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ABSTRACT 

Cyclones play a dominant role in the industrial separation 

of dilute particles from an incoming gas flow. The 

complex swirling flow in cyclones provides significant 

challenges for turbulence modelling in CFD. This paper 

presents a single phase transient solver developed using 

the Caelus library. The solver predictions using k-ω SST 

with and without curvature corrections, Reynolds Stress 

Model (LRR) and Large Eddy Simulation (Smagorinsky 

and coherent structure) turbulence models are compared 

against laser velocity measurements to investigate the level 

of accuracy afforded by each turbulence model. The k-ω 

SST model without any curvature corrections produced 

the poorest predictions of the flow field, whilst the 

coherent structure LES was found to be in excellent 

agreement with the experimental measurements. 

NOMENCLATURE 

1a   SST k-ω turbulence model constant 

ija    anisotropy tensor 

1 3rc 
  curvature correction constant 

RCC   Hellsten curvature correction constant 

scaleC  curvature correction constant 

sC   SGS model constant 

SMC   Coherent structure model constant 

1 5C 
  SSG/LRR Reynolds stress model constants 

*

1C   SSG/LRR Reynolds stress model constant 

*

3C   SSG/LRR Reynolds stress model constant 

2

LRRC   SSG/LRR Reynolds stress model constant 

d    wall distance 

ijD   diffusion tensor 

D   diffusion model constant 

D   rate of deformation tensor 

E   magnitude of shear rate 

f   body force 

rf   streamline curvature strength 

rotationf   streamline curvature strength 

1F   First SST blending function 

2F   Second SST blending function 

4F   Hellsten curvature correction function 

CSF   Coherent structure function 

k   turbulence kinetic energy 

p   modified pressure 

ijP   production tensor 

kP   shear production of turbulence 

Q   second invariant 

*r   curvature correction function 

r   curvature correction function 

iR   Richardson number 

ijR   Reynolds stresses 

ijS   strain rate tensor 

t   time 

u    velocity 

    SST k-ω turbulence model constant 

*    SST k-ω turbulence model constant 

    SST k-ω turbulence model constant 

δij        Kronecker delta  

   top-hat filter width 

ij   dissipation tensor 

   isotropic turbulence dissipation rate 

   kinematic viscosity 

t            kinematic turbulent viscosity 

            pressure loss coefficient 

    pressure-strain correlation 

d   SSG/LRR-ω turbulence model constant 

k   k-ε turbulence model constant 

   SST k-ω turbulence model constant 

ij          stress tensor  

    blended model constant 

1    inner model constant 

2    outer model constant 

   turbulence frequency 

ij   vorticity tensor 

 

Subscripts  

 

i, j, k components 

mag  magnitude 

SGS        Subgrid scale 

 

Superscript 

 

 (‾)           Favre-averaged 

rot  rotation 
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INTRODUCTION 

Cyclones play a dominant role in the industrial separation 

of dilute particles from an incoming gas flow. The 

incoming flow enters tangentially and accelerates on its 

way down into a conical section. This acceleration results 

in a strong swirling flow. The particle laden flow escapes 

through the bottom outlet while the rest of the flow 

reverses and swirls about the centreline towards the upper 

exit through the vortex finder. Due to the inherent 

presence of high swirl and very large curvature of 

streamlines within the flow, modelling such flow presents 

a challenge to this date. Boysan et al. (1984) conducted 

one of the first CFD simulations and found the standard k-

ε turbulence model is inadequate to simulate such flows. 

The high swirl leads to excessive turbulent viscosities and 

incorrect tangential velocity patterns in CFD simulations. 

Witt et al. (1999) showed the accuracy of the numerical 

solution can be improved by using a Reynolds Stress 

Model for the turbulence. Stephens and 

Mohanarangam (2010) showed for a hydrocyclone it was 

possible to get accurate mean flow behaviour using a two-

equation SST turbulence model corrected for streamline 

curvature. 

The main objective of this paper is to investigate the effect 

turbulence model selection has on the predicted mean flow 

behaviour within a gas cyclone. In order to verify the 

validity of the numerical simulations, the results were 

compared against the experimental data of Witt et 

al. (1999).  

