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ABSTRACT 

Atherosclerosis is a cardiovascular disease, characterized 

by the development of blood flow impeding lesions within 

arterial walls. The progression of the disease is primarily 

governed by an inflammatory process, which itself is driven 

by the transport of multiple biochemical species from the 

blood flow into the arterial wall. As a dominant driver for 

mass transport, pulsatile blood flow conforms to time-

scales considerably smaller than those of atherosclerosis 

growth. Due to the complexity involved in resolving both 

time-scales, standard mathematical models for describing 

the growth and progression of atherosclerosis have thus far 

ignored flow pulsatility. However, it is now understood that 

this assumption fails for complex flow-fields. The present 

study attempts to quantify the extent to which a steady flow 

may be used in atherosclerosis growth models. Using an 

idealised arterial bifurcation, both steady-state and pulsatile 

flows are compared. A simplified atherosclerosis growth 

model is further implemented on the steady flow, to identify 

sites predisposed to the emergence of atherosclerosis, and 

their relative extent to which growth occurs. Through the 

implementation of a pulsatile-perturbation kinetic energy 

quotient, it was found that sites which were predisposed to 

atherosclerosis growth were also incidentally coincident 

with those which were most disturbed by flow pulsatility. 

NOMENCLATURE 

𝑑  inlet diameter 𝑃  period count 

𝐷  diffusion coefficient 𝑃𝑒  Péclet number 

𝑓𝑔  growth scale factor 𝑅  residual 

𝐽  flux 𝑅𝑒  Reynolds number 

𝑘  porosity 𝑆  source term 

𝓂, 𝓃  counter variables 𝑡  time 

𝑛  unit normal 𝑇  time period length 

𝑁  iteration limit 𝑢  fluid velocity 

𝑝  pressure 𝑥  spatial position 

    

𝛾̇  strain-rate   dynamic viscosity 

Γ  domain boundary   density 

𝜕  partial derivative 𝜏𝑤  wall shear stress 

𝛿𝑖𝑗  Kronecker delta 𝜙, 𝜑  scalar variable 

𝜅  kinetic energy 𝜓  flux aggregate 

𝜆  𝜅 quotient Ω  domain 

 

Note with Nomenclature: 

The subscripts 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3} are reserved for tensor 

index notation; all other subscripts are for designating 

variables, and should not be used as tensor indices. 

INTRODUCTION 

The development of atherosclerosis is primarily governed 

by an inflammatory process within the arterial wall, which 

is itself driven by mass transport of participating species. If 

left untreated, the disease may develop to severely retard 

blood flow, causing pressure losses or else impeded flow 

transport, which may result in ischemia and eventual 

infarction of downstream tissue. Should the downstream 

tissue be critical to the function of the body, the outcome 

may be manifest in life-threatening diseases such as stroke 

or coronary artery disease; both of which represent the 

leading cause of mortality worldwide (Libby, 2012). 

 

The inflammatory process governing atherosclerosis 

involves the transport of multiple biological and chemical 

species, which are predominantly convected by the blood 

flow-field (Chatzizisis et al, 2007). However, as blood flow 

is characterized by periodic fluctuations arising from the 

rhythmic beating of the heart, so too is the transport of these 

species. The processes describing the progression of 

atherosclerosis are therefore found to conform to two 

dominant time-scales; one of which governs the pulsatility 

of the blood flow-field and hence mass transport, and the 

other governing the relatively monotonic progression of the 

inflammatory process and hence lesion growth. 

 

In effort to better understand the disease, mathematical 

models have been developed to characterize the growth 

behaviour of atherosclerosis (Cilla et al, 2014; Díaz-

Zuccarini et al, 2014). The purpose of such models is to 

provide a framework by which the nature and growth 

behaviour of the disease may be analysed in a controlled 

computational environment, thereby allowing for the 

development of treatment methods to control the rate of 

progression and eventually reversal of the disease. 

