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ABSTRACT

Accelerated using the NVIDIA Compute Unified Device
Architecture  (CUDA),  a  framework  for  parallelized
computation  on  a  graphics  processing  unit  (GPU),
Barracuda  Virtual  Reactor®  Software  simulates  large
scale,  industrial  sized  units  using  the  Multi-Phase
Particle-in-Cell  (MP-PIC)  methodology.  The  critical
component  to  improved  efficiency  is  a  scalable  and
efficient  algorithm  for  mapping  discrete  Lagrangian
parcels to the Cartesian Eulerian grid. In each simulation
time step, 10 to 20 separate interpolation mappings occur,
motivating the importance of this algorithm. With parallel
implementation  of  this  algorithm,  write  contention
increases  as  parcel  count  per  cell  increases.  Naive
approaches  cannot  realize  the  full  potential  of  GPU
acceleration,  breaking down at higher particle loads and
increased write contention. We present a CUDA specific
implementation  that  scales  and  consistently  achieves  a
14x  speed-up  for  mapping  parcel  properties  to  a
Cartesian  grid  over  the  existing  and  basic  CPU
implementation.

NOMENCLATURE

CUDA
Compute Unified Device Architecture is a parallel 
programming framework developed by NVIDIA 
specifically for GPGPU computation.

kernel
CUDA routine executed on the GPU. Uses a CUDA 
grid dimension and CUDA block dimension to 
populate the multiprocessors.

warp
a group of 32 threads executed simultaneously, all 
threads execute the same instruction.
The first level of thread aggregation in CUDA.

thread 
a single line of execution in CUDA model

block
 a group of 32-512 threads, has 3 dimensions used for

algorithmic indexing and work assignment.
The second level of thread aggregation in CUDA.

global memory
Main memory on the GPU, typically gigabytes and 
accessible by all threads in all blocks.

shared memory
shared within a block, resides on multiprocessor, 
limited to about 48,000 bytes.

register memory
accessible only by owning thread, resides on 
multiprocessor, very limited usage typically ranges 
from 0-60 at 32-bits per register.

For more about CUDA framework see (Nickolls et.al. 
2008) and (NVIDIA 2015).

INTRODUCTION

Barracuda VR® utilizes the Multi-Phase Particle-in-Cell
(MP-PIC)  methodology to  simulate  transient  gas-solids
flow commonly found in many industrial processes. Able
to model polydisperse particle flows, this computer aided
engineering  software  focuses  application  in  simulating
industrial  scale units  (e.g. regenerators,  risers,  gasifiers,
cyclones,  strippers  and  pneumatic  transport  lines).
Discrete  elements,  or  computational  particles,  in  the
Lagrangian phase are used to represent a large number of
physical  particles  (e.g.  1016).  More  details  about
governing equations can be found in (Snider 2001).

Barracuda  VR  software  has  the  unique  capability  to
model  the full  range of solids  PSD and calculate  flows
with  any  particle  volume  fraction  from  dense  phase
(packed) to the dilute phase within the same domain.

Generally, fine grid resolution is not required because the
Lagrangian phase provides sub-grid resolution. However,
due to common end-user  model  scale,  engineering time
constraints,  particle  counts  in  the  millions  and
complicated  chemistry,  simulations  regularly  run  for
weeks to 1 or 2 months to reach a suitable 'quasi'-steady
state  solution.  That's  clear  motivation  for  improved
performance via parallelization.

What is parallelized in Barracuda VR?

For results  presented in the paper, Barracuda VR series
16  was  used.  This  was  the  first  version  to  offer  GPU
parallelization  with  an  accelerated  pressure  solver  and
acceleration  of  the  major  set  of  particle  operations
covering  advection,  wall  interaction,  interpolation
calculations, drag, etc. Between underlying data structure
changes  and  performance gains  from GPU acceleration,
significant  reductions in  wall  time  were achieved,  from
15% to 50% of original run time, or 2 to 6 times faster.

This paper focuses on a very specific part of the extension
implementation  of  the  MP-PIC  method  for  numerical
approximation of these large scale units, Particle-To-Grid
interpolation (on a Cartesian grid).

MOTIVATION FOR INTERPOLATION

Why is parallelizing the interpolation operator difficult?

