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ABSTRACT
It is well known that the accuracy of several radial basis function
(RBF) methods, including those based on multiquadric (MQ) RBFs,
depends on a free shape parameter. For smooth solutions, it is the-
oretically claimed that without round-off error the highest accuracy
for a given number of nodal points is regularly achieved with ex-
treme values of the shape parameter, where the RBFs become in-
creasingly flat. However, the limit values of the shape parame-
ter (increasingly flat) often leads to very ill-conditioned problems.
To alleviate this difficulty, we present a RBF method for solving
second-order PDEs, in which (i) the RBF approximations are con-
structed using the integral approach where the starting points are
fourth-order derivatives; and (ii) a simple but effective precondi-
tioning technique is employed in the process of converting the RBF
coefficient space into the physical space. In this paper, we first nu-
merically study the effect of the shape parameter on the solution ac-
curacy of the present RBF method through Poisson equation; and,
then apply the method employed with extreme values of the shape
parameter to simulate several fluid flow problems where highly ac-
curate and stable solutions are produced.

INTRODUCTION

The drawback of element-based computational methods such
as finite element method (FEM) or finite volume method
(FVM) for the simulation of problems with extremely large
deformations or complex geometry is that frequent mesh-
updating is required. With these methods, the construction
of a mesh in three or more dimensions is also a nontrivial
problem. Such difficulties have motivated many researchers
to develop so-called element-free methods such as smooth
particle hydrodynamic (SPH) (Lucy, 1977), diffusive ele-
ment method (DEM) (Nayroles et al., 1992), and element-
free Galerkin method (EFG) (Belytschko et al., 1994). For
an overview on these element-free methods, readers may find
more details in (Chen et al., 2006) and references therein.
In the context of radial basis function (RBF), (Hardy, 1971)
who worked on scattered data fitting and general multi-
dimensional data in interpolation problems, devised multi-
quadric (MQ)-RBF which is a simplest class of element-
free methods (Sarler, 2005). Since then, the RBF methods
have been developed for solving fluid flow, convective heat
transfer (Divo and Kassab, 2007), solid-liquid phase change
(Voller et al., 2006), and fluid-structure interpolation (Ren-
dall and Allen, 2008) problems in two- and three-dimensions.
Although MQ-RBF methods possess superior convergence
rates, their accuracy is dependent on a free parameter (the
shape parameter) and its optimal value depends on the func-
tion to be interpolated, the nodal points, the RBF, and the
machine precision (Buhmann, 1990; Rippa, 1999). An im-
portant issue involving the use of RBFs is how to choose
an optimal value or even a consistently "good" value of the
shape parameter, which has received a great deal of atten-
tion of many researchers for the past few decades. In par-

ticular, (Rippa, 1999) presented an algorithm for selecting
a good value of the shape parameter by minimising a cost
function that imitates the error between the radial interpolant
and the unknown function. (Driscoll and Fornberg, 2002)
theoretically observed the interpolation with extreme values
of the shape parameter (increasingly flat) where the differen-
tial RBF (here referred to as DRBF) interpolants are usually
well-behaved. In (Larsson and Fornberg, 2005), the authors
gave an explicit form of the multivariate RBF interpolants
in the limit region of the shape parameter, where the RBFs
become increasingly flat. Recently, (Fornberg and Wright,
2004) proposed the Contour-Pade algorithm which can sta-
bly compute the whole region of the shape parameter on a
complex plane. Many different approaches to enhance the
stability of DRBF methods have been proposed, for exam-
ples (Fasshauer and Mccourt, 2012; Stefano and Gabriele,
2013) and the references therein. For integrated RBF (here
referred to as IRBF) approaches, which was first proposed
in (Mai-Duy and Tran-Cong, 2001), the studies of (Mai-Duy
and Tran-Cong, 2005; Sarra, 2006) numerically showed that
the even IRBFs are generally most accurate and most poorly
conditioned for large values of the shape parameter, where
the RBFs become increasingly flat. However, the authors did
not provide a solution to overcome the ill-condition prob-
lems when employing the IRBFs in the nearly flat range. It
is noted that the integral approach is more accurate than the
differential approach, which was studied in (Mai-Duy and
Tran-Cong, 2001; Sarra, 2006; Tien et al., 2015a).
This paper presents (i) an easy-to-implement but effective
preconditioning technique for the compact IRBF (CIRBF)
schemes to alleviate ill-condition problems arising from
large values of the shape parameter, where the RBFs be-
come increasingly flat; and, (ii) a combined compact IRBF
(CCIRBF) approximation scheme to enhance the solution
accuracy in the large value range of the shape parameter
(Tien et al., 2015b). Unlike CIRBF schemes previously
proposed in (Thai-Quang et al., 2012; Mai-Duy and Tran-
Cong, 2013; Tien et al., 2015c), the present preconditioned
CCIRBF scheme is able to stably compute second-order PDE
problems with much larger values of the shape parameter.
We demonstrate the stability and accuracy of the scheme
through various numerical experiments.