 

Unfortunately, due to the lack of available data or else 

sufficient understanding of the precise mechanics 

governing atherosclerosis, such models generally make 

significant assumptions to bypass these difficulties. One 

characteristic assumption, common to the majority of 

present growth models, is that the pulsatile nature of blood 

flow is ignored and the flow-field is treated as steady (Cilla 

et al, 2014; Díaz-Zuccarini et al, 2014; Filipovic et al, 2013; 

Gessaghi et al, 2011; Calvez et al, 2010). The reason often 

cited is that since the time-scale associated with pulsatile 

flow is significantly shorter than that of lesion growth, it 

may be assumed to have no significant role on the growing 

lesion, and so may be safely ignored (Calvez et al, 2010). 
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However in ignoring the pulsatility of the flow, the effect 

that it has on mass-transport and subsequent atherosclerosis 

growth is not accounted for. In effort to investigate this 

influence, the authors conducted a study to compare 

pulsatile and equivalent steady-state flow-fields (Gabriel et 

al, 2014). A result of the study is presented in figure 1, 

depicting the comparison between a period-averaged 

pulsatile (PAP) flow-field and its equivalent steady-state 

(SS) flow-field within a symmetric two-dimensional 

arterial bifurcation. At region 1 of the figure, where the flow 

is not disturbed, both flow types display identical 

behaviour. However, at the site of bifurcation, where 

recirculation zones form, there is a marked difference 

between the two figures; in that the steady flow does not 

reveal the temporally varying nature of the recirculation 

zones, leading to dissimilarities between the two flow-fields 

at regions 2 and 3. These variations incidentally coincide 

within the vicinity of the arterial bifurcation, which is a site 

generally associated with vulnerability to the development 

of atherosclerosis (Chatzizisis et al, 2007). 

 

 

Figure 1: Velocity magnitude flow-field comparison for a 

PAP and equivalent SS flow in a symmetric two-

dimensional arterial bifurcation (Gabriel et al, 2014). 

 

In their study on the effect of pulsatile blood flow on species 

transport into the arterial wall, Liu et al (2011) also reported 

the differences between the two flow-fields resulted by 

steady-state and pulsatile flows. They noted that the 

differences between the two flow-fields may manifest in the 

resulting flow-convected species transport. The flow-field 

results from the authors' previous study (Gabriel et al, 2014) 

was in a very good agreement with the findings of Liu et al 

(2011). Consequently the authors believe that using a 

steady flow state flow and ignoring the pulsatility may not 

be appropriate to accurately model atherosclerosis; since 

the near-wall transport of species, which contribute to the 

development of atherosclerosis, would be influenced by the 

presence of time-varying flow features, such as 

recirculation-zones (Chatzizisis et al, 2007), thereby 

directly influencing the growth of atherosclerosis. 

 

The present study attempts to investigate the validity of this 

claim by assessing the extent of deviation between the two 

flow-fields. This is realized by evaluating the extent of 

spatial coincidence amongst sites that exhibit significant 

discrepancy between the two flow-fields and those prone to 

the emergence of atherosclerosis. The former is achieved by 

the comparative assessment of flow-derived statistics, and 

the later through the implementation of a simplified 

atherosclerosis growth model. 

MODEL DESCRIPTION 

In the following assessment, we maintain the assumption 

that the arterial wall remains fixed throughout a period. We 

begin by defining the dimensionless parameters of the 

governing equations; the Reynolds number 𝑅𝑒 is defined as 

the ratio of inertial to diffusive forces of the flow, and 

similarly the Péclet number 𝑃𝑒 as the ratio of the rate of 

inertial to diffusive transport of a scalar quantity: 

 

𝑅𝑒 =
𝜌𝑢𝑅𝑒𝑑

𝜇
, 𝑃𝑒 =

𝑢𝑅𝑒𝑑

𝐷
 (1) 

 

where 𝑢𝑅𝑒  is the PAP/SS mean inflow velocity magnitude. 

Depending on the flow Reynolds number, arterial 

bifurcations may be host sites to the formation of 

recirculating-flow zones, which are generally characterized 

by low-velocity flow and hence low wall shear stress 

(WSS). This predisposes the sites to vulnerability for the 

formation of atherosclerosis (Libby, 2012); since amongst 

other factors, the continuous endothelial production of the 

anti-inflammatory agent nitric-oxide (NO) is disrupted by 

low endothelial shear stress (ESS) (Chatzizisis et al, 2007). 

 

 

Figure 2: Schematic diagram of arterial bifurcation with 

flow extensions included; region of interest is shaded. 

