
Eleventh International Conference on CFD in the Minerals and Process Industries
CSIRO, Melbourne, Australia
7-9 December 2015

CUDA ACCELERATED LAGRANGIAN INTERPOLATION TO CARTESIAN GRID

Andrew D. LARSON1*, Travis CARVER1 and Paul ZHAO1

1 CPFD Software LLC, Albuquerque, New Mexico, USA
*Corresponding author, E-mail address: andrew.larson@cpfd-software.com

ABSTRACT

Accelerated using the NVIDIA Compute Unified Device
Architecture (CUDA), a framework for parallelized
computation on a graphics processing unit (GPU),
Barracuda Virtual Reactor® Software simulates large
scale, industrial sized units using the Multi-Phase
Particle-in-Cell (MP-PIC) methodology. The critical
component to improved efficiency is a scalable and
efficient algorithm for mapping discrete Lagrangian
parcels to the Cartesian Eulerian grid. In each simulation
time step, 10 to 20 separate interpolation mappings occur,
motivating the importance of this algorithm. With parallel
implementation of this algorithm, write contention
increases as parcel count per cell increases. Naive
approaches cannot realize the full potential of GPU
acceleration, breaking down at higher particle loads and
increased write contention. We present a CUDA specific
implementation that scales and consistently achieves a
14x speed-up for mapping parcel properties to a
Cartesian grid over the existing and basic CPU
implementation.

NOMENCLATURE

CUDA
Compute Unified Device Architecture is a parallel
programming framework developed by NVIDIA
specifically for GPGPU computation.

kernel
CUDA routine executed on the GPU. Uses a CUDA
grid dimension and CUDA block dimension to
populate the multiprocessors.

warp
a group of 32 threads executed simultaneously, all
threads execute the same instruction.
The first level of thread aggregation in CUDA.

thread
a single line of execution in CUDA model

block
 a group of 32-512 threads, has 3 dimensions used for

algorithmic indexing and work assignment.
The second level of thread aggregation in CUDA.

global memory
Main memory on the GPU, typically gigabytes and
accessible by all threads in all blocks.

shared memory
shared within a block, resides on multiprocessor,
limited to about 48,000 bytes.

register memory
accessible only by owning thread, resides on
multiprocessor, very limited usage typically ranges
from 0-60 at 32-bits per register.

For more about CUDA framework see (Nickolls et.al.
2008) and (NVIDIA 2015).

INTRODUCTION

Barracuda VR® utilizes the Multi-Phase Particle-in-Cell
(MP-PIC) methodology to simulate transient gas-solids
flow commonly found in many industrial processes. Able
to model polydisperse particle flows, this computer aided
engineering software focuses application in simulating
industrial scale units (e.g. regenerators, risers, gasifiers,
cyclones, strippers and pneumatic transport lines).
Discrete elements, or computational particles, in the
Lagrangian phase are used to represent a large number of
physical particles (e.g. 1016). More details about
governing equations can be found in (Snider 2001).

Barracuda VR software has the unique capability to
model the full range of solids PSD and calculate flows
with any particle volume fraction from dense phase
(packed) to the dilute phase within the same domain.

Generally, fine grid resolution is not required because the
Lagrangian phase provides sub-grid resolution. However,
due to common end-user model scale, engineering time
constraints, particle counts in the millions and
complicated chemistry, simulations regularly run for
weeks to 1 or 2 months to reach a suitable 'quasi'-steady
state solution. That's clear motivation for improved
performance via parallelization.

What is parallelized in Barracuda VR?

For results presented in the paper, Barracuda VR series
16 was used. This was the first version to offer GPU
parallelization with an accelerated pressure solver and
acceleration of the major set of particle operations
covering advection, wall interaction, interpolation
calculations, drag, etc. Between underlying data structure
changes and performance gains from GPU acceleration,
significant reductions in wall time were achieved, from
15% to 50% of original run time, or 2 to 6 times faster.

This paper focuses on a very specific part of the extension
implementation of the MP-PIC method for numerical
approximation of these large scale units, Particle-To-Grid
interpolation (on a Cartesian grid).

MOTIVATION FOR INTERPOLATION

Why is parallelizing the interpolation operator difficult?

The difficult part to parallelizing the interpolation
operator is the many-to-one relationship between
particles and grid cells. This is further compounded by
the need to do more than a local cell interpolation of
values. In Barracuda, a 27 point stencil is avoided by
using a support grid for interpolated values and an 8 point
stencil. In the CUDA framework, one approach is to
assign a thread to each particle, calculating interpolation

Copyright © 2015 CSIRO Australia 1

values and updating surrounding cells. However, this
approach suffers from large amounts of write contention
due to particle to cell ratios, drastically reducing
concurrency, and thus, performance. A second approach is
to assign a thread to each cell, where local cell values are
maintained while working through a subset of particles
that affect that cell. The second approach allows for more
concurrency but still has many challenges for best
performance. Implementation details of the second
approach will be discussed and how it applies to
Lagrangian interpolation to a Cartesian grid.