COMBINED COMPACT INTEGRATED RBF (CCIRBF)
SCHEME

The CCIRBF approximation scheme developed by (Tien
et al., 2015b) is employed in this work for highly accurate
solutions. Readers may find more details about the CCIRBF
scheme in the literature, which is summarised here for con-
venience. Hereafter, for brevity, η denotes either x or y in a
generic local stencil {η1,η2,η3}, where η1 < η2 < η3 and
η2 ≡ η(i, j).
In IRBF approaches, the MQ function is usually chosen as
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the basis function

Gi(x) =
√
(x− ci)2 +a2

i , (1)

where ci and ai are the centre and the width of the i-th MQ,
respectively. On a stencil, the set of nodal points is taken
to be the same as the set of MQ centres. The MQ width is
defined as ai = βhi, where β , which is the shape parameter, is
a positive scalar and hi is the distance between the i-th node
and its closest neighbour.
For second-order PDEs, the integral process of the present
CCIRBF starts with the decomposition of fourth-order
derivatives of a variable, f , into RBFs

d4 f (η)

dη4 =
m

∑
i=1

wiGi(η). (2)

Approximate representations for the second- and first-order
derivatives and the functions itself are then obtained through
the integration processes

d2 f (η)

dη2 =
m

∑
i=1

wiI2i(η)+ c1η + c2, (3)

d f (η)

dη
=

m

∑
i=1

wiI3i(η)+
1
2

c1η
2 + c2η + c3, (4)

f (η) =
m

∑
i=1

wiI4i(η)+
1
6

c1η
3 +

1
2

c2η
2 + c3η + c4, (5)

where I1i(η) =
∫

Gi(η)dη ; I2i(η) =
∫

I1i(η)dη ; I3i(η) =∫
I2i(η)dη ; I4i(η) =

∫
I3i(η)dη ; and c1, c2, c3, and c4 are

the constants of integration.

First-order derivative approximations

For the combined compact approximation of the first-order
derivatives at interior nodes, extra information is chosen as
not only

{
d f1
dη

; d f3
dη

}
but also

{
d2 f1
dη2 ; d2 f3

dη2

}
. We construct the

conversion system over a 3-point stencil as follows.

f1
f2
f3

d f1
dη
d f3
dη

d2 f1
dη2

d2 f3
dη2


=

 I4
I3
I2


︸ ︷︷ ︸

C



w1
w2
w3
c1
c2
c3
c4


, (6)

where d fi
dη

= d f
dη

(ηi) with i ∈ {1,2,3}; C is the conversion
matrix; and I2, I3, and I4 are integration matrices.
At η = η2, the approximation formulation of the stencil is
expressed in the matrix-vector form as[

−µ4 1 −µ5
]

f′+
[
−µ6 0 −µ7

]
f′′

=
[

µ1 µ2 µ3
]

f, (7)

where {µi}7
i=1 is the set of IRBFs in the physical space; f′ =

[ f ′1, f ′2, f ′3]
T ; f′′ = [ f ′′1 , f ′′2 , f ′′3 ]

T ; and f = [ f1, f2, f3]
T .

