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ABSTRACT 

Two-fluid (Eulerian–Eulerian) simulation of bubbly flow 

normally assumes that bubble size is smaller than the 

computational cell size, although the formulation should 

continue to be valid as mesh is refined below bubble size. 

In some situations, one may need to use a mesh that is finer 

than the bubble size, but it is argued that the standard two-

fluid equations fail in such situations. Averaging of the 

Navier–Stokes equations is analysed to understand this 

effect, and equations that account for the finite size effect 

are derived. As an example, finite bubble size effects are 

shown to be important in a simulation of a water model of 

an aluminium reduction cell. In this case, bubbles are 

generated on the lower face of submerged anodes, slide to 

the edge of the anodes and rise to the liquid surface. The 

bubble plumes at the side of the anodes are predicted to be 

too narrow unless finite size effects are taken into account.  

An approximate method for correcting the usual two-fluid 

equations is trialled and is shown to predict void 

distribution in qualitative agreement with observations 

from the water model. 

NOMENCLATURE 

CFS finite size effect coefficient, used in eqn. (10) 

d particle diameter 

Fi momentum source on phase i due to body forces 

Mi momentum source due to interfacial transfer 

n number density of particles 

nk number density of k-th size fraction of particles 

Np number of particles 

p pressure 

pc pdf of particle centres 

r  position vector (x,y,z) 

R radius of particle 

t time 

uk  averaged velocity of phase k 

vk  instantaneous velocity of phase k 

V volume 

Vp volume of particle 

 

 

α average void fraction 

k density of phase k 

eff effective eddy viscosity 

ϕk    characteristic phase function 

INTRODUCTION 

The two-fluid (commonly called the “Eulerian–Eulerian”) 

method for simulating two-phase flows such as bubbly flow 

is based on solving sets of continuity, momentum and 

energy equations for each phase, with the equations for each 

phase defined over the entire domain. The method should 

be distinguished from other multi-material Eulerian–

Eulerian methods which solve for instantaneous equations 

defined only over the part of the domain occupied by the 

particular phase.  

The equations of the two-fluid model are derived by 

averaging (usually ensemble-averaging) of the local 

instantaneous equations for single-phase flow (Drew and 

Passman, 1999; Kataoka and Serizawa, 1989). Two sets of 

balance equations for mass and momentum are obtained. 

While the assumption is usually made that the dispersed 

phase (particle, bubble or drop) size is much smaller than 

the control volume used in the averaging, the partial 

differential equations so derived should be generally valid, 

so that, in particular, as the mesh size in a simulation is 

reduced below the bubble size, the solution should be 

independent of mesh size. 

Feng et al. (2015) have pointed out a situation in which this 

is not true: when relatively large bubbles released at the 

bottom edge of an anode, the width of the computed 

voidage distribution representing the bubble plume reflects 

the (narrow) initial width of the bubble at the anode corner, 

rather than the (much wider) diameter of the bubbles when 

they equilibrate to their rising shape. 

 

 

 

Figure 1: Schematic diagram of bubble formation at an 

orifice illustrating the issue that arises when bubble size is 

larger than mesh size..  

 

This issue was encountered several years ago by researchers 

simulating gas injection into liquids: the initial bubble size 

formed at nozzles was often much larger than the nozzle 

diameter, and indeed larger than the desired mesh size. This 

is illustrated schematically in Figure 1. In these cases, if the 

gas inlet boundary condition is set on the orifice only, the 

initial voidage distribution just above the orifice does not 

correctly reproduce the voidage distribution of bubbles 

generated at the orifice. To overcome this issue, the 
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boundary condition for the voidage distribution was taken 

to have the width of bubbles formed at the nozzle (Schwarz 

and Turner, 1988; Davidson, 1990; Schwarz, 1996).  That 

is, it was assumed that the gas enters the bath with the 

bubble velocity through an apparent orifice having a 

diameter equal to the bubble diameter, which can be 

estimated by empirical and theoretical correlations. 

At the time, researchers treated the bubble injection issue as 

an exceptional case to be solved by special treatment. 

Indeed one may think that the cause of the problem is the 

neglect of surface tension forces. In fact, as we will see, the 

issue is more general, and arises from the neglect of critical 

information about phase structure (and surface tension is 

just one of the factors influencing phase structure). 

In principle, ensemble averaging should be capable of 

taking into account such issues. However, up until now, this 

has not been done, probably because the phase structure has 

been assumed to be on a scale smaller than the 

computational mesh. Drew (1983) admits that there has 

been no general treatment of interfacial geometry in the 

two-fluid model formulation, with the best attempts being 

the derivation of equations for conservation of interfacial 

surface area (e.g., Ishii, 1975; Kocamustafaogullari and 

Ishii, 1995; Delhaye, 2001).  