Interpolation is the Crux

In the Barracuda VR code base, other operations provide
challenges, require significant effort or give better speed-
up than the interpolation to a Cartesian grid. However,
due to the highly coupled nature of the Lagrangian and
Eulerian phases, Particle-To-Grid interpolation occurs 10
to 20 times within a single simulation time step.
Compared to other routines found in a MP-PIC code,
interpolation is the most challenging to parallelize and
the most critical due to widespread use across a single
simulation time step. In serial, interpolation does not
account for much run time, but in parallel other routines
with better performance require less run time
highlighting interpolation as a critical routine in need of
the best possible solution. Figure 1 helps motivate this.

Figure 1: Percentage of total run time for 3 routine
classes: Eulerian to Lagrangian mapping (E > L),
Interpolation (L > E) and Geometry to Lagrangian a.k.a.
ray tracing (G > L), using a typical customer sized
problem. Note: CPU total is 73%, and GPU total is 30%.

Comparing to Related Work

Prior work investigating the use of CUDA to accelerate
interpolation operators exists, reporting that Particle-To-
Grid interpolation could achieve 17.4x speed-up for a
single value using single-precision (Stantchev, Dorland
and Gumerov, 2008). The current algorithm used in
Barracuda VR provides a 14x speed-up for interpolation
of 3 values in double precision. Certainly, when mapping
many Lagrangian particles to a single Eulerian grid cell,
write contention will exist. Because of this, naive
approaches using atomic operations will not perform well
at high load, which is vital for Barracuda VR, where, on
average, 10 particles per 1 grid cell is a starting point for
resolution. Particles collected together at close pack
generate larger ratios, with 100:1 or larger possible.

IMPLEMENTATION

Barracuda VR MP-PIC Framework

Barracuda VR uses a Cartesian grid for its simplicity and
robustness. The MP-PIC method makes this option

possible via sub-grid resolution from the Lagrangian
phase and the close coupling between the Lagrangian and
Eulerian phases. The principle interpolation routine
handles mapping particle volume to the Eulerian grid. A
support grid and 8 point stencil is used. A particular cell
in the grid might normally “see” 26 neighbors. However,
the support grid, which is staggered, reduces the total
volume of influence, effectively excluding particles more
than a cell length away from the center of the cell in
consideration. Figure 2 should help understanding.

Figure 2: 2D Cartesian grid with staggered grid overlaid
in red. The white cell in center receives interpolated
particle values located in 4 supporting cells, colored red.

Detailed Description

Development of an effective CUDA implementation for
Particle-To-Grid interpolation requires considerable effort
compared to most other routines due to the write
contention. Atomic operations give abysmal performance
for ratios much more than 2:1. A factor here is the lack of
hardware support for double-precision atomic operations
in CUDA 5.0. Although, even with hardware support,
atomic operations will not scale. The next step is a
slightly less naïve approach where each cell is allocated a
single CUDA thread. With particles sorted and a list of
particle indexes per cell, each thread works on the
particles in that cell, calculating 8 interpolation values for
its support grid and storing them for later reduction. For
small problems and smaller ratios, this may give a 5x
speed-up over serial but degrades when subjected to real
world problems, the issue being lack of focus of
computational resources. Some cells have 0 particles,
some 10 and some 100. Pair that with warp divergence
due to mismatch in particle counts per cell and
performance does not scale.

Extra Requirement – Sorting

Serial interpolation loops over particles and applies
interpolated values directly. Our parallel implementations
require that particles be sorted into cell bins. This is done
using a standard sort routine from Thrust, a C++ STL
style parallel algorithms library (Hoberock and Bell
2011). Particle sorting is required anytime particles
move. Required once per time step, the extra cost of this
operation can be amortized across all interpolation
operations in that time step. The results presented take
this into account, assuming that at least 10 interpolation
operations happen per time step. In other words, 10% of

Copyright © 2015 CSIRO Australia 2

E > L L > E G > L
0

10

20

30

40

CPU
GPU

%

particle sorting time is included in results that present
speed-up over CPU in Figure 4.

A method for 10x – Zhao's Method

A better implementation, by Paul Zhao of CPFD
Software, uses 8 threads per cell to speed calculations.
Particle interpolation values are calculated within the
interpolation kernel. CUDA threads are allocated on a per
cell basis with blockDim(8, 16, 1). 8 threads per cell with
1 per particle, with each block processing 16 cells. Each
thread handles 1/8th of the particles in a cell using its
own shared memory to track the 8 interpolated values for
particle area, mass and volume. Shared memory totals to
24,576 bytes per CUDA block and 1526 bytes / cell.
Gathering the values requires writing to shared memory
per particle, followed by 3 folding additions to tally all
interpolated values for a cell. Finally, one thread (from
each cell) writes the 8 interpolated values for each of the
3 particle properties to global memory for further
collection and reduction in a separate kernel, which is
included in timings results.

