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ABSTRACT 

This paper is concerned with the numerical modelling of 

yield stress fluids using a particle-based simulation 

technique, known as dissipative particle dynamics (DPD), 

in which both the sediment and surrounding fluid are 

modelled by particles undergoing their Newton’s 2nd law 

motion. This technique satisfies conservation of mass and 

momentum and it has been applied successfully for a 

number of problems involving complex-structure fluids, 

such as polymer solutions, suspensions of rigid particles, 

droplets, and biological fluids. In the proposed model, two 

DPD species, one standard DPD to represent the solvent, 

with only repulsive conservative force, and the other, with 

repulsive force at short range and attractive force at long 

range to represent sediment particles. The advantage of the 

method is that the multiphase properties of the system are 

reconstructed, and thus there is no requirement of the 

constitutive equations. Numerical results show that the 

proposed model can represent some behaviours of highly 

concentrated sediment mixtures.  

NOMENCLATURE 

Greek Symbols 

    Magnitude of the dissipative force 

𝜇  Dynamic viscosity 

𝜉   Gaussian variable with zero mean 

𝜌  Mass density 

𝜎  Magnitude of the random force 

𝜏𝑦  Yield stress 

Latin Symbols 

A  Coefficient of repulsive component 

𝑎  Conservative force strength 

B  Coefficient of attractive component 

D  Strain rate tensor 

𝑘𝐵𝑇  Boltzmann temperature 

𝑚   Mass of a DPD particle 

N  Number of DPD particles 

𝑁𝐷𝑃𝐷−𝑎 Number density of DPD-a 

𝑁𝐷𝑃𝐷−𝑏 Number density of DPD-b 

n   Control parameter 

𝒓𝑖  Position of a DPD particle   
𝑟𝑐𝑟  Cut-off radius of repulsive component  

𝑟𝑎𝑟   Cut-off radius of attractive component 

S  Extra stress tensor  
vi  Velocity of a DPD particle   
𝑤𝑟

𝑐    Weight function of repulsive component 

𝑤𝑎
𝑐    Weight function of attractive component 

 

Sub/superscripts 

i     Particle ith  

ij  Particle j to i 

C   Conservative force term 

D   Dissipative force term 

R  Random force term 

INTRODUCTION 

Since mixtures at high volume fractions (including clay and 

sediments) behave like a yield-stress fluid (i.e. it is able to 

flow only if it is submitted to a stress above some critical 

value), we devoted some research effort in modelling of 

these fluids. In continuum mechanics, such materials are 

modelled by rheological constitutive equations (e.g. 

Bingham models). These equations are then transformed 

into sets of algebraic equations by means of discretisation. 

However, it is known that Bingham models may have the 

discontinuity in the constitutive relations. Papanastasiou 

[Papanastasiou (1987)] proposed a modified version of 

Bingham model to overcome this numerical difficulties. 

The non-discontinuity Bingham model can be written as: 

     

𝑺 = 2 {𝜇 +
𝝉𝑦[1−exp(−𝑛|𝐼𝐼𝑫|1/2)]

|𝐼𝐼𝑫|1/2
} D    

 (1) 

where S is the extra stress, D strain rate tensor, 𝐼𝐼𝑫 the 

second invariant of D, 𝜏𝑦 yield stress value, and  𝑛 a 

parameter. At high strain rate, this model results in  𝑺 =
2𝜇𝑫, a Newtonian fluid with viscosity 𝜇. At low strain rate, 

viscosity becomes 𝜇 + 𝑛𝜏𝑦. Consequently, for large 𝑛, this 

fluid model appears to have a yield stress. 

In the last two decades the DPD method [Hoogerbrugge and 

Koelman (1992)] has been developed as an alternative and 

promising mesoscopic approach for modelling a complex 

fluid. Different from schemes based on discretisations of 

macroscopic continuum equations, the DPD method is 

based on coarse-grained models and Langevin equations. 

Its formulation is derived from the view that each DPD 

particle is a coarse-grained representation of a group of 

fluid particles. DPD method often looks similar to 

Molecular Dynamics (MD). However, DPD particles 

interact through a soft potential and thus the simulation can 

be carried out on length and time scales far beyond those 

associated with MD. It has been show in [Español (1995)] 

that mean quantities formed from the microstate of a DPD 

system (positions and velocities) satisfy the conservation 

laws (mass and momentum). Therefore, the method may be 

applicable to problems of any scale and regarded as a 



 

 

Copyright © 2015 CSIRO Australia 2 

particle-based method for solving continuum problems 

[Phan-Thien (2013)]. There are many applications of DPD 

method and its variants to simulation of complex fluids 

have been reported e.g. sphere colloidal suspensions 

[Koelman and Hoogerbrugge (1993); Pan et al. (2010)], 

colloidal suspensions of spheres, rods, and disks [Boek et 

al. (1997)], ferromagnetic colloidal suspension [Li (2015)], 

soft matter and polymeric applications [Moeendarbary 

(2010)], droplet modelling [Pan et al. (2014)] and lipid 

bilayer [Sevink and Fraaije (2014)]. 