It may be argued that when phase structure is larger than 

mesh size, simulation can be carried out more accurately 

using a Volume of Fluid (VOF) approach. However, 

simulation of large-scale complex multi-phase industrial 

applications is still very challenging task for a VOF method, 

particularly as many simulations may be required for 

optimisation purposes in an industrial context. Until such 

simulations are possible in a reasonable time-frame, a more 

pragmatic approach needs to be taken: Schwarz and Feng 

(2015) describe a multi-scale approach where information 

from detailed VOF models of the sort described by Zhang 

et al. (2013) and Zhao et al. (2014) are used to improve 

closures required by two-fluid simulations of the sort 

described by Feng et al. (2015). 

In this paper we analyse the cause of the problem outlined 

above, derive equations which should overcome the issue 

and give an example of the problem in an industrial case of 

importance, namely bubbles rising beside an anode in an 

aluminium reduction cell. 

TWO-FLUID MODEL AVERAGING 

Volume Fraction Averaging 

In order to explain the essence of the issue without 

confusing the matter with surface tension effects, we 

consider the case of non-deformable particles. Whether 

these are solid, liquid or gaseous is not relevant, though 

solid particles are most easily comprehended. The 

discussion can be extended to deformable particles, though 

the physical issue of surface tension must be accounted for. 

First consider averaging of the continuity equations. The 

local instantaneous equations of the conservation of mass 

are: 
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 (Kataoka, 1986; Kataoka and Serizawa, 1989), where they 

define a characteristic function, ϕk, of phase k as unity if 

that phase is present at the point, and zero otherwise. The 

space or time-averaged value of  ϕ1 corresponds to the "void 

fraction" if phase 1 is the bubble phase. 

Kataoka and Serizawa (1987) carry out averaging of eqn. 

(1) as statistical averaging, though the averaging could 

equally well be spatial or temporal. In this averaging 

process, there are no assumptions made about the phase 

structure, so the averaging at each point is independent of 

that at other points. 

Consider two points A and C separated by a distance greater 

than the particle diameter. Then the average volume 

fractions at these two points will be statistically 

independent (apart from physical interaction effects 

between particles, such as clustering, which are explicitly 

accounted for by hydrodynamics, inter-particle forces, etc.). 

Now consider the averaging procedure for volume fraction 

at two points, A and B, which are closer together than the 

particle diameter, d. Then the values of the statistical 

average volume fraction at points A and B are not 

statistically independent. For example, if the separation is 

d/4, then it is quite likely that if there is particle phase at 

point A, there will also be particle phase at point B at the 

same realisation (or time instant in the case of temporal 

averaging). Indeed, as the separation becomes very much 

smaller than the diameter, the volume fractions at A and B 

become more correlated.  

Now the essence of the concept being proposed in this 

section is that the averaging process, as conventionally 

performed, is based on the assumption that the volume 

fraction at each point is a priori statistically independent of 

that at all other points, even at points located very close. Of 

course, the hydrodynamics will usually result in the solved 

values of average volume fractions at neighbouring points 

being correlated: for example, advection and turbulent 

diffusion mean that it is likely that neighbouring points will 

have similar volume fraction. But this is as a result of the 

solution of the hydrodynamic equations; the raw two-fluid 

equations involve an assumption that the volume fractions 

at neighbouring points are uncorrelated.  

Another way of expressing this concept is that, when the 

dispersed phase is composed of finite size entities (particle, 

bubbles, droplets), there are additional constraints that are 

not accounted for in the standard multi-fluid equations. 

Furthermore, these constraints have so far not been 

accounted for within the physical forces or terms involved 

in the solution of the two-fluid equations.  As a result, the 

constraints are usually not accounted for at all in the two 

fluid simulation. 

To underline this last point, it is useful to point out that the 

effect being considered has no relationship with physical 

forces such as lift force, collisional dispersion of particles, 

turbulent diffusion, or any of the other forces that are 

included from time to time. The effect being considered 

simply arises from the fact that the dispersed phase is 

comprised of finite sized entities.  In the case of non-

deformable particles, the size of the entities (and perhaps 

their shape, if non-spherical) is known a priori. But even in 

cases where the entities can be subject to break-up and 

coalescence (in which case the size is not known a priori) 

the effect is still present. 