The  difficult  part  to  parallelizing  the  interpolation
operator  is  the  many-to-one  relationship  between
particles  and  grid  cells.  This  is  further  compounded by
the  need  to  do  more  than  a  local  cell  interpolation  of
values.  In  Barracuda,  a  27  point  stencil  is  avoided  by
using a support grid for interpolated values and an 8 point
stencil.  In  the  CUDA framework,  one  approach  is  to
assign a thread to each particle, calculating interpolation 
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values  and  updating  surrounding  cells.  However,  this
approach suffers from large amounts of write  contention
due  to  particle  to  cell  ratios,  drastically  reducing
concurrency, and thus, performance. A second approach is
to assign a thread to each cell, where local cell values are
maintained  while  working through a subset  of particles
that affect that cell. The second approach allows for more
concurrency  but  still  has  many  challenges  for  best
performance.  Implementation  details  of  the  second
approach  will  be  discussed  and  how  it  applies  to
Lagrangian interpolation to a Cartesian grid.

Interpolation is the Crux

In the Barracuda VR code base, other operations provide
challenges, require significant effort or give better speed-
up than  the interpolation to a Cartesian  grid.  However,
due to the highly coupled nature  of the Lagrangian and
Eulerian phases, Particle-To-Grid interpolation occurs 10
to  20  times  within  a  single  simulation  time  step.
Compared  to  other  routines  found  in  a  MP-PIC code,
interpolation  is  the  most  challenging to  parallelize  and
the  most  critical  due to widespread  use  across  a single
simulation  time  step.  In  serial,  interpolation  does  not
account for much run time, but in parallel other routines
with  better  performance  require  less  run  time
highlighting  interpolation as a critical routine in need of
the best possible solution. Figure 1 helps motivate this.

Figure  1: Percentage  of  total  run  time  for  3  routine
classes:  Eulerian  to  Lagrangian  mapping  (E  >  L),
Interpolation (L > E) and Geometry to Lagrangian a.k.a.
ray  tracing  (G  >  L),  using  a  typical  customer  sized
problem. Note: CPU total is 73%, and GPU total is 30%. 

Comparing to Related Work

Prior work investigating the use of CUDA to accelerate
interpolation operators exists,  reporting that  Particle-To-
Grid  interpolation  could  achieve  17.4x  speed-up  for  a
single  value  using  single-precision  (Stantchev,  Dorland
and  Gumerov,  2008).  The  current  algorithm  used  in
Barracuda VR provides a 14x speed-up for interpolation
of 3 values in double precision. Certainly, when mapping
many Lagrangian particles to a single Eulerian grid cell,
write  contention  will  exist.  Because  of  this,  naive
approaches using atomic operations will not perform well
at high load, which is vital for Barracuda VR, where, on
average, 10 particles per 1 grid cell is a starting point for
resolution.  Particles  collected  together  at  close  pack
generate larger ratios, with 100:1 or larger possible. 

IMPLEMENTATION

Barracuda VR MP-PIC Framework

Barracuda VR uses a Cartesian grid for its simplicity and
robustness.  The  MP-PIC  method  makes  this  option

possible  via  sub-grid  resolution  from  the  Lagrangian
phase and the close coupling between the Lagrangian and
Eulerian  phases.  The  principle  interpolation  routine
handles mapping particle volume to the Eulerian grid. A
support grid and 8 point stencil is used. A particular cell
in the grid might normally “see” 26 neighbors. However,
the  support  grid,  which  is  staggered,  reduces  the  total
volume of influence, effectively excluding particles more
than  a  cell  length  away from the  center  of the  cell  in
consideration. Figure 2 should help understanding.

Figure 2: 2D Cartesian grid with staggered grid overlaid
in  red.  The  white  cell  in  center  receives  interpolated
particle values located in 4 supporting cells, colored red.

Detailed Description

Development  of an  effective CUDA implementation  for
Particle-To-Grid interpolation requires considerable effort
compared  to  most  other  routines  due  to  the  write
contention. Atomic operations give abysmal performance
for ratios much more than 2:1. A factor here is the lack of
hardware support for double-precision atomic operations
in  CUDA 5.0.  Although,  even  with  hardware  support,
atomic  operations  will  not  scale.  The  next  step  is  a
slightly less naïve approach where each cell is allocated a
single CUDA thread.  With particles  sorted and a list  of
particle  indexes  per  cell,  each  thread  works  on  the
particles in that cell, calculating 8 interpolation values for
its support grid and storing them for later reduction. For
small  problems  and  smaller  ratios,  this  may give a  5x
speed-up over serial but degrades when subjected to real
world  problems,  the  issue  being  lack  of  focus  of
computational  resources.  Some  cells  have  0  particles,
some 10 and some 100.  Pair  that  with warp divergence
due  to  mismatch  in  particle  counts  per  cell  and
performance does not scale.