 

For the present study, an idealized three-dimensional 

arterial bifurcation, modelled on a carotid artery with 

inflow diameter of 𝑑 = 5 [𝑚𝑚], is selected (refer to figure 

2). To reduce the effect of three-dimensional variations in 

the geometry, it is set to be symmetric about the 𝑥-𝑦 plane, 

though the bifurcation itself is asymmetric in the plane. 

 

Flow Physics 

The role of blood flow is twofold with respect to 

atherosclerosis. Firstly, it is the dominant convective 

transport within the lumen Ω𝑓 of species that participate in 

the inflammatory process driving atherosclerosis. And 

secondly, it is integral to the determination of ESS, which 

is a governing variable by which endothelial cells respond 

to facilitate species transport into the arterial wall; such as 

that of lipoproteins, which are integral to the inflammatory 

process governing atherosclerosis (Chatzizisis et al, 2007). 

 

For the present study, blood flow is modelled by the 

incompressible mass and momentum conservation (Navier-

Stokes) equations for a Newtonian fluid: 

 

𝜕𝑖𝑢𝑖 = 0 (2) 

𝜌(𝜕𝑡 + 𝑢𝑗𝜕𝑗)𝑢𝑖 − 𝜇𝜕𝑗𝜕𝑗𝑢𝑖 = −𝜕𝑖𝑝 (3) 

 

Blood is treated as a homogenous fluid with isotropic 

properties, where standard values of blood density and 

approximate Newtonian viscosity are respectively assigned 

as 𝜌 = 1050 [𝑘𝑔 𝑚3⁄ ] and 𝜇 = 3.5 × 10−3 [𝑘𝑔 𝑚⁄ 𝑠⁄ ] 
(Cilla et al, 2014). The state of complexity of the flow 

equations is sufficient for a rudimentary approximation to 

the flow physics governing atherosclerosis. As this is the 

case for the present study, where a simple flow-field is 

required, greater complexity is not needed. However, the 

authors wish to note that appropriate blood viscosity and 

turbulence models need be applied for blood flow models 

in general. This is particularly important when 
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atherosclerosis or near-wall mass transport is involved, 

since the presence of atherosclerosis lesions will contribute 

to the generation of turbulent kinetic energy that would 

influence the flow-field (Chatzizisis et al, 2007; Cilla et al, 

2014). Furthermore, the accurate evaluation of the WSS, is 

integral to the development of these lesions. Therefore, the 

assumption of constant viscosity for medium to large sized 

arteries, may be satisfactory for the bulk flow, though 

inappropriate in the near-wall regions where the WSS and 

mass transport are important. 

 

Boundary conditions of the flow equations are set to be 

consistent between the PAP case and its SS equivalent, so 

that comparison between the two may be made. Therefore 

for the PAP flow case, a uniform Dirichlet condition of 

inflow volumetric flow-rate waveform (refer to figure 3) is 

assigned to Γ𝑖, and its period-averaged value is assigned for 

the SS equivalent case. Furthermore, to maintain relative 

similarity in flow behaviour to carotid bifurcations, the 

outlet boundaries Γ𝑜1 and Γ𝑜2 have been selectively set to a 

0.7:0.3 respective flow share. At the wall boundary Γ𝑓𝑠, a 

no-slip boundary condition 𝑢𝑖 = 0, is assigned. 

 

 

Figure 3: Pulsatile volumetric inflow-rate waveform and 

steady-state period-averaged equivalent (Dong et al, 

2013). 

 

Flow-derived Statistics 

To investigate the pulsatile flow-field for comparison to its 

SS equivalent, various flow-statistics are employed to 

extract meaningful data in a period-averaged sense. We 

begin by defining a representative scalar variable 𝜑, that is 

transported within pulsatile blood flow of period-length 𝑇𝑝: 

 

𝜑 ≡ {𝜑(𝑥𝑖 , 𝑡𝑝) | 𝑡𝑝 ∈ 𝑇𝑝} 

 

Within an Eulerian reference frame, the transported value 

of 𝜑 may be decomposed into its periodic-mean 𝜑 and time-

dependant perturbation 𝜑′. Following Reynolds-

decomposition, the variable 𝜑 may be defined as: 

 