Distribution of particle centres 

With regard to the discussion in the previous sub-section, it 

is important to draw a distinction between the (average) 

volume fraction at a point, α(x,y,z) and the number density 

of particles, which can be characterised by a probability 

density function of particle centres, p(x,y,z). 
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The number of particle centres in a volume dV at a point 

(x,y,z)  is pc(x,y,z) dV. 

On the other hand, the volume of dispersed phase in the 

volume dV is α(x,y,z) dV 

At a point r = (x,y,z), the volume fraction can be found by 

summing the contributions from all particles with centres 

closer than R, the particle radius. So 

 

𝛼 = ∫ 𝑝𝑐(r + s)𝑑𝑉(r + s)

all 𝐬 within
 sphere 
radius 𝑅 

 

 

(2) 

 

 

It is worth noting that in the calculation of forces and other 

quantities within CFD simulations, it is common to 

calculate the number of particles in a volume ΔV as   

 

pp VVzyxN /),,(   (3) 

 

where Vp is the volume of a particle. This is equivalent to 

assuming that pc is constant over a sphere of radius R, so 

that eqn. (2) becomes 

 

 

cpR3

3
4        (4) 

 

 

It must be emphasised that eqn. (3) is not in general a valid 

expression for the number of particle centres in the volume 

ΔV, though the number of particles will tend to this quantity 

as the particle volume becomes small compared with  ΔV. 

In CFD implementations, the volume ΔV is generally 

associated with the cell volume, so eqn. (3) for the number 

of particle centres is valid when the particle size is much 

smaller than the grid dimensions.  

On the other hand, if the particle size is of order of or larger 

than the grid dimensions, then eqn. (3) is only approximate. 

The reason for this is that the average volume fraction is 

defined in terms of the statistical probability of the presence 

of dispersed phase at a point, not in terms of particle centres. 

When particle size is larger than the grid dimension, the 

spatial extent of dispersed phase will be wider than the 

spatial extent of particle centres.  

Indeed it is possible (though usually unlikely) that, in a 

particular volume dV, the volume of dispersed phase, 

α(x,y,z) dV, could be significant, while the number of 

particle centres, pc(x,y,z) dV, is zero.  

 

Figure 2: Schematic diagram of Hall-Héroult cell 

 

Eqn. (3) for the number of particles in a volume ΔV is 

routinely used in determining forces and other quantities 

within two-fluid CFD simulations. For example, drag terms 

are based on this assumption (at least when based on 

generalisations of drag of individual bubbles or particles 

(Smith, 1998)), as are interfacial reaction rates, and so on. 

Furthermore, break-up and coalescence rates for population 

balance models are all based on this equation (see, for 

example, eqn. (75) of Wang et al. (2008)).  

The question arises as to whether this effect is actually 

significant. Fortunately it appears that the effect is usually 

negligible, but there are situations, such as that presented 

here, where the effect is very important. 

Model modification for finite sized bubbles 

To better appreciate the effect, we examine the mass 

conservation equations in the two fluid model formulation. 

Kataoka and Serizawa (1989) give the average mass 

conservation equation for phase k, in the incompressible 

situation with no phase change, as 
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where ku must be read as the average phase velocity, in 

their case phase weighted average. As mentioned 

previously, the volume fraction variables are determined by 

statistically averaging at a point, the instantaneous phase 

variable, ϕk, defined by Kataoka and Serizawa (1989) as 

unity if the phase is present at that point, and zero otherwise. 

 

On the other hand, the equation for the number density of 

particles, n, is 

 

  0



pn

t

n
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Here, pu must be read as the average velocity of particle 

centres, which in population balance models is always 

taken to be the same as the average phase velocity. In this 

case, for the number density of particles, n, is equal to the 

probability density distribution of particle centres, pc. 

One possible procedure for obtaining the void fraction with 

account taken for finite particle size effects, would be to 

solve for number density of particle centres, eqn. (6), 

instead of solving for the usual mass conservation equation 

for the dispersed phase, eqn. (5). Then the corrected void 

fraction can be determined by convolving the number 

density with the mass distribution for an individual particle, 

which for a uniform density spherical particle, amounts to 

performing the calculation given in eqn. (2).  

The approach described above has the advantage that it can 

be easily extended to the case of multiple size fractions: 
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where kn is the number density of the k-th size fraction. 

Coalescence and breakup could be accounted for by source 

terms in the same way as in population balance modelling. 

Note however that this approach is different from the way 

a population balance is normally applied, namely as 

equations additional to the phase conservation equations. 

In order to complete the set of equations used in this 

approach, it is also necessary to apply the phase constraint 

in the derivation of the momentum conservation equations. 

