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ABSTRACT

The Euler-Euler methodology implemented in STAR-
CCM+ is used for modelling blood flow in narrow tubes.
Two particulate flow modelling approaches, one: kinetic
theory based granular flow (KTGF), and second: two-fluid
theory based suspension rheology, are used to understand the
phenomenon behind the migration of red blood cells (RBCs)
from the walls to the core in narrow flow channels. It is
demonstrated that the stress induced diffusion is responsible
for the motion of the RBCs towards the center, and this par-
ticle migration phenomenon explains the Fåhræus-Lindqvist
effect. The computed haematocrit distribution from the
numerical simulations performed agrees with experimental
measurements, and both KTGF model and suspension model
are able to predict the flow characteristics analogously. But,
it is highlighted that by accounting for the inelasticity of the
walls, KTGF approach significantly influences and improves
the near wall prediction of the haematocrit concentrations.

Keywords : Blood Flow, Two Fluid Model, Kinetic Theory
of Granular Flows, Suspensions, Stress induced diffusion.

Nomenclature

Greek Letters

λ Anisotropy parameter
γs Collisional dissipation rate [kg/(m.s3)]
ρ Density [kg/m3]
η Dimensionless Viscosity
θ Granular temperature [m2/s2]
ϕ Specularity coefficient
ε Strain rate
τ Stress Tensor [kg/(m.s2)]
µ Viscosity [kg/(m.s)]
α Volume Fraction

Latin Symbols

A Interphase momentum coefficient [kg/ (m3.s)]
F Force [N]
Q Normal stress anisotropy tensor

Re Reynolds Number
c Fluctuating velocity [m/s]
d Particle diameter [m]
e Coefficient of restitution

g Gravity [m/s2]
g0 Radial Distribution Function
k Granular conductivity [kg/(m.s)]
n Normal [m]
p Pressure [Pa]
u Velocity [m/s]

Sub/superscripts

NS normal stress
S shear stress
b bulk

i,k i,k-th phase
int interaction

l liquid phase
max maximum packing limit

p particle contribution
s solid phase

slip slip between phases
w wall

INTRODUCTION

Blood is a rich suspension of red blood cells (RBCs)
in Newtonian fluid, plasma. Biophysics of blood flow in
micro-vessels has been studied for many years, and it has
been known for long now that RBCs in narrow blood ves-
sels migrate away from the wall which leads to a cell-free
layer near the wall. This causes the blood viscosity to reduce
and causes apparent viscosity of blood to depend on the tube
diameter. This phenomena is referred as Fåhræus-Lindqvist
effect (1931).

Migration of RBCs from the wall to the core of the
blood vessels has been widely studied in the literature. Nu-
merous studies on this effect have been based on multiphase
nature of the blood. Nair et al. (1989) used a two fluid model
for blood in modelling transport of oxygen in arterioles but
the study did not account for the dependence of thickness
of cell-free layer on the haematocrit concentration. Sharan
and Popel (2001) put forward a model with central core of
suspended erythrocytes and a cell-free layer surrounding the
core. In their study roughness at the interface between the
plasma rich annulus and the core is accounted by modelling
an increased effective plasma viscosity in the cell-free layer.
Jung et al. (2006) suggested to model blood flow as a mix-
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ture of plasma and RBCs with shear dependent viscosity as
an input. Gidaspow and Huang (2009) later theorized the
use of kinetic theory based granular flow model (Jenkins and
Savage (1983), Lun et al. (1984) and Ding and Gidaspow
(1990)) for explaining the migration of RBCs from the wall
to center in narrow tubes.

On the other hand, Nott and Brady (1994) suggested
that the particle contribution to total suspension stress was
responsible for the particle migration phenomena seen in sus-
pensions. Morris and Boulay (1999) studied the role of nor-
mal stresses in causing this particle migration and macro-
scopic spatial variation of the particle volume fraction in a
mixture of particles suspended in Newtonian fluid. Lhuillier
(2009) later proposed that migration of particle relative to
the fluid is the result of two different phenomena, first being
the inhomogeneity of the stress resulting from direct inter-
particle forces and second being the Fick-like hydrodynamic
force acting on the particles.