𝜑(𝑥𝑖 , 𝑡𝑝) = 𝜑(𝑥𝑖) + 𝜑′(𝑥𝑖 , 𝑡𝑝) (4) 

𝜑(𝑥𝑖) =
1

𝑇𝑝
∫ 𝜑(𝑥𝑖 , 𝑡𝑝) 𝑑𝑡𝑝
𝑇𝑝

 (5) 

 

Using this definition, the velocity vector 𝑢𝑖 may be treated 

in the same way, such that: 

 

𝑢𝑖 = 𝑢𝑖 + 𝑢𝑖
′ (6) 

 

From this, the PAP kinetic energy of the mean flow and its 

perturbations may be respectively defined as: 

 

𝜅𝑢 =
1

2
 𝑢𝑖  𝑢𝑖 (7) 

𝜅𝑢′ =
1

2
 𝑢𝑖

′ 𝑢𝑖
′ (8) 

 

which may be used to define the quotient of these quantities 

𝜆𝑢, as a measure of the local influence of pulsatile 

perturbations relative to the mean flow. 

 

𝜆𝑢 = 𝜅𝑢′ 𝜅𝑢⁄  (9) 

 

Furthermore, definitions (4) and (5) may also be applied to 

both the WSS vector 𝜏𝑤𝑖 and its magnitude 𝜏𝑤, to obtain: 

 

𝜏𝑤𝑖
=

1

𝑇𝑝
∫ 𝜏𝑤𝑖

 𝑑𝑡𝑝
𝑇𝑝

 (10) 

𝜏𝑤 =
1

𝑇𝑝
∫ |𝜏𝑤𝑖| 𝑑𝑡𝑝
𝑇𝑝

 (11) 

 

which may be used to define the oscillatory shear index 

𝑂𝑆𝐼, a useful statistic for measuring the extent of the local 

deviation of the WSS from its period-mean value (Ku et al, 

1985; Liu et al, 2011). 

 

𝑂𝑆𝐼 =
1

2
(1 −

|𝜏𝑤𝑖|

𝜏𝑤
) (12) 

 

Additionally, to identify sites predisposed to flow-shearing, 

the strain-rate 𝛾̇ is used: 

 

𝛾̇ = √
1

2
𝛾̇𝑖𝑗𝛾̇𝑖𝑗 , 𝛾̇𝑖𝑗 = 𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖  (13) 

 

Simple Atherosclerosis Growth 

For the evaluation of the spatial distribution of sites prone 

to the emergence of atherosclerosis and to obtain a measure 

of their relative growth extent, a simplified atherosclerosis 

growth model is implemented. The reader is advised that 

the present study is not intended for the development of a 

growth model, but rather towards the understanding of the 

scope of validity that a SS flow-field may represent a 

pulsatile flow in atherosclerosis growth models. For 

current-state spatiotemporal growth models, the reader is 

advised to consult the papers by Cilla et al (2014), Díaz-

Zuccarini et al (2014), Filipovic et al (2013), Gessaghi et al 

(2011) and Calvez et al (2010) amongst others. 

 

To reduce interference from other non-flow physics, the 

present growth model is modified from the above stated 

models, to the extent that the effects of flow physics become 

the dominant driver for atherosclerosis growth. This is 

achieved by omitting the arterial wall domain (refer to 

figure 2) and treating its interfacial boundary Γ𝑓𝑠 by 

equivalent flux-balance boundary conditions of low-density 

lipoproteins (LDL), a dominant species integral to the 

development of atherosclerosis (Libby, 2012). 

 

The mass transport of species is modelled via scalar 

transport equations. In conservative form, the general 

transport equation for a passive scalar variable 𝜙 with 

source term 𝑆, is given as follows: 

 

𝜕𝑡𝜙 + 𝜕𝑖(𝑢𝑖𝜙 − 𝐷𝑖𝑗𝜕𝑗𝜙) = 𝑆 (14) 

 

For many of the species involved in atherosclerosis, their 

diffusion coefficients are generally isotropic within the 

blood medium, which may be set into equation (14) by 

casting 𝐷𝑖𝑗 = 𝐷𝛿𝑖𝑗, where 𝐷 is the isotropic diffusion 
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coefficient. At the inflow boundary Γ𝑖, a uniform Dirichlet 

condition is assigned for the scalar. Whereas at the outflow 

boundaries Γ𝑜1 and Γ𝑜2, a zero flux condition is assigned 

𝑛𝑖𝜕𝑖𝜙 = 0. For the wall boundary Γ𝑓𝑠, a flux balance 

boundary condition is assigned, as denoted by equation 

(15), where 𝐽𝜙 is the net scalar flux into the boundary; for 

the present study 𝐽𝜙 = 𝑘𝜙, where 𝑘 is a bulk permeability 

to the scalar 𝜙. 

