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ABSTRACT

In the modelling of particle fluidization, it is traditionally
assumed that the particles are spherical in shape, as this
greatly simplifies the representation of gas-solid drag and
particle collisions. However, several industrial processes
involve particles which are highly non-spherical in na-
ture. For example, bio-mass gasification process involves
milled bio-mass, which could be approximated as sphero-
cylindrical in shape. This work involves direct numerical
simulation of a single non-spherical particle. The aim of
this study is to characterize the drag coefficient based on
the Reynolds number with particle orientation. The simu-
lations are performed using the lattice Boltzmann method.
The results from these simulations can be later extended to
multi-particle assemblies, which can be used to derive drag,
lift and torque closures for coarse-grained discrete particle
simulations.

Keywords: LBM, DNS, Non-spherical particle.

NOMENCLATURE

ε Solids volume fraction
µ Dynamic viscosity of the fluid
ν Kinematic viscosity
ωi Proportionality constant
Φ Sphericity
φ Incident angle
ρ Macroscopic density
τ Relaxation time
CD Drag coefficient
cs Lattice speed of sound
Dp Equivalent particle diameter
dp Diameter of sphere
F Dimensionless force
fi Distribution function
Ff→s Force exerted by fluid on particle

f (eq)
i Equilibrium distribution function

h Lattice/grid length
Re Reynolds number
U0 Superficial velocity
U∞ Relative fluid velocity with respect to particle

INTRODUCTION

Practical applications of gas-solid fluidized systems often
involve particles which are non-spherical, of either reg-
ular or irregular shapes. Therefore, exclusive drag, lift
and torque closures must be developed, which are particle
shape specific. Several drag closures have been proposed
in the past based on experiments [Ergun (1952); Wen and
Yu (1966)] and simulations for mono, bi- and poly-disperse
spheres [Beetstra et al. (2007); Van der Hoef et al. (2005);
Tenneti et al. (2011); Yin and Sundaresan (2008, 2009)]
as a function of Reynolds number Re and solids volume
fraction φ . One of the earliest and widely popular drag
closures is from Ergun (1952) for randomly packed beds.
Hill et al. (2001) in their work use lattice Boltzmann sim-
ulations to investigate the drag force for small to moder-
ate Reynolds number flows with ordered and random array
of spheres. The proposed correlation covers the Reynolds
number range of 30-100 and volume fractions in the range
0.1-0.64. Van der Hoef et al. (2005) and Beetstra et al.
(2007) proposed drag laws for mono- and bi-disperse ar-
rays of spheres for low and intermediate Reynolds numbers
respectively. Recently, Yin and Sundaresan (2008) pro-
posed a drag law for flows at low Reynolds number with
bi-disperse spheres with φ1/φ2 from 1: 1 to 1: 7 and par-
ticle volume fraction from 0.1 to 0.4. Tenneti et al. (2011)
propose a drag law for mono-disperse spheres for Reynolds
number ranging 0.01≤ Re≤ 300 and solid volume fraction
0.1≤ φ ≤ 0.5 using particle resolved direct numerical sim-
ulations.

The afore-mentioned drag laws are for assemblies of spher-
ical particles. To the authors’ knowledge, no drag clo-
sures for assemblies of non-spherical particles have been
proposed yet, let alone lift and torque closures. However,
there are several works recently reported for non-spherical
particle fluidization simulations using the discrete particle
method (DPM) [Zhou et al. (2009, 2011); Zhong et al.
(2009); Hilton et al. (2010); Ren et al. (2012, 2013); Os-
chmann et al. (2014)]. They use either empirical drag cor-
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Models Equations
Particle
orienta-

tion

Haider and Levenspiel
(1989) CD = 24

Re (1+A.ReB)+ C
1+D/Re 7

A,B,C, and D are functions of particle sphericity Φ

Tran-Cong et al. (2004) CD = 24
Re
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dA and dn are surface-equivalent sphere and nominal diameter
c is particle circularity