Boyer et al. (2011) extensively studied the rheology
of dense suspensions to show that they exhibit a behaviour
similar to granular media. This motivates the study pre-
sented in this article, wherein results from two radically dif-
ferent approaches for modelling particulate flow, kinetic the-
ory based granular model and suspension rheology based
two-fluid model as implemented in STAR-CCM+ are com-
pared, with an objective to acquire a deeper understanding of
particle migration commonly observed. A clear understand-
ing of RBCs migration in narrow blood vessels is expected
to be very useful for several medical applications. For both
the modelling approaches used in this study, blood viscosity
is not an input into the model but is modelled via correlations
appropriate to the method used.

MODEL DESCRIPTION

The Euler-Euler model in STAR-CCM+ treats the differ-
ent phases as inter-penetrating continua with phase depen-
dent velocity, temperature and other flow properties (Tandon
et al., 2013). One such phase dependent continuous function
is volume fraction, which defines the percentage of the vol-
ume occupied by each individual phase. Conservation equa-
tions for these quantities are solved for each phases, and ad-
ditional closure laws are defined to model the interactions
between the phases.

STAR-CCM+ solves conservation equations for mass and
momentum for each phase i in the following form :

Continuity

∂

∂ t
αiρi +∇ ·αiρiui = 0 (1)

Momentum equation for ith phase :

∂

∂ t
αiρiui +∇ ·αiρiuiui =−αi∇p+αiρig+

∇ · τi +Fint,ik

(2)

Shear stress τ , is modelled as,

τi = αiµi

(
∇ui +(∇ui)

T − 2
3

∇ ·ui

)
(3)

Interface momentum transfer, Fint,ik, represents the force bal-
ance incorporating the sum of all the forces each phase exert

on each other. The only interaction force used in this study
is the drag force, which is modelled by using the Gidaspow
drag correlation (Bouillard et al. (1989)) which in turn, uses
Wen and Hu (1966) correlation for particle concentration be-
low 0.2 and Ergun’s equation beyond it.

Fint,ik = AD (ui−uk) (4)

with

AD =


150α2

d µc
αcd2

s
+ 1.75αdρc|vr|

ds
: αd ≥ αtr

3
4CD.αdρc

d2
s

. |vr|α−1.65
c : αd < αtr

(5)

where, the Drag Coefficient CD for spherical rigid particles
is computed based on the Schiller and Naumann (1933) cor-
relation as :

CD =

{ 24
Red

.
(
1+0.15Re0.687

d

)
: 0 < Red ≤ 1000

0.44 : Red > 1000
(6)

Granular Flow Model

With granular stress model being used for particulate phase,
τs, is modeled as,

τs =−ps + µs

(
∇us +(∇us)

T +
(

µb,s−
2
3

)
∇ ·us

)
(7)

where, ps is the solid pressure force representing the normal
force due to the interactions between the particle and pre-
vents the particles from packing beyond the maximum pack-
ing limit. Lun et al. (1984) model this as a function of gran-
ular temperature represented as below :

Ps = αsρsθs(1+2(1+ e)αsg0) (8)

KTGF implementation in STAR-CCM+ as detailed by Tan-
don and Karnik (2014) determines the fluidic properties of
the particulate phase by accounting for the in-elasticity of
the particles and postulates that solid viscosity and the solid
stress are functions of granular temperature. Granular tem-
perature, θs, is defined based on fluctuations in solid phase
velocity, cs as:

θs =
1
3

< cscs > (9)

KTGF further introduces a conservative form of transport
equation for granular temperature which is given as,

3
2

[
∂

∂ t
αsρsθs +∇ ·αsρsθsus

]
= τs,k : ∇us︸ ︷︷ ︸

Production (P)