 

𝐽𝑢𝜙 − 𝑛𝑖𝐷𝑖𝑗𝜕𝑗𝜙 = 𝐽𝜙 (15) 

 

For the present model, growth is implemented as a surface-

normal displacement on Γ𝑓𝑠, arising due to net mass flux of 

low density lipoprotein (LDL) species 𝜙𝐿𝐷𝐿, which exceed 

a threshold limit 𝐽𝜙0
. This is described by equations (16) 

and (17), which denote the displacement of a material point 

𝑥𝑖 on the surface Γ𝑓𝑠 by the normalized flux aggregate 𝜓 of 

LDL species. The corresponding growth is scaled by a 

factor 𝑓𝑔, such that the maximum displacement during the 

integer iteration 𝓂 is 𝑓𝑔. 

 

𝑥𝑖
𝓂+1 = 𝑥𝑖

𝓂 + 𝑓𝑔  𝜓(𝜙𝐿𝐷𝐿)𝓂  𝑛𝑖
𝓂 (16) 

𝜓(𝜙) =
max{𝐽𝜙 − 𝐽𝜙0

, 0}

maxΓ𝑓𝑠
{max{𝐽𝜙 − 𝐽𝜙0

, 0}}
 (17) 

 

LDL inflow into the domain is defined via a normalised 

Dirichlet condition of 𝜙𝐿𝐷𝐿 = 1, assigned at the inlet Γ𝑖. 

The diffusive coefficient of LDL in blood is represented by 

the isotropic approximation of 𝐷 = 5.0 × 10−12 [𝑚2 𝑠⁄ ] 
(Stangeby and Ethier, 2002). For the present assessment, 

wall fluxes are treated as constant, such that 𝐽𝑢 = 1.78 ×
10−8 [𝑚 𝑠⁄ ] (Meyer et al, 1996) and 𝑘 = 2.0 ×
10−10 [𝑚 𝑠⁄ ] (Stangeby and Ethier, 2002). Due to the wall-

less approach presented for the growth model, closure for 

the scalar transport equations at the wall boundary cannot 

be realised. Thus to address this limitation, a mass-

aggregate cut-off flux of 𝐽𝐿𝐷𝐿0
= 1.1𝑘 is assigned. 

 

The growth model is phenomenological in principle, and is 

inherently not mass conservative with respect to the 

growing lesion. However, for the objectives of the present 

study, it is sufficient to determine a satisfactory 

approximation to the spatial distribution of atherosclerosis 

lesions. Furthermore, it is implemented on a steady flow-

field, since it is presently computationally prohibitive to 

directly implement the growth model on a pulsatile flow-

field. This is due to the time-scale associated with growth 

of a lesion being orders of magnitude greater than the length 

of a cardiac period (Di Tomaso et al, 2015; Waters et al, 

2011). Studies are being presently conducted by the authors 

to bypass these limitations via the development of models 

to represent the pulsatile flow-field within growth models. 

Nevertheless, since the SS and PAP flow-fields are 

generally approximately alike, then a steady flow-field may 

be argued to be sufficient for an approximate evaluation of 

the sites of emergence of atherosclerosis, though the 

corresponding growth behaviour may differ. 

 

Computational Implementation 

The above models were implemented into a computational 

framework, with the cell-centred finite-volume solver 

ANSYS Fluent v14.5 as the principal solver. For the arterial 

bifurcation geometry of figure 2, a hybrid mesh was 

constructed; where swept hexahedral elements were 

constructed on the tubular segments of the geometry and 

tetrahedral/prismic elements at the bifurcation site to serve 

as a buffer region between the hexahedral mesh zones (refer 

to figure 4).  Following mesh convergence, the final mesh 

employed for this study required 3.24 × 105 elements. 