Pseudo-code for Zhao's Method

// Per cell, thread parallel in y
// tX denotes threads in x dim. of block
// tY denotes threads in y dim. of block
sip = firstSortedParticleIndex(cell)
eip = lastSortedParticleIndex(cell)
for(ip = sip + tX; ip < eip; ip += 8) {
 foreach(r in {0..7}) {
 // Sum to shared memory.
 s_a[tY][r] += InterpArea(ip, r)
 // Again for mass and volume.
 }
}
__syncthreads();
// Reduce shared memory (3 folds).
foreach(f in {4, 2, 1}) {
 // thread parallel in x
 if(tX < f) {
 foreach(r in {0..7}) {
 // Combine shared memory
 s_a[tY][r] += s_a[tY+f][r]
 // Again for mass and volume.
 }
 __syncthreads();
 }
}
// Write values to global cell memory

Corners Method

To improve on Zhao's method, threads are allocated for 8
supporting cells, a.k.a. Corners, with blockDim(32,8,1).
Each of the 8 threads work on a single particle and 4
groups of 8 threads are used per grid cell, each group
processing 1/4th of the particles in that cell. CUDA
blocks each process 8 cells. Several advantages then
arise. The first, register memory is reduced. Each thread
only tracks 3 values rather than 24. This then also reduces
shared memory requirements because values to be
gathered are more focused. Shared memory usage is
important to note due to the effect on multiprocessor
occupancy, which tends to indicate overall performance.
Each CUDA block uses 6144 bytes of shared memory,
which is 768 bytes per cell. Second, when gathering the
results, only 2 folding additions are needed and reduction
is synchronized at the warp level, which performs better
than synchronization between multiple warps. Third,
global write concurrency is increased by using 8 threads
to write the 8 interpolated values for each of the 3
particle properties.

Pseudo-code for Corners Method

// Per cell, thread parallel in x & y
// tX denotes threads in x dim. of block
// tY denotes threads in y dim. of block
sip = firstSortedParticleIndex(cell)
eip = lastSortedParticleIndex(cell)
bgn = tX / 8
stp = blockDim.x / 8
for(ip = sip + bgn; ip < eip; ip += stp) {
 // Sum to thread local memory
 l_area += InterpArea(ip, r)
 // Again for mass and volume.
}

i = tX + blockDim.x*tY

// Write to shared memory.
s_a[i] = l_area // mass and volume

// Reduce shared memory (2 folds).
foreach(f in {16, 8}) {
 if(tX < f) {
 s_a[i] += s_a[i+f]
 // Again for mass and volume.
 }
}
// Write values to global cell memory

RESULTS

Results obtained were sufficient to focus on other
routines for acceleration. In typical end-user applications,
GPU acceleration exhibits a 10x speed-up over the
existing implementation executed serially on a CPU with
level 2 optimization. Zhao's method gives 10x speed-up
for typical commercial end-user usage. The Corners
method significantly increases acceleration in the lower
range of particle counts and overall performs better than
Zhao's method on the particle counts tested.

A simple CPU comparison is used due to development
time constraints, to compare against existing end-user
experience in the released product and to provide a
common point of comparison for future accelerations.

Below are the raw numbers followed by easier to digest
graphs, each with a short discussion.

Millions of
Particles

(M1)
CPU

(M1)
GPU
Zhao

(M2)
GPU
Zhao

GPU
sort

(M2)
GPU Corners

3.8 187.2 16.1 17.5 11.5 10.1
5.1 184.6 19.7 22.5 14.0 12.9
5.9 213.0 21.7 25.4 16.0 14.5
7.0 258.5 23.3 28.3 17.5 16.8
9.1 310.7 28.3 33.7 22.5 22.2
10.2 341.4 30.1 36.9 27.5 25.1
11.7 390.4 33.0 40.0 28.0 29.6

Table 1: Particle-to-Grid interpolation timings. All times
are in milliseconds.

Multiple machines were used for the comparison as a
result of hardware configuration, denoted by (M1) and
(M2). Machine 1 uses an Intel i7-4770 @ 3.5 GHz CPU
and a NVIDIA GeForce GTX Titan GPU (with double-
precision on). Machine 2 uses an Intel i7-X980 @ 3.3
GHZ CPU and a NVIDIA Tesla K40c GPU. All CPU
timings use the faster processor of M1. Results come
from a typical end-user problem with complicated
internal geometry with 330,000 grid cells and much
larger particle counts. The simulation is isothermal and
non-reacting.