MODEL DESCRIPTION 

The model is based on the incompressible Reynolds 

Averaged Navier-Stokes (RANS) equations: 

 

Continuity Equation: 

 0i iu   (1)                                        

Momentum Equation: 

 't i j j i i ii i j ij iu u u p u R f          (2) 

where iu is the fluid velocity, p’ the modified pressure,   

the kinematic viscosity,  ij i jR u u the Reynolds stresses 

and if  is the body force. 

Two-Equation Turbulence Models 

Two-equation turbulence models are widely used in the 

CFD modelling of many industrial applications: they offer 

a good compromise between numerical effort and 

computational accuracy. They derive their name from the 

fact that they solve both the velocity and length scale 

using two transport equations. 

The k-ω based two-equation model uses the gradient 

hypothesis to relate the Reynolds stresses to the mean 

velocity gradients and the turbulent viscosity. 

  ij t j i i jR u u      (3) 

The turbulent viscosity is defined as the product of a 

turbulent velocity and the turbulent length scale. In two-

equation models, the turbulence velocity scale is 

computed from the turbulence kinetic energy  k  from 

the solution of a transport equation. The turbulent length 

scale is estimated from the turbulence kinetic energy and 

its dissipation rate    or frequency   . The dissipation 

rate of the turbulence kinetic energy or turbulence 

frequency are provided from the solution of its own 

transport equation. 

k-ω SST Turbulence Model 

The transport equations for k and ω are given by equations 

(4) and (5), respectively (Menter et al., 2003) 
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 (5) 

The k-ω model does not account for the transport of the 

turbulent shear stress, which results in an over-prediction 

of eddy-viscosity, and ultimately leads to a failure in 

predicting the onset and the amount of flow separation 

from smooth surfaces. The proper transport behaviour can 

be obtained by using a limiter in the formulation of the 

eddy-viscosity and is given by 

 
 

1

1 2max ,
t

mag

a k

a F





S
, (6) 

where 

 2mag ij ijS SS . (7) 

Each of the constants are a blend of an inner and outer 

constant, blended via 

  1 1 1 21F F      (8) 

where 1  represents the inner constant and 2  the outer 

constant. The blending function 1F  is given by 

  4

1 1tanh argF  , (9) 

with additional functions given by 
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, (10) 
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The second blending function, 2F  is given by 

  2

2 2tanh argF  , (12) 

with  

 
2 * 2

2 500
arg max ,

k

d d



  

 
   

 
. (13) 

The model constants are * 0.09  and 1 0.31a  with the 

remaining values shown in Table 1. 

Table 1: SST model constants. 

 
  k      

1   0.5556 0.85 0.5 0.075 

2  0.44 1.0 0.856 0.0828 

Spalart and Shur Curvature Correction 

One of the weaknesses of the eddy-viscosity models is that 

they are insensitive to streamline curvature, which plays a 

significant role in cyclone modelling. A modification of 

the turbulence production term is available to sensitize the 

standard eddy-viscosity models to these effects. A 

multiplier is introduced into the production term 

 k k rP P f as given by Smirnov and Menter (2008) 
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   max min ,1.25 ,0.0r scale rotationf C f  (14) 

The empirical functions suggested by Spalart and Shur 

(1997) to account for these effects are given by  

    
*

1

1 3 2 1*

2
1 1 tan

1
rotation r r r r

r
f c c c r c

r

     
, (15) 

 
* mag

mag

r 
S

Ω
, (16) 

 3

2 ik jk ij rot

imn jn jmn in m

mag

S DS
r S S

Dt
 

  
    

 Ω D
, (17) 

  
1

2
ij j i i jS u u    , (18) 

  
1

2
2

rot

ij j i i j mji mu u        
  , (19) 

 2 2 ij ijS SS , (20) 

 2 2 ij ij  Ω , (21) 

 2mag ij ij  Ω , (22) 

  2 * 2max , D S , (23) 

with constants 1 2 31.0; 2.0; 1.0.r r rc c c     

Hellsten curvature correction 

Hellsten (1998) derived an alternative simplified 

rotation/curvature correction to the SST model. The only 

modification requires the multiplication of the destruction 

term in the omega equation  2  by the function 4F  

 4

1

1 RC i

F
C R




 (24) 

where the Richardson number is defined as 

 1
mag mag

i

mag mag

R
 

  
 
 

Ω Ω

S S
 (25) 

with magS and magΩ given by equations (7) and (22). The 

value of the constant RCC has been set to 1.4 for this work 

following Mani et al. (2004). The formulation of iR  and 

the constant RCC are chosen to ensure that 4F  always 

remains bounded. This allows the curvature correction to 

be treated implicitly in the omega equation, improving 

solver robustness. 