Just as the phase at nearby points is correlated when 

particles are relatively large, so too will be the velocity. 

These equations will be derived in a future paper. To apply 

this approach, it would be necessary to revisit and modify 

the usual solution methods for the two-fluid equations. 

An alternative approach would be to propose additional 

semi-theoretical terms for the standard two-fluid equations, 

in much the same way as terms have been presented to 

account for complex effects such as lift force, turbulent 

dispersion, bubble-induced turbulence, the so-called 

“lubrication force”, and so on. These terms have not been 

determined on the basis of rigourous averaging, but rather 

in a semi-theoretical, even heuristic fashion (see, for 

example, the discussion by Sokolichin et al., 2004). There 

are often various different expressions available in the 

literature, and they generally involve empirical parameters 

that must be determined from experiment. 

In the case of the finite size effect described above, it is 

likely that a suitable term would be of a diffusion or 

dispersion type, given that the effect involves a convolution 

with the mass distribution of a particle (eqn. (2)).  

In this work, we take an approximate approach of adding a 

dispersion force to ensure that the width of the distribution 

of dispersed phase volume fraction is consistent with 

bubble size.  

MODEL DESCRIPTION 

The effect described in the previous section will be 

illustrated using a model of the high temperature 

electrolytic cell (the Hall–Héroult cell) used for reducing 

alumina to produce aluminium (Grjotheim and Welch, 

1988). A schematic diagram of such a cell is given in Figure 

2. Alumina is dissolved in a molten mixture of cryolite and 

aluminium fluoride, and current is passed through it from 

submerged anodes to a cathode which forms the base of the 

cell. The electrolysis causes liquid aluminium metal to be 

deposited on the cathode, while carbon dioxide is produced 

at the anode. It is believed that the gas coalesces to form 

large bubbles flattened against the lower anode surface. The 

bubbles slide to edges of each anode, where they 

subsequently rise rapidly through the electrolyte to the 

surface.  

 

There are many complex modelling issues involved in 

comprehensive simulation of aluminium reduction cells, 

and these have been described by Eick et al. (2015). The 

circulation of the electrolyte caused by bubble drag is the 

main subject of the modelling described here. This aspect 

of cell dynamics has been investigated numerically by Feng 

et al. (2010, 2015): the electrolyte flow is important for 

several reasons related to the operation and energy 

requirements of the cell, as described by Feng et al. (2015). 

 

The two–phase (gas–liquid) model of the cell that is the 

subject of this work has been described in detail by Feng et 

al. (2015). The model is of an air–water model of an 

aluminium cell, with three anodes. The physical model, 

illustrated in Figure 3, consists of three anodes of a scale 

typical of a modern prebake cell, though the dimensions and 

conditions do not correspond to any actual operation. The 

physical model was constructed in Perspex to facilitate PIV 

(Particle Image Velocimeter) measurements of velocity, as 

described in detail by Cooksey and Yang (2008). Each 

anode is 1300 mm  650 mm  600 mm in size, with 160 

mm of the anode submerged. The height of electrolyte 

beneath the anodes is 40 mm. Centre and side channel 

widths are 120 mm and 240 mm respectively, and tap-end 

and duct-end channel widths are 160 mm and 40 mm 

respectively. 

 

 



 

 

Copyright © 2015 CSIRO Australia 5 

Figure 3: Schematic diagram of three-anode water model of an aluminium reduction cell, simulated by Feng et al. (2015). 

 

The CFD model uses the two-fluid approach, with a set of 

continuity and momentum equations for each phase, i: 

  0 iii u         (8) 

 

    iiiiiiiii p MFuuu  eff.        

(9) 

 

where αi is the volume fraction of phase i (either gas or 

water), ρi and ui are the density and vector velocity for phase 

i, and p and μeff are the pressure and effective turbulent 

viscosity. The term Fi describes momentum sources due to 

external body forces, in this case buoyancy. The term Mi 

describes the interfacial momentum transfer between 

phases including the drag force and inter-phase turbulent 

dispersion force. Turbulence is modelled using the k-ε 

equations, with source terms for bubble-induced 

turbulence. 

As gas releases from the bottom of the anodes, buoyancy 

causes it to rise very rapidly from the bottom corners of the 

anodes upwards into the channels surrounding the anodes. 