+∇ · ks∇θs︸ ︷︷ ︸
Diffusion (D f luctuating)

−γs︸︷︷︸
Dissipation (Dcollisions)

(10)

P : Production of fluctuating energy due to shear in the particle phase
D f luctuating : Diffusion of fluctuating energy along gradients in granular
temperature
Dcollisions : Dissipation due to inelastic collisions
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The dissipation of granular energy (fluctuating energy), γs,
due to inelastic particle - particle collisions is modelled in
this study as in Lun et al. (1984). Their work omitted the
term accounting for ∇.us which was included in the form
originally proposed by Jenkins and Savage (1983).

γs = 12(1− e2)
α2

s ρsg0

ds
√

π
θ

3/2
s (11)

Radial distribution function, g0, is an estimate of particle pair
density at a distance equivalent to the particle diameter. It
increases with increasing particle volume fraction. In this
study, we used the expression by Ding and Gidaspow (1990),

g0 =
3
5

[(
1− αs

αs,max

)1/3
]−1

(12)

The radial distribution function is written as a Taylor series
approximation at high volume fractions close to maximum
packing. The expression in equation 12 was numerically
blended with Taylor series expression to avoid convergence
difficulties.

Suspension Model

The suspension model in STAR-CCM+ uses a stress form
which accounts for particle contribution to the total stress in
suspensions.

Morris and Boulay (1999) indicate that anisotropic com-
pressive normal stresses are present in sheared suspensions.
Their study proposes a rheological model for suspensions
which includes normal stresses as the particle contribution to
the total suspension stress. Following their work, the particle
contribution to the total suspension stress is modeled as:

τp = τp,NS + τp,S

= −µlηn(α)εQ+2µlηp(α)D
(13)

where, ε is the local strain rate, D is the local strain rate ten-
sor, and, Q is the material dependent anisotropic tensor :

Q =

λ1 0 0
0 λ2 0
0 0 λ3

 (14)

λ1, λ2 and λ3 are the anisotropy parameters which should be
positive. Anisotropy can be augmented in the direction of
the local flow by using appropriate values for λ1, λ2 and λ3.
ηn and ηp are the dimensionless normal and shear viscosi-
ties which are modelled as proposed by Morris and Boulay
(1999):

ηp = 2.5αs

(
1− αs

αs,max

)−1
+

Ks

(
αs

αs,max

)2(
1− αs

αs,max

)−2 (15)

and

ηn = Kn

(
αs

αs,max

)2(
1+

αs

αs,max

)−2

(16)

This model is adopted within the two-phase model frame-
work based on the theory proposed by Lhuillier (2009). Ad-
ditional details on it can be found in STAR-CCM+ documen-
tation (CD-adapco, 2014).

COMPUTATIONAL INVESTIGATION

This investigation was carried out in the commercial CFD
code STAR-CCM+ from CD-adapco. The code uses PC-
SIMPLE (Vasquez and Iranov, 2000) for pressure-velocity
coupling. The code solves the velocity components of all
phases together in a segregated manner, and the pressure cor-
rection equation is based on the continuity equation.

Figure 1: Schematic of the Flow column

Taylor (1955) experimentally collected extensive data for the
RBCs concentration for flows through narrow tubes for sev-
eral different RBC concentration levels. This data forms the
basis of this current investigation. The physical dimensions
and specifications of the narrow tube used by Taylor for the
experiments is given in Table 1. The RBCs along with blood
plasma flow into the channel and the data collected from a
PIV measurement apparatus was used to estimate the con-
centration of the RBCs cells in the tube, and the effective
holdup.

Simulations were performed for two volume fraction condi-
tions (haematocrit concentrations) : αs = 0.24 and αs = 0.57
with a parabolic inlet velocity with the maximum velocity at
0.2m/s. The 2D computational domain of uniform 10,000
cells (10 radial and 1000 axial) was used for the study. Fig-
ure 1 shows the schematic of the column geometry and the
boundary conditions, and table 1 gives the relevant dimen-
sions of the flow channel and the simulation conditions.