Reynolds Stress Model 

The Reynolds Stress Model (RSM) is applicable for the 

flows where the eddy-viscosity assumption is no longer 

valid and the results of eddy viscosity models might be 

inaccurate. They include the solution of transport 

equations for the individual components of the Reynolds 

stress tensor and the dissipation rate or turbulence 

frequency. The increased number of equations usually 

leads to reduced numerical robustness, increased 

computational time and restrictions for usability in 

complex flows. From the exact momentum equation a 

transport equation for the Reynolds stresses can be derived 

 t ij k k ij ij ij ij ijR u R P D         (26) 

where Pij is the production term, ij  is the pressure-strain 

correlation, Dij is the diffusion term and ij the dissipation 

term. The exact production term is given by  

 ij ik k j jk k iP R u R u      (27) 

The dissipation is modelled as 

 
2

3
ij ij   (28) 

with the turbulent dissipation rate coming from the 

turbulence kinetic energy and the turbulence 

frequency, *k   . The “simple diffusion” model of 

Eisfeld (2004) is chosen to model the diffusion term 

 
*

t
ij k k ij

D
D R






  
     

  
 (29) 

with 

  *

1 10.5 0.146 1  D F F    (30) 

The most important term in the RSM is the pressure-strain 

correlation  ij as it acts to drive turbulence towards an 

isotropic state by redistributing the Reynolds stresses. The 

model used in this work uses the Launder Reece Rodi 

(LRR) pressure-strain correlation from Launder et al. 

(1975) given by  

  

*

1 3

5

4

2

3

ij ij ij

ik jk jk ik

ik jk jk ik kl kl ij

C a C kS

C k a a

C k a S a S a S





   

   

 
   

 

 (31) 

where ija  is the anisotropy tensor defined as 

 
2

3

ij

ij ij

R
a

k
   (32) 

and 
*

ijS  is defined as 

 
* 1

3
ij ij kk ijS S S    (33) 

As with two-equation eddy viscosity models, an additional 

transport equation is required for closing the equation 

system for providing a measure of the isotropic dissipation 

rate  . Most Reynolds stress models employ a transport 

equation for  . The model used in this work follows 

Menter’s (Menter, 1994) approach combining the 

 equation at the outer edge of the boundary layer with 

the Wilcox (Wilcox, 1988)   equation near the wall by 

blending coefficients. The so-called BSL-ω equation takes 

the form 

    2

2
t j j j t j kku R

k
  


                 (34) 

The constants are defined in Table 2 with 
2 0.52LRRC  . 

Table 2: LRR model constants. 

1C   
3C   

4C   
5C   

1.8 0.8 
29 6

11

LRRC 
  27 10

11

LRRC 
 

LES 

Large Eddy Simulation (LES) computes the large-scale 

motions of the flow directly. The small-scale, dissipative 

motions of turbulence tend to more amenable to modelling 

because of their more uniform character, whereas the 

large-scale motions contain the majority of the energy and 

anisotropy. As a result, LES is expected to be more 

accurate, particularly in complex flows where the 

assumptions inherent to RANS models rarely exist. The 

drawback is that LES simulations are always three-

dimensional and unsteady. 
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Smagorinsky 

The Smagorinsky model (Smagorinsky, 1963) determines 

the unknown stresses 2ij SGS ijS    by an algebraic model 

for the subgrid scale (SGS) viscosity (
SGS ). The SGS 

viscosity can be calculated as 

 2 2

SGS s magC   S  (35) 

where   represents the top-hat filter with a characteristic 

filter width estimated as the cubic root of the cell volume. 

In this work the value used for 
sC was 0.1. 

Coherent structure 

The coherent structure LES model was introduced by 

Kobayashi (2005). The main idea of the model consists of 

the local determination of the model constant 
sC  used in 

the SGS model. The model constant is defined through a 

coherent structure function 
CSF  through the following 

expression 

  
3

2 2 1s CSM CS CSC C F F   (36) 

The coherent structure function is given by the second 

invariant Q  normalised by the magnitude of shear 

 CS

Q
F

E
  (37) 

 
1

2
i j j iQ u u     (38) 

  
21

2
i jE u   (39) 

with the model constant 1
22CSMC   . 