At the boundary nodes, the first-order derivatives are approx-
imated in special compact stencils. Consider the boundary
node, e.g. η1. Its associated stencil is {η1,η2,η3,η4} and
extra information is chosen as d f2

dη
and d2 f2

dη2 . The approxi-

mation formulation of the stencil is expressed in the matrix-
vector form as[

1 −µsp5 0 0
]

f′+
[

0 −µsp6 0 0
]

f′′

=
[

µsp1 µsp2 µsp3 µsp4
]

f, (8)

where
{

µspi
}6

i=1 is the set of IRBFs in the physical
space; f′ = [ f ′1, f ′2, f ′3, f ′4]

T ; f′′ = [ f ′′1 , f ′′2 , f ′′3 , f ′′4 ]
T ; and f =

[ f1, f2, f3, f4]
T .

Second-order derivative approximations

For the combined compact approximation of the second-
order derivatives at interior nodes, we employ the same ex-
tra information used in the approximation of the first-order
derivative, involving

{
d f1
dη

; d f3
dη

}
and

{
d2 f1
dη2 ; d2 f3

dη2

}
. At η =

η2, the approximation formulation of the stencil is expressed
in the matrix-vector form as[

−ν4 0 −ν5
]

f′+
[
−ν6 1 −ν7

]
f′′

=
[

ν1 ν2 ν3
]

f, (9)

where {νi}7
i=1 is the set of IRBFs in the physical space; f′ =

[ f ′1, f ′2, f ′3]
T ; f′′ = [ f ′′1 , f ′′2 , f ′′3 ]

T ; and f = [ f1, f2, f3]
T .

At the boundary nodes, i.e. η = η1, we employ the same
special stencil, i.e. {η1,η2,η3,η4}, and extra information,
i.e. d f2

dη
and d2 f2

dη2 , used in the approximation of the first-order
derivatives. The approximation formulation of the stencil is
expressed in the matrix-vector form as[

0 −νsp5 0 0
]

f′+
[

1 −νsp6 0 0
]

f′′

=
[

νsp1 νsp2 νsp3 νsp4
]

f, (10)

where
{

νspi
}6

i=1 is the set of IRBFs in the physical
space; f′ = [ f ′1, f ′2, f ′3, f ′4]

T ; f′′ = [ f ′′1 , f ′′2 , f ′′3 , f ′′4 ]
T ; and f =

[ f1, f2, f3, f4]
T .

Matrix assembly for first- and second-order derivative ap-
proximations

The IRBF system on a grid line for the first- and second-order
derivatives is obtained as follows.[

A1 B1
A2 B2

]
︸ ︷︷ ︸
Coefficient matrix

[
f′
f′′
]
=

[
R1
R2

]
f , (11)

where A1, A2, B1, B2, R1, and R2 are nη × nη matri-

ces; f′ =
[

f ′1, f ′2, ..., f ′nη

]T
; f′′ =

[
f ′′1 , f ′′2 , ..., f ′′nη

]T
; and f =[

f1, f2, ..., fnη

]T . The coefficient matrix is sparse with diag-
onal sub-matrices. Solving (11) yields

f′ = Dη f, (12)

f′′ = Dηη f, (13)

where Dη and Dηη are nη × nη matrices. The approxima-
tions of the first- and second-order derivatives, (12) and (13),
will be used in the following sections.

PRECONDITIONING TECHNIQUE FOR CCIRBF

A new equivalent conversion system is constructed by mul-
tiplying a preconditioning matrix C*−1 to both sides of the
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original conversion system (6) as follows.