All the simulations use second order convection scheme for
volume fraction, velocity and granular temperature. Time
step of 10−3s was used for all the simulations and they were
run for 10.0s. The time averaged distributions of flow vari-
ables were computed for period of 4.0 - 10.0s. The start time
of 4.0s ensures that the time averaging is performed only af-
ter the flow in the column has attained a quasi-steady state.

Boundary Conditions

Dirichlet boundary condition was used for liquid phase at the
inlet of the channel with pressure outlet boundary condition
for the top boundary. The pressure is specified as 80.0 mm
Hg, at the top boundary.

When using granular theory, no-slip boundary conditions is
used at the side-walls for the plasma and partial-slip bound-
ary condition as proposed by Johnson and Jackson (1987) is
used for the RBCs. The Johnson and Jackson wall treatment
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Tube diameter 0.19mm
Tube Length 14.4 cm

Plasma density 1020.0 kg/m−3

Plasma viscosity 0.0012 kg.m−1s−1

RBC size 8µm
RBC density 1092 kg/m−3

Pressure head 80 mm Hg
Grid density 10 radial and 1000 axial

Time step 1.0×10−3s

Table 1: Simulation parameters

for the granular temperature enforces the following criterion
at the boundary :

us,w =− 6αsµs√
3θsπφρsαsgo

.
∂us,w

∂n
(17)

θs,w =−kθs

γw

∂θs,w

∂n
+

√
3πφρsαsus,slip

2goθ
3/2
s

6αs,maxγw
(18)

where, γw, is expressed in term of particle-wall restitution
coefficient, ew, as

γw =
√

3π(1− e2
w)αsρsgoθ

3/2
s

4αs,max
(19)

The equation 18 represents the granular energy conducted to
the wall after accounting for the generation of granular en-
ergy due to particle slip at the wall and the dissipation of
granular energy due to inelastic collisions between the parti-
cles and the wall.

Simulations using suspension theory used no-slip boundary
condition for plasma at the walls. However, both slip and no-
slip boundary conditions were used for the particulate phase
(RBCs) for the different analysis performed, and is specified
in the respective sections where required.

RESULTS & DISCUSSION

This section is divided into three parts, the first, comparing
the results from simulation using granular and suspension
theories respectively, second discussing the role of particle-
wall modelling when using granular theory and the third dis-
cussing the role of normal stress and wall treatment for RBCs
when using suspension theory.

When comparing the results from two different theories it
was noted that both successfully predict the migration of
RBCs to the center of blood vessel as demonstrated in by
Figures 2 and 3 which plot the RBCs distribution radially
along the tube for αs = 0.24 and 0.57 respectively thereby
confirming Fåhræus-Lindqvist effect. However it can be seen
that granular theory successfully predicts the small increase
in RBCs concentration near the wall, a trend observed in the
measurements recorded by Taylor (1955) as well.

Computed time averaged RBC axial velocities are compared
in Figure 4 where it has been shown that both the modelling
approaches predicts a parabolic distribution for the axial ve-
locity of the RBC.

It can also be deduced from Figures 2 and 3 that particle-wall
interactions play stronger role when RBC concentration is

Figure 2: Volume Fraction of RBCs compared against the ex-
perimental data for both kinetic theory, and suspension modelling
approach for RBC concentration = 24 %.

Figure 3: Volume Fraction of RBCs compared against the ex-
perimental data for both kinetic theory, and suspension modelling
approach for RBC concentration = 57 %.

Figure 4: Axial velocity of RBCs for both kinetic theory, and
suspension modelling approach.
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24% by volume. This is consistent with Lazaro et al. (2014)
who suggested that at lower concentration of cells in narrow
vessels dynamics of flow is dominated by particle-wall dis-
tributions and role of non-linearities induced in the rheology
of the blood due to cell deformations is more relevant in thick
tubes.

