, 

in the region occupied by the liquid, the gas volume 

fraction. The POP is instead calculated by operating the 

Fourier transform of the pressure signal in one point of the 

geometry. As it is possible to notice, there is good 

agreement for such quantities, showing how this 

methodology is capable of properly predicting the fluid 

dynamic behavior of bubble columns in the homogeneous 

regime.  

 

 Exp. Sim. 

Gas hold-up 
No-reaction 2.3% 1.8% 

Reaction 1.3% 0.9% 

POP 
No-reaction 5.8 s 7.5 s 

Reaction 10.2 s 9.1 s 

Table 1: Comparison of experimental data and prediction 

from the simulations for the global gas hold-up and plume 

oscillation period (POP). 

 

Figure 9: Comparison between prediction and 

experimental measurement for the mean Sauter diameter 

𝑑32 (mm) at different heights of the column. 

Figure 9 shows the comparison between simulation and 

experiment for the mean Sauter diameter, measured at 

different heights of the column. The predicted 𝑑32 line is 

composed by the time-average values from different points 

belonging to a line that connects two points: the central 

point at the top and at bottom of the column. As it is clear 

from the picture, the experimental trend is reproduced by 

the simulation, with the mean bubble diameter decreasing 

with the distance from the gas distributor. However, the 

present model seems to over-predict the bubble size: this 

is in contradiction with other comparisons shown before, 

as the one for the OH− concentration in the early stages of 

the reaction, which proves that the mass transfer rate of 

CO2 is properly predicted by the model. It is worth 

mentioning that the bubble diameter varies not only from 

point to point in the column, but also with time during the 

reaction: a precious information about the time interval at 

which the visual bubble diameter measurements have been 

performed is not reported in the experimental work. In 

addition, also the exact position of the camera is not 
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known, as well as the total number of bubbles per 

measurement point: this information is crucial for a 

detailed validation. In the absence of these, we can 

conclude that also this comparison is satisfactory. 

CONCLUSION 

In this work our own CQMOM implementation in the 

openFOAM solver compressibleTwoPhaseEulerFoam 

has been used to simulate a reacting gas liquid system. 

Since the reacting system involves a fast chemical 

reaction, as shown in our previous work, polydispersity 

with respect to both bubble size and composition, must be 

accounted for.  

Simulation predictions, obtained with a fully predicted 

model with no adjustable modelling parameters, are 

compared with experiments, resulting in very good 

agreement. The model seems to be able to correctly predict 

the fluid dynamics of the bubble column, the evolution of 

the bubble size and the mass transfer rate between gas and 

liquid. 

Future steps of this work include the extension of this 

methodology to the simulation of liquid-liquid 

dispersions, the development of reliable methodologies for 

dealing with poly-celerity (i.e. bubble gas velocity 

dependant on bubble size resulting in different moment 

velocities) and the development of more reliable kernels 

for coalescence and breakage. 
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