C*−1



f1
f2
f3

d f1
dη
d f3
dη

d2 f1
dη2

d2 f3
dη2


= C*−1C︸ ︷︷ ︸

Cp



w1
w2
w3
c1
c2
c3
c4


, (14)

where C is the original conversion matrix in (6); C*−1 is the
preconditioning matrix which has exactly the same form with
the original conversion matrix C but uses a different value of
β . Usually, β used in C*−1 is chosen to be small, for exam-
ple β = 10 so that its corresponding condition number is in
a well-behaved range; and, Cp is a new conversion matrix.
By this way, the new conversion matrix Cp is able to bypass
the ill-condition problems when β in the original conversion
matrix C becomes large.
It is noted that the proposed preconditioning technique is
only needed when one implements the CCIRBF in the large
value range of β where the ill-condition problems occur. In
the small value range of β ,

NUMERICAL EXAMPLES

We evaluate the performance of the present scheme through
the following measures

i. the root mean square error (RMS) is defined as

RMS =

√
∑

N
i=1
(

fi− f i
)2

N
, (15)

where fi and f i are the computed and exact values of
the solution f at the i-th node, respectively; and, N is
the number of nodes over the whole domain.

ii. the global convergence rate with respect to the grid re-
finement is defined through

Error(h)≈ γhα = O(hα). (16)

where h is the grid size; and γ and α are exponential
model’s parameters.

For comparison purposes, we also implement the DRBF
scheme of (Kansa, 1990) and CIRBF scheme of (Thai-Quang
et al., 2012) for numerical calculations. It is noted that the
proposed preconditioning technique described in the previ-
ous Section is applied for the CIRBF-Precond version.
In Taylor-Green vortex flows, we choose a large shape pa-
rameter, β = 500, for the original conversion matrix C and a
small shape parameter, β = 10, for the preconditioning ma-
trix C*−1. In irregular bottom lid driven cavity flows, we
choose a large shape parameter, β = 1000, for the original
conversion matrix C and a small shape parameter, β = 10,
for the preconditioning matrix C*−1. In these two fluid flow
problems, we employ the fully coupled procedure which was
detailed in (Tien et al., 2015a) to calculate Navier-Stokes
(NS) equations. For convenience, the fully coupled approach
for NS equations is summarised in the matrix-vector form as
follows.  K 0 Gx

0 K Gy
Dx Dy 0

 un

vn

pn− 1
2

=

 rn
x

rn
y

0

 , (17)

where

K =
1
∆t

{
I− ∆t

2Re
L
}
, (18)

rn
x =

1
∆t

{
I+

∆t
2Re

L
}

un−1−
{

3
2

N(un−1)− 1
2

N(un−2)

}
,

(19)

rn
y =

1
∆t

{
I+

∆t
2Re

L
}

vn−1−
{

3
2

N(vn−1)− 1
2

N(vn−2)

}
,

(20)
n denotes the current time level; un, vn are velocity vectors
in the x- and y-directions; pn− 1

2 is pressure vector; I is the
identity matrix; and N and L are the matrix operators for the
approximation of the convective and diffusive terms, respec-
tively.
In this work, calculations are done with a Dell computer, Pre-
cision T7500. Its specifications are Intel(R) Xeon(R) CPU
E5507/ 2.26 GHz, memory(RAM) of 128GB and 64-bit op-
erating system. The Matlab(R) version 2014 is utilised.

Poisson equation in two dimensions

In order to study the 2D spatial accuracy of the present
CCIRBF approximation schemes over a wide value range
of the shape parameter, we consider the following Poisson
equation

d2 f
dx2

1
+

d2 f
dx2

2
=−2π

2 cos(πx1)cos(πx2), (21)

on a square domain [0,1]2, subjected to the Dirichlet bound-
ary condition derived from the following exact solution

f = cos(πx1)cos(πx2). (22)

The calculations are carried out on a uniform grid of 101×
101. A set of β of [1,101,201, ...,2001] is chosen. The top
of Figure 1 shows the effect of β on the condition number
of the conversion matrix, where we can see that the present
CCIRBF-Precond has much lower condition number than
the "pure" CCIRBF. The bottom of Figure 1 illustrates that
the present CCIRBF-Precond scheme is much more accurate
than the DRBF, CIRBF and CIRBF-Precond schemes. In ad-
dition, these Figures also indicate that the preconditioning
technique has the ability to improve the accuracy and stabil-
ity of the CCIRBF and CIRBF in the large value range of β .