Figure 5: Particle wall modelling : Radial variation of volume
fraction of RBCs.

Figure 6: Particle wall modelling : Radial variation of Granular
Temperature of RBCs.

In second part we evaluate the role of particle-wall mod-
elling. Figures 5 and 6 compare the results from simulations
using ew = 0.95 and 0.6 in Johnson-Jackson boundary con-
dition when using a specularity values of 0.6. The results
for a case using specularity value of 1.0 with ew = 0.6 are
also added for evaluating the role of dissipation of granu-
lar energy near the walls. It must be noted that specularity
coefficient is indicative of fraction of collisions that transfer
momentum to the wall.

In all the simulations, particle-particle coefficient of restitu-
tion is set at 0.95. We assume particle-particle coefficient of
restitution at 0.95 throughout this study. The coefficient of
restitution for a system is a modelling parameter and is un-
known. By using low value for particle-wall coefficient of
restitution in problem set-up, an attempt is made to mimic
the dissipation due to the partially flexible tube. Figure 5 il-

lustrates that the near wall prediction is better for case with
particle-wall coefficient of restitution set at 0.6 and specu-
larity value of 0.6. This can be explained by evaluating the
granular temperature profiles for corresponding simulations
in Figure 6. It can be seen that granular temperature de-
creases more near wall in case using value of 0.6 for particle-
wall coefficient of restitution. The profile of granular tem-
perature explains the migration of particles towards the core
and also the small increase in particle concentration near the
walls, as particles tend to migrate away from regions of high
granular energy to region of low granular energy, which is
captured by the normal particle stress term arising due to the
inter-particle interactions.

Figure 7: Radial variation of Granular Viscosity.

Figure 7 represents the granular viscosity distribution along
the radius of the tube. It uses the formulation from (Gi-
daspow, 1994) to compute the solid viscosity from granular
temperature. The plot depicts higher viscosity in the core
of the tube and is in agreement with previous works from
Pries et al. (1992) and Gidaspow and Huang (2009). The ob-
served trend is attributed to higher RBC concentrations near
the core.

Figure 8: Difference in the volume fraction profile of RBCs de-
pending on the usage of normal stress term in Suspension modelling
method.

For the third part, we run two cases one with normal stress
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contribution enabled for total suspension stress and other
without it. It can be seen from Figure 8 that only when nor-
mal stress contribution is enabled particle migrate towards
core of the tube. This is consistent with observation of Mor-
ris and Boulay (1999). It was observed that the choice of the
anisotropy parameters (λ ) does not have a significant impact
on the final particle distribution.

It is also seen that when using slip boundary condition for
RBCs, simulations do predict the increase in concentration of
RBCs near the wall but the predicted increase is much higher
in comparison with the experimental findings. This indicates
that probable partial-slip treatment for RBCs at wall would
be more appropriate modelling. However, such an option is
not available within STAR-CCM+ with rheology model.

CONCLUSIONS

The study makes successful comparison of results from two
different multiphase approaches in modelling blood flow in
narrow tubes.

Both theories strongly establish the fact that the stress in-
duced diffusion is responsible for the migration of RBCs to-
wards the core of the channel thereby leading to the peak of
viscosity in the core of the channel, a phenomenon known as
the Fåhræus-Lindqvist effect. However, the variation in the
apparent viscosity of blood with respect to the vessel diam-
eter was not studied. A future study focusing on this aspect
would be immensely useful in developing deeper understand-
ing of the rheological aspects of blood flow in micro-vessels.

It is seen that the near wall results are more accurate when
using KTGF theory which can be attributed to the usage of
Johnson-Jackson boundary conditions with granular theory
which allows to account for the inelasticity of the particle-
wall collisions. The suspension modelling methodology does
not allow to control the degree of momentum dissipation near
the walls, though the results in this study highlight that a fu-
ture study into advanced wall treatment relevant to suspen-
sion modelling could allow to improve the near wall results
for the suspension model.
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