Extra Requirement – Sorting

Serial  interpolation  loops  over  particles  and  applies
interpolated values directly. Our parallel implementations
require that particles be sorted into cell bins. This is done
using  a  standard  sort  routine  from Thrust,  a  C++ STL
style  parallel  algorithms  library  (Hoberock  and  Bell
2011).  Particle  sorting  is  required  anytime  particles
move. Required once per time step, the extra cost of this
operation  can  be  amortized  across  all  interpolation
operations  in  that  time step.  The results  presented  take
this into account, assuming that at least 10 interpolation
operations happen per time step. In other words, 10% of
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particle  sorting  time  is  included  in  results  that  present
speed-up over CPU in Figure 4. 

A method for 10x – Zhao's Method

A  better  implementation,  by  Paul  Zhao  of  CPFD
Software,  uses  8  threads per  cell  to speed  calculations.
Particle  interpolation  values  are  calculated  within  the
interpolation kernel. CUDA threads are allocated on a per
cell basis with blockDim(8, 16, 1). 8 threads per cell with
1 per particle, with each block processing 16 cells. Each
thread handles  1/8th  of the particles  in  a cell  using its
own shared memory to track the 8 interpolated values for
particle area, mass and volume. Shared memory totals to
24,576  bytes  per  CUDA block  and  1526  bytes  /  cell.
Gathering the values requires  writing to  shared memory
per particle,  followed by 3 folding additions to tally all
interpolated  values  for a  cell.  Finally, one thread  (from
each cell) writes the 8 interpolated values for each of the
3  particle  properties  to  global  memory for  further
collection  and  reduction  in  a  separate  kernel,  which  is
included in timings results.

Pseudo-code for Zhao's Method

// Per cell, thread parallel in y
// tX denotes threads in x dim. of block
// tY denotes threads in y dim. of block
sip = firstSortedParticleIndex(cell)
eip = lastSortedParticleIndex(cell)
for(ip = sip + tX; ip < eip; ip += 8) {
  foreach(r in {0..7}) {
    // Sum to shared memory.
    s_a[tY][r] += InterpArea(ip, r)
    // Again for mass and volume.
  }
}
__syncthreads();
// Reduce shared memory (3 folds).
foreach(f in {4, 2, 1}) {
  // thread parallel in x
  if(tX < f) {
    foreach(r in {0..7}) {
      // Combine shared memory
      s_a[tY][r] += s_a[tY+f][r]
      // Again for mass and volume.
    }
    __syncthreads();
  }
}
// Write values to global cell memory

Corners Method

To improve on Zhao's method, threads are allocated for 8
supporting cells,  a.k.a.  Corners,  with  blockDim(32,8,1).
Each of the  8  threads work  on a  single  particle  and  4
groups  of 8  threads are  used  per  grid  cell,  each group
processing  1/4th  of  the  particles  in  that  cell.  CUDA
blocks each  process  8  cells.  Several  advantages  then
arise. The first,  register memory is reduced. Each thread
only tracks 3 values rather than 24. This then also reduces
shared  memory requirements  because  values  to  be
gathered  are  more  focused.  Shared  memory usage  is
important  to  note  due  to  the  effect  on  multiprocessor
occupancy, which tends to indicate  overall  performance.
Each  CUDA block uses  6144  bytes  of  shared  memory,
which is 768 bytes per cell.  Second, when gathering the
results, only 2 folding additions are needed and reduction
is synchronized at the  warp level, which performs better
than  synchronization  between  multiple  warps.  Third,
global write concurrency is increased by using 8 threads
to  write  the  8  interpolated  values  for  each  of  the  3
particle properties.