Taylor-Green vortex

To study the performance of the present CCIRBF approxi-
mation in simulating viscous flows in a rectangular domain,
we consider a transient viscous flow problem, namely Taylor-
Green vortex (TGV) which is governed by NS equations and
has the analytical solutions as follows.

u(x1,x2, t) =−cos(kx1)sin(kx2)exp(−2k2t/Re), (23)

v(x1,x2, t) = sin(kx1)cos(kx2)exp(−2k2t/Re), (24)

p(x1,x2, t)=−1/4{cos(2kx1)+ cos(2kx2)}exp(−4k2t/Re),
(25)

where 0≤ x1,x2 ≤ 2π . Calculations are carried out for k = 2
on a set of uniform grids, {11×11,21×21, ...,51×51}. A
fixed time step ∆t = 0.002 and Re = 100 are employed. Nu-
merical solutions are computed at t = 2. The exact solution,
i.e. equations (23)-(25), provides the initial fields at t = 0
and the time-dependent boundary conditions. Table 1 shows
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Figure 1: 2D Poisson equation, 101× 101: The effect of β on the
condition number of the conversion matrix (top) and on the solution
accuracy RMS (bottom).

the accuracy comparison between the present scheme and
the high-order compact finite difference scheme (HOC) of
(Tian et al., 2011). It is seen that the present scheme pro-
duces much better accuracy than the HOC; and, its conver-
gence rates are also much higher than those of the HOC, i.e.
O(h3.91) compared to O(h2.92) for the u- and v-velocities and
O(h3.81) compared to O(h3.28) for the pressure.

Irregular bottom lid driven cavity

The lid driven cavity with a deformed base presented in
(Shyy et al., 1996) is chosen to validate the performance of
the present approximation scheme in simulating fluid flow
problem in an irregular domain. The base is deformed si-
nusoidally with an amplitude of 10 percent of the base.
The computational domain and boundary conditions are il-
lustrated in Figure 2. The boundary nodes are generated
through the intersection of the grid lines and the boundary as
demonstrated in Figure 3. The interior nodes falling within
a small distance δ = h/8, where h is the grid size, to the
boundary will also be discarded. A range of uniform grids,
{53×53,63×63,83×83,93×93} is employed in the sim-
ulation. A fixed time step and Reynolds number are chosen
to be ∆t = 0.001 and Re = 1000, respectively. The results

Table 1: Taylor-Green vortex: RMS errors and convergence rates.

HOC (Tian et al., 2011)
Grid u-error v-error p-error

11×11 7.0070489E-02 7.0070489E-02 1.0764149E-01
21×21 9.0692193E-03 9.0692193E-03 1.0567607E-02
31×31 2.8851487E-03 2.8851487E-03 2.9103288E-03
41×41 1.2238736E-03 1.2238736E-03 1.1356134E-03
51×51 6.3063026E-04 6.3063026E-04 5.3933641E-04

Rate O(h2.92) O(h2.92) O(h3.28)
present CCIRBF using β = 500

Grid u-error v-error p-error
11×11 9.0757315E-02 9.0757322E-02 2.3542625E-01
21×21 3.8338024E-03 3.8338114E-03 1.3288235E-02
31×31 1.0201809E-03 1.0201870E-03 3.3851835E-03
41×41 3.6194151E-04 3.6194102E-04 1.4603595E-03
51×51 1.5492043E-04 1.5482812E-04 4.1378984E-04

Rate O(h3.91) O(h3.91) O(h3.81)

obtained by the present method are compared with those re-
ported in (Shyy et al., 1996; Mariani and Prata, 2008; Tien
et al., 2015a), where appropriate. From the literature, the
FVM results using the well-tested body-fitted coordinate for-
mulation and dense grid of 121× 121 presented in (Shyy
et al., 1996) have been considered as "Benchmark" results
for comparison purposes. Table 2 shows the present results