Copyright © 2015 CSIRO Australia 3

In Figure 3, the Corners method is plotted against the
Zhao method. The difference between the methods as run
on Machine 2 are used to correlate the CPU interpolation
to the Corners method.

Figure 3: Particle-to-Grid interpolation timings of CUDA
kernels using Zhao's method and the Corners method.

In Figure 4, the final results show that Zhao's method is
generally 10 times faster and the Corners method should
consistently be 16 times faster than the baseline CPU for
Particle-to-Grid interpolation. Sort times are not ignored;
speed-up was calculated using the following:

SpeedUp= CPUTime
MethodTime+0.1∗sort

Sort times on the GPU differed little between the Titan
and Tesla, hence a single column in Table 1. Another less
interesting comparison is between the sort times and the
Corners method timings, which are fairly close together.
This was an unexpected surprise that interpolating 3
double-precision values for all particles to the grid might
take less time than sorting those particles.

CONCLUSION

Parallelization of any commercial code base is daunting.
During our efforts, profiling code provided keen insight
into the next course of action, which is very important
because parallelization does not happen overnight -even
with directives. Barracuda VR 17, which was released in
Q2 of 2015, has improved acceleration for several more
routines, reducing total wall time and further highlighting
the need for a top notch parallel implementation of the
Particle-to-Grid interpolation. Pair this with the highly
coupled Lagrangian and Eulerian phase and any possible
algorithmic improvement to interpolation results in a
noticeable improvement in performance.

The Corners method for interpolating Lagrangian values
to a Cartesian grid is presented. The speed up over a
basic CPU implementation is consistently 14 times faster.

Speculation

To further improve the Corners method, increasing global
write concurrency by spreading work to idle threads may
be possible. Using warp specific operations for quickly
swapping values between threads in a warp could speed

calculation by eliminating the need to use shared
memory.

Figure 4: Observed speed-ups for Zhao's methods and
Corners method both include 10% of the time needed to
sort particles included.

ACKNOWLEDGMENTS

-- Partial funding of work embodied in the paper was
supplied by U.S. Department of Energy National Energy
Technology Laboratory (NETL).
-- Dr. Chris Guenther at NETL for support of the research
and development needed for this work.
-- Stan Posey at NVIDIA for promoting our work via the
latest hardware and via other technical resources.

REFERENCES

ANDREWS M. J. and O'ROURKE P. J., (1996) "The
multiphase particle-in-cell (MP-PIC) method for dense
particle flow" Int. J. Multiphase Flow, 22, 379-402.

SNIDER D. M., (2001) “An Incompressible three
dimensional multiphase particle-in-cell model for dense
particle flows” J. of Computational Physics, 170, 523-
549.

SNIDER D.M., CLARK S.M. and O'ROURKE P.J.,
(2011) “Eulerian–Lagrangian method for three-
dimensional thermal reacting flow with application to
coal gasifiers” Chemical Engineering Science, 66, 1285–
1295.

STANTCHEV G., DORLAND W. and GUMEROV N.,
(2008) “Fast Parallel Particle-To-Grid interpolation for
plasma PIC simulations on the GPU” J. of Parallel
Distributed Computing, 68, 1339-1349.

NICKOLLS J., BUCK I., GARLAND M. and SKADRON
K., (2008) “Scalable Parallel Programming with CUDA”
ACM Queue, vol. 6 no. 2, 40.

HOBEROCK J., and BELL N., “Thrust: A parallel
template library” 2011. Version 1.4.0

NVIDIA "CUDA C Programming Guide” July 2015
http://docs.nvidia.com/cuda/cuda-c-programming-guide

Copyright © 2015 CSIRO Australia 4

3.8 5.1 5.9 7.0 9.1 10.2 11.7
10

15

20

25

30

35

40 (M1) Zhao

(M2) Zhao

(M2) Corners

millions of particles

m
ill

is
e

co
n

d
s

3.8 5.1 5.9 7.0 9.1 10.2 11.7
8

10

12

14

16

18

20

22

(M1) CPU / Zhao

 CPU / Corners

millions of particles

S
p

e
e

d
-u

p
 o

ve
r

C
P

U
 in

te
rp

o
la

tio
n

http://docs.nvidia.com/cuda/cuda-c-programming-guide

	ABSTRACT
	NOMENCLATURE
	INTRODUCTION
	What is parallelized in Barracuda VR?

	MOTIVATION for INTERPOLATION
	Why is parallelizing the interpolation operator difficult?
	Interpolation is the Crux
	Comparing to Related Work

	IMPLEMENTATION
	Barracuda VR MP-PIC Framework
	Detailed Description
	Extra Requirement – Sorting
	A method for 10x – Zhao's Method
	Pseudo-code for Zhao's Method

	Corners Method
	Pseudo-code for Corners Method

	RESULTS
	CONCLUSION
	Speculation

	ACKNOWLEDGMENTS
	REFERENCES