Hölzer and Sommerfeld
(2008) CD = 8

Re
1√
Φ‖

+ 16
Re

1√
Φ
+ 3√

Re
1

Φ3/4 +0.42100.4(− logΦ)0.2 1
Φ⊥

3

Φ, Φ‖, and Φ⊥ are regular, lengthwise and crosswise sphericity

Mandø and Rosendahl
(2010) CD(φ) =CD,φ=00 +(CD,φ=900 −CD,φ=00)sin3(φ) 3

Table 1: Summary of different drag models for non-spherical particles.

relations (parametrized with aspect ratio and other param-
eters) proposed for different non-spherical particles or use
a multi-sphere approach to approximate complex particle
shapes. Therefore, all these simulations do not consider
the true geometry of the particles and therefore the reported
results may not truly represent actual conditions.

Table 1 summarizes the different drag models available for
non-spherical particles. One of the earliest empirical cor-
relations is the one from Haider and Levenspiel (1989),
which however does not include particle orientation in-
formation and therefore effectively is not suitable for par-
ticles of arbitrary shape. The correlation of Tran-Cong
et al. (2004), however includes orientation information,
but the non-spherical particles themselves are created by
gluing multiple spheres together to get the desired parti-
cle shape, which introduces surface roughness. Hölzer and
Sommerfeld (2008) proposed a correlation, which includes
two different projected areas to represent particle orienta-
tion - both lengthwise and crosswise. It is created from
a large set of experimental data reported in literature and
also extensive numerical simulations. The equation has
been tested with different particle shapes such as ellipsoids,
cuboids and cylinders. The mean deviation is found to be
14.4% and max. deviation of 29% reported for cuboids and
cylinders, compared with experimental results reported in
literature. Since this correlation involves extensive data,
we compare our simulation results with the same and Za-
stawny et al. (2012) involving the DNS.

In this work, we perform direct numerical simulations
using lattice Boltzmann method (LBM) to simulate flow
around a single non-spherical particle. We will show that
the LBM predictions are in good agreement with results
obtained from more traditional direct numerical simulation
methods. This opens the way to develop closures for lift,
drag and torque in multi-particle assemblies.

LATTICE BOLTZMANN METHOD

The lattice Boltzmann equation is based on discretizing
the BGK equation. Ignoring volume forces, it is given
by

fi(~x+~ci∆t, t+∆t) = fi(~x, t)+
1
τ
( f (eq)

i (~x, t)− fi(~x, t)), (1)

where f (eq)
i (~x, t) is the equilibrium distribution function

and τ is the relaxation time. The LBM simulations are per-
formed in lattice units and time is incremented using unit
timestep ∆t = 1:

fi(~x+~ci, t +1) = fi(~x, t)+
1
τ
( f (eq)

i (~x, t)− fi(~x, t)). (2)

The above equation is solved in two separate steps at each
timestep:

Collision : f ′i (~x, t +1) = fi(~x, t)+
1
τ
( f (eq)

i (~x, t)− fi(~x, t)),

(3)

Streaming : fi(~x+~ci, t +1) = f ′i (~x, t +1). (4)

The lattice model used in our simulations is D3Q19. The
equilibrium distribution function f (eq)

i (~x, t) derived from
the Maxwell-Boltzmann velocity distribution equation for
isothermal condition is given by

f (eq)
i = ρωi

(
1+

~ci.~u
c2

s
− ~u.~u

2c2
s
+

(~u.~ci)
2

2c4
s

)
. (5)

where ρ is the macroscopic density, ~u is the macroscopic
velocity, cs is the speed of sound in lattice units cs =

1√
3

∆x
∆t

and ωi is the proportionality constant. The macroscopic
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variables such as flow density ρ and velocity ~u are calcu-
lated as,

ρ = ∑
i

fi (6)

~u =
1
ρ

∑
i
~ci fi (7)