In this research, the DPD method is modified to investigate 

the rheology of sediment mixtures under shear flows and 

Poiseuille flows. We treat both the fluid and the sediment 

as an assembly of DPD particles, with distinct properties. 

The relation of stress and shear rate is studied for these 

mixtures under different DPD parameters.  Numerical 

results show that the obtained DPD data can be fitted well 

to that of Papanastasiou’s yield stress model. The 

significance of our method is that the constitutive 

framework is fully specified with DPD microstructure that 

goes into the description of the proposed model. 

A TYPICAL DPD FLUID MODEL 

In DPD method, the fluid and all its component phases (if 

have) are defined by the assemblage of  𝑁 particles, each of 

mass  𝑚𝑖 , i = 1, … , N,  located at position 𝑟𝑖, with 

velocity 𝑣𝑖, with an assumption of identical mass 𝑚𝑖 = 𝑚. 

The DPD particles interact with each other and undergo 

their Langevin motions which can be written as [Marsh 

(1998)]:   
𝑑𝒓𝑖

𝑑𝑡
= 𝒗𝑖 ,      𝑚

𝑑𝒗𝑖

𝑑𝑡
= 𝒇𝑖 + 𝑭𝑒  (2) 

where  𝐅e is external forces on particle i (e.g. gravity force),  

𝒇𝑖 = ∑ 𝑭𝑖𝑗𝑗≠𝑖  the interaction force on particle i by particle 

j, pairwise additive. It is note that the sum runs over all other 

particles (𝑭𝑖𝑖 = 0), within a certain cut-off radius 𝑟𝑐. The 

interaction force 𝑭𝑖𝑗consists of three parts, a conservative 

force, 𝑭𝑖𝑗
𝐶 , a dissipative force, 𝑭𝑖𝑗

𝐷 , and a random force, 𝑭𝑖𝑗
𝑅 : 

𝑭𝑖𝑗 = 𝑭𝑖𝑗
𝐶 + 𝑭𝑖𝑗

𝐷 + 𝑭𝑖𝑗
𝑅      (3) 

Expressions of interaction forces are listed in Table 1 in 

which 𝑎𝑖𝑗 is conservative force strength; 𝒓𝑖𝑗 = 𝒓𝑖 −

𝒓𝑗; 𝑟𝑖𝑗 = |𝒓𝑖𝑗|;  �̂�𝑖𝑗 =
𝒓𝑖𝑗

|𝒓𝑖𝑗|
; 𝑤𝐶 , 𝑤𝐷 , 𝑤𝑅 weight functions of 

conservative, dissipative and random forces, 

respectively; 𝒗𝑖𝑗 = 𝒗𝑖 − 𝒗𝑗; s a constant, 𝛾 a coefficient 

related to system viscosity; 𝜉𝑖𝑗  a Gaussian variable with 

zero mean and variance equal to 𝛿𝑡−1, where 𝛿𝑡 is the time 

step, and 𝜎 is the magnitude of the random forces. 

Fluid properties 
The interested domain is divided by Cartesian grids and 

local data are collected in each cell of the grid. The flow 

properties including fluid density 𝜌,  stress 𝑺 and viscosity 

𝜇 are calculated by appropriate averages over all sampled 

data in each cell. Fluid density is defined as 

𝜌(𝒓, 𝑡) = 𝑚〈∑ 𝛿(𝒓 − 𝒓𝑖)𝑖 〉 ,     (4)

 
and stress tensor components are calculated by Irving-

Kirkwood expression ([Irving and Kirkwood (1950)]) as 

follows 

𝑺 = −
1

𝑉
〈∑ 𝑚𝒖𝑖𝒖𝑖 +

1

2𝑖 ∑ ∑ 𝒓𝑖𝑗𝒇𝑖𝑗𝑗≠𝑖𝑖 〉,                     (5) 

where 𝑉 is the volume of the bin and 𝒖𝑖 are the peculiar 

velocity components of particle i and the symbol  ⟨ ⟩ 
indicates a long time average for many iteration steps. For 