The coherent structure model is particularly well suited for 

rotating flows and it is comparable with the dynamic SGS 

model (Germano et al., 1991). However, unlike the 

dynamic model, the coherent structure uses only the local 

information and it is computationally cheaper. In addition, 

the model is suitable for the simulations on complex 

geometries when there are no homogeneous directions in 

which it is possible to perform averaging. 

FLOW CONFIGURATION 

The cyclone (Figure 1) features an outer diameter 0.39 m 

and a half-angle of 20° in the conical region and a pipe 

outlet at the bottom end for collecting particles. This 

outflow is closed for all simulations to match the 

experimental operating conditions. Hence all the flow 

exited through the vortex finder at the top of the cyclone. 

Flow enters the cyclone through a tangential inlet attached 

to the cylindrical section. 

The grid consisted of 606,264 hexahedral elements 

arranged to achieve good cell quality. At the inlet a 

uniform velocity of 21.5 m/s with turbulence quantities 

calculated from mixing length theory are applied. A 

Neumann condition was applied to all flow quantities at 

the vortex finder outlet. Zero velocity is assumed on all 

walls were an adaptive wall function is used. 

NUMERICAL METHOD 

The conservation equations of mass, momentum and 

turbulence given above were solved using a finite volume 

method in order to determine the single-phase liquid 

velocity for comparison against the experimental data. A 

transient solver implemented in v5.04 of the Caelus library 

(Applied CCM, 2015) was used. Pressure-velocity 

coupling was achieved via the SLIM algorithm (Sideroff 

et al., 2015). For the discretization of time-dependent 

terms, the 2nd order backward scheme was used. Pressure 

and velocity gradients were calculated using the Green-

Gauss method. A 2nd order linear upwind discretization 

with multidimensional interpolation linear scheme 

utilising Barth-Jespersen limiter (Berger at al., 2005) was 

used for the advection terms. A steady-state solution using 

the k-ω SST turbulence model was used to initialise each 

of the transient simulations. A time step that gave a 

maximum Courant number of five (giving a mean ~ 0.5) 

was used for simulations using all turbulence models 

except RSM. For stability, the RSM simulation required 

the maximum Courant number to be limited to 0.5. The 

procedure used for each simulation was to run for an 

initial time of ~50 residence times, followed by a further 

1000 residence times where the simulations data were time 

averaged. The initial time period was determined to be 

sufficient for the flow to develop. Time averaging over the 

remaining time appeared to be sufficient a length for 

statistical sampling of mean quantities. 

All simulations were conducted on a HPC cluster utilising 

60 Intel Xeon E5-2620v3 cores per simulation. Infiniband 

was used for communication between the cluster compute 

nodes. Table 3 shows a comparison of the CPU time 

(hour) for each model to simulate 1 second of flow time. 

Table 3: Comparison of CPU time to simulate 1s of flow 

for each turbulence model. 

Model CPU time (hour) per 1s flow time 
SST 1.01 

SST-CC 1.14 

SST-HELL 1.05 

SMAG 1.18 

CS 1.48 

RSM-LRR 10.90 

 

Figure 1: Cyclone geometry and surface mesh. 
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RESULTS 

Data from Laser Doppler Velocimetry (LDV) 

measurements of gas velocities along horizontal traverses 

at various heights are presented in Witt et al. (1999). 

These data along with simulation results for the tangential 

and vertical velocities at six vertical heights from this 

work are presented in Figures 2 and 3. In these figures the 

results have been non-dimensionalised by the cyclone 

radius and inlet velocity. The measurement positions were 

located at a circumferential location 90° in the direction of 

flow from the point where the inlet duct is attached. The 

vertical locations A, B and C are positioned above the join 

between the cylindrical and conical sections at non-

dimensional distances of 1, 0.75 and 0.125 respectively. 

Locations D, E and F are positioned below the join at non-

dimensional distances of 0.25, 0.75 and 1.25 respectively. 

The vortex finder wall is located at a non-dimensional 

radius of 0.48. Results for each turbulence model are 

shown on these figures with the following labels, SST – 

k-ω SST model, SST-CC – Spalart and Shur curvature 

correction applied to the k-ω SST model, SST-HELL – 

Hellsten curvature correction applied to the k-ω SST, 

SMAG – LES simulation using the Smagorinsky SGS 

model, CS – LES simulation using the coherent structure 

SGS model and RSM-LRR – RSM simulation using the 

LRR pressure-strain correlation. 