 

 

Figure 4: Mesh of the arterial geometry, denoting the (a) 

cross-section mesh of the tubular segments of the 

geometry, and the (b) hybrid buffer mesh at the 

bifurcation. 

 

Pressure-velocity coupling for the Navier-Stokes equations 

was implemented via the SIMPLE algorithm. Spatial 

discretization of the momentum (flow) variables was made 

via a second-order upwind scheme, and for the pressure, a 

neighbour-cell interpolation scheme, using momentum-

equation coefficient weighting (referred as the ‘standard’ 

scheme in ANSYS Fluent). For the scalar transport 

equation, a first-order upwind scheme was implemented, to 

avoid numerical instabilities arising due to the high Péclet 

numbers associated with LDL transport; higher order 

scheme implementation is being presently investigated. 

Spatial discretization of field-variable gradients was made 

via least-squares cell-based interpolation. 

 

For transient flows, time-stepping was attained via an 

implicit first-order forward-differencing scheme. However, 

for the atherosclerosis growth model, a pseudo-steady 

method was adopted, where an iterative scheme was 

implemented in place of a time-scale. This is summarised 

by figure 5 below. 

 

 

Figure 5: Iterative growth algorithm. 

 

Following the growth algorithm, an inner growth loop is 

performed on the domain 𝑁𝓃 times and an outer loop on the 

updated equations 𝑁𝓂 times. For the present setting, the 

iterative loop limits are set to 𝑁𝓂 = 20 and 𝑁𝓃 = 20. Since 

mass aggregate is not conserved with the elimination of the 

arterial wall, then a time-scale is not realizable. To derive a 

comparable measure for elapsed time, the integer iteration 

count 𝓂 is employed, such that growth within each 𝓂 

iteration is normalized, to give a maximum surface growth 

of magnitude 𝑓𝑔 = 5.0 × 10−3 [𝑚𝑚]. Growth of surface 

nodes is made via an explicit nodal displacement. Therefore 

to overcome skewness of volumetric cells within Ω𝑓 after 

surface displacements on Γ𝑓𝑠, a spring-based smoothing 

operation is performed on cell nodes within Ω𝑓. 

 

For the pulsatile flow case, it is necessary to purge the flow-

field from association with initial conditions before 

meaningful results may be extracted. Therefore, to evaluate 

the number of periods 𝑃 required to accomplish this, a 

residual function 𝑅𝑢 was developed (refer to equation (18)). 
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It was observed that by setting 𝑅𝑢 < 10−7, in general 3-4 

periods were required to purge the flow from resting-state 

initial conditions. 

 

𝑅𝑢 = |[∫  𝑢  𝑑Ω𝑓
Ω𝑓

∫ 𝑢𝑅𝑒  𝑑Ω𝑓
Ω𝑓

⁄ ]

𝑃 = 𝓂

𝓂+1

| (18) 

RESULTS AND DISCUSSION 

The SS flow case is equivalent to applying period-

averaging to the boundary-conditions alone, and not the 

domain equations. Therefore, it is expected that a close 

though not identical resemblance be observed with PAP 

results. This is perceived in the flow-field distributions of 

figure 7; where the PAP and SS flows are similar, except 

for a difference within the vicinity of the bifurcation, which 

appears to coincide with boundaries of recirculation zones. 

This indicates that whilst the SS flow captures most flow 

features of the PAP, it fails to accurately represent their 

time-varying behaviour, particularly for recirculation 

zones, whose size may temporally vary throughout a period. 

 

 

 

 

 
  

 

 𝑢𝑖 

𝑢𝑅𝑒
 [−] 

Figure 7: Flow-field distribution on 𝑥-𝑦 symmetry-plane; 

(a) SS vector plot (b) SS contour (c) PAP/SS difference 

scaled × 5 contour (d) post-growth SS contour. 

 

Following the action of atherosclerosis growth on the 

arterial bifurcation, the resulting lesion distribution is 

evaluated and displayed in contrast to its original state in 

figures 6 and 7. The resulting lesions are observed to 

coincide with sites of recirculation zones, which follows the 

documented observation that atherosclerosis lesions highly 

correlate with regions of low ESS (Chatzizisis et al, 2007). 