Figure 2: Irregular bottom lid driven cavity: problem configuration
and boundary conditions.

for the extrema of the vertical and horizontal velocity profiles
along the vertical centreline of the cavity. With relatively low
numbers of grids, the results obtained by the present scheme
are very comparable with other schemes using much higher
numbers of grids.
Figure 4 displays horizontal and vertical velocity profiles
along the vertical centreline for different grid sizes, where
a grid convergence of the present scheme is obviously ob-
served. The present scheme effectively achieves the bench-
mark results with a grid of only 83×83 in comparison with
the grid of 121× 121 used to obtain the benchmark results
in (Shyy et al., 1996). In addition, the present results with a
grid of only 53×53 outperform those of (Mariani and Prata,
2008) using the grid of 100× 100. To exhibit contour plots
of the flow, we employ the grid of 83× 83. Figures 5 and 6
show streamlines (which are derived from the velocity) and
pressure deviation contours, respectively. These plots are in
close agreement with those reported in the literature. Figure
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Figure 3: Irregular bottom lid driven cavity, spatial discretisation:
+ represents for interior nodes; ◦ represents for boundary nodes.

Table 2: Irregular bottom lid driven cavity, β = 1000, Re = 1000:
Extrema of the vertical and horizontal velocity profiles along the
vertical centreline of the cavity. For the CCIRBF, indicative CPU
time for corresponding grid is reported in brackets. Minute is ab-
breviated as m. It is noted that FVM results of (Mariani and Prata,
2008; Shyy et al., 1996) are extracted from Figures in the literature.

Method Grid umin ymin

Present CCIRBF (CPU time 47 m) 53×53 -0.3781442 0.4975
Present CCIRBF (CPU time 94 m) 63×63 -0.3924106 0.4959
Present CCIRBF (CPU time 421 m) 83×83 -0.3958749 0.4951
Present CCIRBF (CPU time 482 m) 93×93 -0.3979039 0.4949
CIRBF (Tien et al., 2015a) 53×53 -0.3695975 0.4989
CIRBF (Tien et al., 2015a) 63×63 -0.3847773 0.4967
CIRBF (Tien et al., 2015a) 83×83 -0.3950552 0.4953
CIRBF (Tien et al., 2015a) 93×93 -0.3972010 0.4950
FVM (Mariani and Prata, 2008) 100×100 ≈ -0.3524 ≈ 0.4929
Benchmark FVM (Shyy et al., 1996) 121×121 ≈ -0.3808 ≈ 0.5017
Method Grid vmax ymax
Present CCIRBF (CPU time 47 m) 53×53 0.2180640 0.5601
Present CCIRBF (CPU time 94 m) 63×63 0.2214069 0.5563
Present CCIRBF (CPU time 421 m) 83×83 0.2274348 0.5547
Present CCIRBF (CPU time 482 m) 93×93 0.2292693 0.5549
CIRBF (Tien et al., 2015a) 53×53 0.2165344 0.5638
CIRBF (Tien et al., 2015a) 63×63 0.2239138 0.5589
CIRBF (Tien et al., 2015a) 83×83 0.2282167 0.5555
CIRBF (Tien et al., 2015a) 93×93 0.2286893 0.5548
FVM (Mariani and Prata, 2008) 100×100 — —
Benchmark FVM (Shyy et al., 1996) 121×121 ≈ 0.2362 ≈ 0.5610

7 shows the iso-vorticity lines of the present simulation.

CONCLUSION

In this work, we successfully implement the CCIRBF-
Precond scheme that works with large values of the shape
parameter, β = 500 and β = 1000, for the simulation of
several fluid flow problems. In these examples, the present
method performs significantly better than the HOC and
CIRBF schemes. This present robust and highly accurate
element-free procedure based on MQ RBFs is promising for
many science and engineering problems governed by PDEs.
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