The rapid rise results in gas remaining in a narrow layer 

close to the anode side walls in the simulations – narrower 

than the size of bubbles.  In order to account for the finite 

size of bubbles, i.e., to ensure that the plume width is 

consistent with bubble diameter, the voidage distribution at 

the anode corner is artificially widened by an additional 

diffusion term so that the voidage width there is 

approximately equal to the bubble size, as determined from 

Weber number considerations. Feng et al. (2015) use such 

a Weber number criterion to show that the expected bubble 

size in the side and centre channels of the water model is 

approximately 40 mm, and this is in accord with visual 

observations of the air-water model during operation. On 

the other hand, it should be noted that the horizontal width 

of the (hexahedral) cells in the side channel is only 24 mm.   

The force term is taken to be of a form analogous to that of 

the turbulent dispersion force (Burns et al., 2004): 

 

M𝑙
FS = −M𝑔

FS = −𝐶FS (
∇𝛼𝑔

𝛼𝑔
−

∇𝛼𝑙

𝛼𝑙
) (10) 

 

where the finite size effect coefficient, CFS, must be 

determined empirically to ensure that the void fraction 

width is consistent with bubble size. 

As mentioned in the introduction, simulation of such a 

system can undoubtedly be more accurately simulated 

using a Volume of Fluid (VOF) approach. Indeed this 

approach has also been pursued by the authors (Zhang et 

al., 2013, Zhao et al., 2014), albeit only for a thin slice 

through a channel, because of the major computational 

requirements. Industrial simulation of an entire aluminium 

cell, which comprises of order 20 anodes, is still a very 

challenging task for a VOF method, particularly as many 

simulations may be required for optimisation purposes in an 

industrial context. Until such simulations are possible in a 

reasonable time-frame, a more pragmatic approach, such as 

the multi-scale method described by Schwarz and Feng 

(2015) needs to be taken. 

RESULTS 

Figure 4 shows computed void fraction contours on a plane 

through the centre channel, halfway along the middle anode 

(Location B in Fig. 3). The top plot shows the results 

without account for finite bubble size effects and the bottom 

plot shows results when finite bubble size effects are taken 

in account.  

In the top plot, the gas hugs the side of the anode in an 

unrealistically narrow “plume”, only broadening slightly as 

the gas rises as a result of turbulent dispersion. The width 

of the plume is narrower than the bubble size, which is 

clearly unphysical. As described in the section on Two 

Fluid Model Averaging, the reason for this behaviour is that 

the known bubble size is not taken into account as a 

constraint in the standard two-fluid equations. Of course 

bubble size enters into the expressions for various forces 

such as drag, but these do not provide the required 

constraint. 
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Figure 4: Comparison between simulation result without 

(top) and with (bottom) finite bubble size effects. Colour 

contours show void fraction for the bubble plume in the 

centre channel halfway along the middle anode (Location 

B in Fig. 3). 

In the bottom plot of Figure 4, the bubble plume is much 

wider, and is qualitatively similar to the plume observed in 

the actual water model. It should be noted that the resultant 

plume widening does not directly result from the wider gas 

distribution imposed at the anode corner. In addition to this 

direct effect, the turbulence kinetic energy and velocity 

fields are also altered. For example, because of the wider 

gas distribution, the bubble induced turbulence source term 

is more widespread, leading to more turbulence, and 

consequently an even wider plume. Multiple coupled 

hydrodynamic interactions are responsible for generating 

the final bubble plume distribution. 

Figure 5 shows a similar plot as Figure 4 but for the 

computed void fraction contours on a plane through the side 

channel, halfway along the middle anode (Location A in 

Fig. 3). The bottom plot shows the result of including the 

finite bubble size effect: the plume is substantially widened, 

as in the centre channel.  

The same widening occurs in the tap-end and duct-end 

channels as a result of including the finite bubble size effect. 

CONCLUSION 

By analysing the two-fluid equations of mass conservation, 

it has been shown that the known bubble/particle size has 

an effect which has not hitherto been accounted for. This 

effect is usually small, but when bubble/particle size is 

larger than the computational mesh size, it is possible in 

some special situations for the effect to be important.  

 

 
 

Figure 5: Comparison between simulation result without 

(top) and with (bottom) finite bubble size effects. Colour 

contours show void fraction for the bubble plume in the 

side channel halfway along the middle anode (Location A 

in Fig. 3). 

 

An alternative approach to the standard two-fluid equations 

has been suggested to account for the finite particle size 

effect. 

Furthermore, the effect has been illustrated in a two-fluid 

model of bubble flow in an aluminium reduction cell. An 

approximate technique for accounting for the effect, namely 

an additional dispersion force, has been shown to generate 

plume width in agreement with observations of an air-water 

model, whereas the standard two-fluid model equations 

generate unrealistically narrow plume width. 
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