Furthermore, a relatively large lesion occurs upstream to 

branch L, at region 1 of the bifurcation. From the flow-field 

distribution in figure 7, it is perceived that the lesion 

corresponds to the site of the dominant recirculating-flow 

zone at the bifurcation. That this lesion coincides well with 

the recirculation zone, indicates that it is important to 

appreciably resolve the recirculation zone behaviour. 

 

 
  

 
𝛾̇ [𝑠−1] 

Figure 8: Period-averaged strain-rate distribution on 𝑥-𝑦 

symmetry-plane. 

 

Other lesions are also apparent at sites upstream to branch 

R, at regions 2 and 3 of figure 7. These lesions correspond 

to the secondary recirculation zone at that site and are closer 

to the bifurcation zone than the larger lesion. From a 

physiological perspective, the close proximity of these 

lesions to the bifurcation zone and arterial branches of 

smaller diameter, poses a risk to potential blockage of the 

artery. This outcome is further enhanced by the presence of 

high shear flows at the site (refer to figure 8), which upon 

significant stressing of the upstream wall of the R branch, 

may potentially result in wall fracture or thrombosis. This 

further signifies the need to resolve the pulsatile flow when 

implementing an atherosclerosis growth model, since an 

incorrect resolution of the location of a lesion may lead to 

potentially differing physiological outcomes. 

 

 
  

 
𝑂𝑆𝐼 [−] 

Figure 9: Oscillatory shear index contour plot on wall Γ𝑓𝑠. 

 

Observations of the oscillatory shear index plot in figure 9 

indicate that the OSI distribution coincides well with that of 

the computed atherosclerosis growth distribution. Since the 

OSI is a well-regarded marker for potential development of 

atherosclerosis (Ku et al, 1985; Liu et al, 2011), it is 

deduced from this particular study, that using a steady 

inflow model for growth may be sufficient for a qualitative 

assessment of spatial growth distributions. However, for a 

quantitative understanding of the growth behaviour, the 

same conclusion cannot be deduced at the present, since 
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Figure 6: Rendering of computed atherosclerosis distribution (yellow) on arterial bifurcation surface (red). 
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further studies and results are required to verify this, 

particularly for long-term growth predictions. 

 
  

 
𝜆𝑢 [−] 

Figure 10: Kinetic-energy quotient contour plot of 

pulsatile perturbations on 𝑥-𝑦 symmetry-plane. 

 

To indicate regions most-affected by flow pulsatility, the 

pulsatile-perturbation kinetic energy quotient 𝜆𝑢 is used. As 

the flow’s pulsatility is proportional to the inflow’s 

amplitude about its mean, it is deduced that as the inflow 

amplitude tends away from zero, then so too would the 

quotient 𝜆𝑢. Regions that have 𝜆𝑢 > 1 indicate that the 

pulsatile perturbation kinetic energy is greater than that of 

the mean flow, and so would be identified as most prone to 

influence by flow pulsatility. It is observed from the 𝜆𝑢 plot 

in figure 10, that the sites most affected by flow pulsatility 

also encompass regions of observed atherosclerosis growth. 

This observation, indicates that flow pulsatility may 

contribute to lesion growth behaviour, since the effects of 

flow pulsatility appear to be incidentally most influential at 

sites of observed growth. However, to verify this deduction 

further studies need be performed, particularly with respect 

to validation with an atherosclerosis growth model which 

integrates the effects of flow pulsatility. 

CONCLUSION 

The premise of using a steady-inflow condition in 

atherosclerosis growth modelling has been investigated in 

this study. Comparison of period-averaged pulsatile flow to 

that of the equivalent steady-state flow reveal that the two 

flow-fields are generally similar, indicating that steady-

inflow growth models may be satisfactory for qualitative 

assessment of spatial growth distributions. However, 

comparison of pulsatile flow markers, such as the 

oscillatory shear index and pulsatile-perturbation kinetic 

energy quotient, to that of growth results from a simple 

atherosclerosis growth model, indicate that sites apparently 

predisposed to the emergence of atherosclerosis, were 

generally coincident with those most influenced by flow 

pulsatility. This suggests that lesion growth behaviour at 

these sites may be influenced by flow pulsatility, though 

further studies are required to verify this claim. 
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