The relaxation time τ relates to the lattice viscosity ν by
the following relation,

ν = c2
s

(
τ− 1

2

)
(8)

VALIDATION TESTCASES

Stokes flow for a simple cubic configura-
tion

Prior to the actual non-spherical particles simulation, a val-
idation simulation with spherical particles is being per-
formed and compared with literature [Kriebitzsch (2011)].
In the actual simulation, a single spherical particle in sim-
ple cubic configuration with periodic boundaries is simu-
lated at various volume fractions at Stokes flow (Re ≈ 0).
The fluid is subjected to a gravitational field and the parti-
cle is fixed in space. The resulting parameter of interest is
non-dimensionalized drag force for a single particle F with
respect to the solid volume fraction defined by,

F =
Ff→s

3πµU0dp
(9)

where Ff→s is the force exerted by fluid on the particle, µ

is the dynamic viscosity of the fluid, U0 is the superficial
velocity and dp is the particle diameter.

LBM simulation parameters

Table 2 contains the parameters used in the simulations in
lattice units. These parameters were maintained constant
throughout all simulations. Table 3 contains parameters
which were modified for different simulations and corre-
sponding dimensionless drag force F measured. The di-
mensionless drag force F as function of solids volume frac-
tion is given in Fig. 1. It can be observed that the results
from LBM agree well with literature results obtained from
DNS simulations [Kriebitzsch (2011)].

Parameter Value

Domain size 64×64×64
Gravitational field for fluid forcing 2×10−5

Number of iterations 15000
Relaxation time 1.0
Kinematic viscosity 1/6

Table 2: Fixed parameters for all LBM simulations in lat-
tice units.

Sphere radius Volume fraction F U0

19 0.11 3.975 0.0221
23 0.194 6.704 0.0108
28 0.351 17.530 0.0034
31 0.476 32.908 0.0016
31.5 0.499 37.286 0.0014

Table 3: Sphere radius, volume fraction and the respec-
tive dimensionless drag force F and superficial velocity U0
measured.

Figure 1: Dimensionless drag force F as a function of
solids volume fraction for Stokes flow.

Figure 2: Face centered cubic (FCC) configuration.
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Resolution free force for a FCC configura-
tion

As another validation test case, flow around spheres in a
face-centered-cubic (FCC) configuration (see Fig.2) is sim-
ulated at moderate Reynolds number Re = 100 and solids
volume fraction, ε = 0.4. The simulation domain is cubic
in shape with side lengths ranging from 40 upto 256 and
corresponding sphere radius of 11.517 upto 73.713 in lat-
tice units respectively. The desired Re is achieved through
the combination of fluid gravitational field and viscosity.
The lowest relaxation parameter used is 0.5025 and the cor-
responding kinematic viscosity is 0.0008333. The results
are then compared with Tang et al. (2014). The "resolution-
free" drag force F∞ is computed by fitting the simulation
data obtained at different resolutions (dp/h) to the form,
F = F∞ +C · (dp/h)−2, where C is a constant and is plotted
in Fig. 3. Present LBM simulations provide the equation
to be of form,

F = 36.254+14180 · (dp/h)−2 (10)

compared to the DNS simulations of Tang et al.,

F = 35.906+7821.05 · (dp/h)−2 (11)

Figure 3: The dimensionless force F obtained from simula-
tions at different grid resolutions, as function of (dp/h)−2.
The present work takes the form F = 36.254 + 14180 ·
(dp/h)−2 compared to Tang et al. with F = 35.906 +

7821.05 · (dp/h)−2.

The present "resolution-free" force of F∞ = 36.254 is in
close agreement with the literature and within less than
1% difference. The difference in slopes is due to different
numerical methods - the present with LBM and the litera-
ture with Navier-Stokes based immersed boundary method
DNS. The reason specifically LBM under-performs is due
to first order explicit discretization of the Boltzmann equa-
tion, compared to second order discretization of momen-
tum equations of NS based DNS. More details on the
NS DNS numerical scheme can be found in Tang et al.
(2014).