The tangential velocities predicted by SST show 

significant deviation from the experimental measurements 

at all vertical locations, especially in the region near the 

outer wall of the cyclone. This result is not unexpected as 

Stephens and Mohanarangam (2010) showed that without 

modification the model was inaccurate for highly swirling 

flows. SST-HELL results also show significant deviation 

from the experimental profiles at all locations, following a 

similar profile to the SST results. SST-CC results show 

quite different profiles compared with the SST and SST-

HELL results, with better agreement with the experimental 

profiles, although with a lower velocity magnitude. 

Tangential velocity results from the two LES simulations 

(SMAG and CS) show excellent agreement with the 

experimental profiles at all six measurement locations. 

Only minor differences can be observed between the 

SMAG and CS results with these occurring near the 

centreline of the cyclone. The RSM simulation results 

mirror those of SST-CC, having the correct profile shape 

but lower magnitude than the experimental measurements. 

Vertical velocity results show similar trends between 

turbulence models as observed for the tangential 

velocities, i.e. SST and SST-HELL do not recover the 

experimental profiles. Again the SST-CC results show 

significant difference to the SST and SST-HELL, but 

match the experimental data reasonably well. The region 

with the largest discrepancy is the centreline where the 

experiments show a much stronger downward velocity 

than the model predicts. Like the tangential case, the 

SMAG and CS profiles are very similar, but only at the 

higher measurement locations (A, B and C). The profiles 

begin to deviate as you move lower down in the cyclone. 

A difference between the model predictions can be seen 

near the centreline for all measurement locations, with the 

CS model having better agreement with the experimental 

data at all locations. The RSM results again match the 

experimental profiles and magnitudes reasonably well. 

Overall the SST and SST-HELL predictions are poor. The 

SST-CC provides a significant improvement to the 

standard SST, however, there are still deficiencies in the 

model’s predictions, e.g. lower tangential magnitude and 

failure to capture the downward velocity at the cyclone 

centreline. Whilst the RSM model offers no better 

tangential velocity predictions compared with SST-CC, it 

does better at predicting the downward flow at the cyclone 

centreline. This marginal improvement over the SST-CC 

comes at a much higher computational cost (see Table 3) 

due to the additional five equations and the reduced time 

step size required for stability. The SMAG tangential 

results are in excellent agreement with the measurements, 

however, in the lower region (locations D, E, and F) it 

fails to capture downward velocity. The CS model gives 

the overall best agreement with the measurements for both 

the tangential and vertical velocities at all six 

measurement locations. 

To allow comparison of different cyclone designs, the 

pressure drop from cyclone inlet to outlet can be non-

dimensionalised producing a pressure loss coefficient. The 

pressure loss coefficient is defined as 

 
21

2

in out

in

p p

u


 

  (40) 

Comparison of the predicted pressure loss coefficient with 

the measurement value can be seen in Table 4. It can be 

seen that CS gives the closest prediction to the 

measurement, followed by SMAG, RSM-LRR, SST-CC, 

SST-HELL and SST. 

 

Table 4: Pressure loss coefficient from experiment and 

simulations for each turbulence model. 
 

EXP SST SST-CC SST-HELL SMAG CS RSM-LRR 

  6.80 10.2 6.02 8.77 6.19 6.56 6.09 

CONCLUSION 

Analysis of different turbulence models was carried out for 

a turbulent flow inside cyclone. Six different turbulence 

models were tested of which three belong to the two-

equation model class, two to the LES class and one to the 

Reynolds Stress class. Simulations were performed with a 

transient solver using version 5.04 of the Caelus library. 

Experimental results of Witt et al. (1999) were used to 

compare our numerical findings. For the different 

turbulence models tested, the coherent structure (CS) LES 

gave the best overall prediction. The k-ω SST model 

without any curvature correction produced the poorest 

predictions of the flow field The LRR Reynolds Stress 

model offered a marginal improvement over the SST-CC 

with the penalty of much higher computational cost due to 

the additional five equations and reduced time step size for 

stability. 
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Figure 2: Time-averaged tangential velocity profiles at six 

measurement locations. 

 

 

Figure 3: Time-averaged vertical velocity profiles at six 
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