Pseudo-code for Corners Method

// Per cell, thread parallel in x & y
// tX denotes threads in x dim. of block
// tY denotes threads in y dim. of block
sip = firstSortedParticleIndex(cell)
eip = lastSortedParticleIndex(cell)
bgn = tX / 8
stp = blockDim.x / 8
for(ip = sip + bgn; ip < eip; ip += stp) {
  // Sum to thread local memory
  l_area += InterpArea(ip, r)
  // Again for mass and volume.
}

i = tX + blockDim.x*tY

// Write to shared memory.
s_a[i] = l_area // mass and volume

// Reduce shared memory (2 folds).
foreach(f in {16, 8}) {
  if(tX < f) {
    s_a[i] += s_a[i+f]
    // Again for mass and volume.
  }
}
// Write values to global cell memory

RESULTS

Results  obtained  were  sufficient  to  focus  on  other
routines for acceleration. In typical end-user applications,
GPU  acceleration  exhibits  a  10x  speed-up  over  the
existing implementation executed serially on a CPU with
level 2 optimization.  Zhao's method gives 10x speed-up
for  typical  commercial  end-user  usage.  The  Corners
method significantly increases  acceleration in  the  lower
range of particle counts and overall performs better than
Zhao's method on the particle counts tested. 

A simple  CPU comparison  is  used  due  to development
time  constraints,  to  compare  against  existing  end-user
experience  in  the  released  product  and  to  provide  a
common point of comparison for future accelerations.

Below are the raw numbers followed by easier to digest
graphs, each with a short discussion.

Millions of
Particles

(M1) 
CPU

(M1) 
GPU 
Zhao

(M2) 
GPU 
Zhao

GPU
sort

(M2) 
GPU Corners

3.8 187.2 16.1 17.5 11.5 10.1
5.1 184.6 19.7 22.5 14.0 12.9
5.9 213.0 21.7 25.4 16.0 14.5
7.0 258.5 23.3 28.3 17.5 16.8
9.1 310.7 28.3 33.7 22.5 22.2
10.2 341.4 30.1 36.9 27.5 25.1
11.7 390.4 33.0 40.0 28.0 29.6

Table 1: Particle-to-Grid interpolation timings. All times 
are in milliseconds.

Multiple  machines  were  used  for  the  comparison  as  a
result  of hardware  configuration,  denoted  by (M1)  and
(M2). Machine 1 uses an Intel i7-4770 @ 3.5 GHz CPU
and a NVIDIA GeForce GTX Titan  GPU (with  double-
precision  on).  Machine  2 uses  an  Intel  i7-X980 @ 3.3
GHZ CPU and  a  NVIDIA Tesla  K40c  GPU.  All  CPU
timings  use  the  faster  processor  of  M1.  Results  come
from  a  typical  end-user  problem  with  complicated
internal  geometry  with  330,000  grid  cells  and  much
larger  particle  counts.  The simulation is  isothermal  and
non-reacting.
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In Figure  3,  the  Corners  method is  plotted  against  the
Zhao method. The difference between the methods as run
on Machine 2 are used to correlate the CPU interpolation
to the Corners method. 

Figure 3: Particle-to-Grid interpolation timings of CUDA
kernels using Zhao's method and the Corners method.

In Figure 4, the final results show that Zhao's method is
generally 10 times faster and the Corners method should
consistently be 16 times faster than the baseline CPU for
Particle-to-Grid interpolation. Sort times are not ignored;
speed-up was calculated using the following:

SpeedUp= CPUTime
MethodTime+0.1∗sort

Sort times on the GPU differed little  between the Titan
and Tesla, hence a single column in Table 1. Another less
interesting comparison is between the sort times and the
Corners method timings, which are fairly close together.
This  was  an  unexpected  surprise  that  interpolating  3
double-precision values for all particles to the grid might
take less time than sorting those particles.

CONCLUSION

Parallelization of any commercial code base is daunting.
During our efforts,  profiling code provided keen insight
into the  next  course  of action,  which is  very important
because parallelization does not happen overnight -even
with directives. Barracuda VR 17, which was released in
Q2 of 2015,  has improved acceleration for several more
routines, reducing total wall time and further highlighting
the need for a top notch parallel  implementation of the
Particle-to-Grid  interpolation.  Pair  this  with  the  highly
coupled Lagrangian and Eulerian phase and any possible
algorithmic  improvement  to  interpolation  results  in  a
noticeable improvement in performance.

The Corners method for interpolating Lagrangian values
to  a  Cartesian  grid  is  presented.  The  speed  up  over  a
basic CPU implementation is consistently 14 times faster.

Speculation

To further improve the Corners method, increasing global
write concurrency by spreading work to idle  threads may
be  possible.  Using  warp  specific operations  for quickly
swapping values between  threads  in a  warp could speed

calculation  by  eliminating  the  need  to  use  shared
memory.  

Figure  4: Observed  speed-ups  for  Zhao's  methods  and
Corners method both include 10% of the time needed to
sort particles included.
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