RESULTS

b

a

Figure 4: The "Ellipsoid 1" from Zastawny et al. (2012)
with a/b= 5/2 (and b= c, implying prolate ellipsoid) with
sphericity Φ = 0.886.

The recent publication from Zastawny et al. (2012) con-
tains detailed flow simulation results of prolate, oblate el-
lipsoid and fibre at different angles of attack. The particle
of our investigation is a prolate ellipsoid referenced "Ellip-
soid 1" in Zastawny et al. (2012) with radii ratio a/b = 5/2
and b = c as in Fig. 4. The sphericity Φ of a non-spherical
particle is given by the ratio of surface area of volume
equivalent sphere as non-spherical particle with respect to
surface area of the non-spherical particle itself. The par-
ticle under investigation has sphericity, Φ = 0.886. The
LBM flow solver used is highly scalable, parallelized with
MPI and has been tested with linear scaling up to 262,144
cores as reported in Harting et al. (2012).

φ 

𝑼𝑼∞ 

𝑭𝑭 𝑭𝑭𝑳𝑳 

𝑭𝑭𝑫𝑫 

Figure 5: Forces acting on an inclined non-spherical parti-
cle.

Parameter Value

Domain size 192×192×336
Equivalent particle diameter Dp 20
Number of time steps/iterations 1.5×105

Table 4: Variables used in LBM simulations in lattice units.

The Reynolds number is given by Re =
U∞Dp

ν
, where Dp

represents the equivalent particle diameter of the non-
spherical particle based on a sphere with equivalent vol-
ume. The range of Reynolds numbers simulated is 0 <
Re ≤ 100. For a sphere, the flow is still laminar for the
range of Re covered here and therefore, we assume the
grid resolution is sufficient for the detailed DNS of the
non-spherical particle. The simulation domain is of size
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10Dp×10Dp×17.5Dp for all Re. In the actual simulations,
the particle is moved with a constant force in the quiescent
fluid. The desired Re is achieved by varying forcing and
lattice kinematic viscosity ν . As the fluid domain is peri-
odic, the particle forcing continuously adds momentum to
the fluid. Therefore, the force is balanced by applying a
counteracting force equally distributed in all the fluid cells.
The maximum number of processors used in the simula-
tions is 3072. The relevant parameters are summarized in
table 4. As mentioned in Fig. 5, a non-spherical particle
inclined to the incident flow experiences both lift and drag
force. The incident angle investigated here is φ = 0◦,90◦,
where the particle experiences only drag because of sym-
metry.

Drag force
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 (Holzer and Sommerfeld)
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(Present work)

Figure 6: Drag coefficient CD of the non-spherical particle
with respect to Reynolds number Re.

It can be observed from Fig. 6 that the simulated results fol-
low the trends of both Zastawny et al. (2012) and Hölzer
and Sommerfeld (2008). For incident angle φ = 0◦ at
Re≥ 40, the measured CD lies within the reported range in
the literature. However at Re < 40, it can be observed that
the measured drag from simulations is comparatively larger
than correlations from literature. Particularly the deviation
is higher in case of φ = 0◦ (upto 20% at low Re), where the
flow incident cross section area is smaller and hence repre-
sented by a lower number of lattice cells. This introduces
stronger approximation of the boundary as a staircase or-
der leading to higher measured drag at low Re. In case of
φ = 90◦, the agreement is better for all Re and close to re-
ported results in literature, as the effective cross section is
represented by a larger number of lattice cells.

CONCLUSION

In this work, we performed direct numerical simulations of
flow around a single non-spherical particle at different ori-
entation using the lattice Boltzmann method. It is observed

that there is good agreement between simulated and liter-
ature results for a single particle. This opens the way to
simulate multi-particle assemblies, generating closures for
lift, drag and torque coefficients.
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