Newtonian fluid, viscosity can be found by using the 

relation between stress components and strain rate 𝜇 =
𝑺/�̇�. It is noted that one can adjust viscosity value by 

changing the magnitude or weight functions of dissipative 

forces . It is important to mention that these quantities have 

been shown to satisfy conservation laws [Marsh (1998)]:  
𝜕

𝜕𝑡
𝜌(𝒓, 𝑡) + 𝛁. (𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)) = 0,   𝛁 = 𝜕/𝜕𝒓        (6) 

𝜕

𝜕𝑡
(𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)) + ∇. (𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)𝒖(𝒓, 𝑡)) = ∇. 𝐒   (7) 

Thus, DPD may be regarded as a particle-based method for 

solving continuum flow problems (6)-(7). Yield stress 

behaviour of highly concentrated sediment mixtures may be 

captured by this particle-based method. The nonlinear 

relationship between stress and strain rate needs not to be 

specified a-priori, but can be obtained after post-processing 

step. The main objective is how to identify the constitutive 

relation from the microstructure. 

DPD COHESIVE MODEL FOR YIELD STRESS 
FLUID 

    After some investigations, we proposed a DPD model 

consisting of two species of DPD, DPD-a, a normal DPD 

with repulsive force, represents the solvent and DPD-b, a 

DPD with long range attractive and short range repulsive 

force, represent a clay-like sediment particle. The modified 

version of DPD-b is developed by adding a long-range 

attractive component to the conservative forces. It is 

important to mention that a DPD-b (sediment particle) 

attracts some of DPD-a (solvent) within its effective radius 

(Figure 1). 

 

𝐅ij Weight functions Forms 

𝑭𝑖𝑗
𝐶  𝑤𝐶(𝑟𝑖𝑗) = 1 − 𝑟𝑖𝑗/𝑟𝑐 𝑎𝑖𝑗𝑤𝑐�̂�𝑖𝑗  

𝑭𝑖𝑗
𝐷  𝑤𝐷(𝑟𝑖𝑗) = (1 − 𝑟𝑖𝑗/𝑟𝑐)

𝑠
 −𝛾𝑤𝐷(�̂�𝑖𝑗 ∙ 𝒗𝑖𝑗)�̂�𝑖𝑗 

𝑭𝑖𝑗
𝑅  

𝑤𝑅(𝑟𝑖𝑗) = √𝑤𝐷(𝑟𝑖𝑗) 
𝜎𝑤𝑅𝜉𝑖𝑗�̂�𝑖𝑗  

Table 1: List of interaction forces and their formulas. It is 

important to note that the balance between dissipative and 

random forces must obey the fluctuation-dissipation 

theorems 𝜎 = √2𝛾𝑘𝐵𝑇 [Marsh (1998)]. 

 

Conservative force 𝑭𝑖𝑗
𝑐  of DPD-b is calculated by taking 

derivative with respect to 𝑟 of a potential similar to 

Lennard-Jones potential with attractive and repulsive terms 

[Liu and Huang (2006)].  

𝑭𝑖𝑗
𝑐 = −𝑎𝑖𝑗(𝐴𝑤𝑟

𝑐(𝑟, 𝑟𝑐𝑟) − 𝐵𝑤𝑎
𝑐(𝑟, 𝑟𝑐𝑎))r̂ij        (8) 

 

 
Figure 1: Microstructure of the proposed model: two 

species of DPD (DPD-a (blue colour)) and DPD-b (red 

colour)). A DPD-b attracts some DPD-a within its long 

range radius and repulses other DPD-b and DPD-a in short 

ranges radius.  
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where A and B are coefficient of  𝑤𝑟
𝑐(𝑟, 𝑟𝑐𝑟) and 

𝑤𝑎
𝑐(𝑟, 𝑟𝑐𝑎), respectively. 𝑟𝑐𝑟 is cut-off  radius of repulsive 

component and 𝑟𝑐𝑎 is that of attractive component and 
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It can be seen from Figure 2 that the conservative force 

between two different species particles is repulsive (the 

positive part) when their separation distance is less than the 

value of radius 𝑟 (e.g. 0.5952 with  𝐴 = 2, 𝐵 = 1, 𝑟𝑐𝑟 =
0.8, 𝑟𝑐𝑎 = 1 ) and when their separation distance falls in the 

range between 0.5952 and 1 this force describes a long 

range attraction (the negative part). At the initial stage, 

purely repulsive conservative forces (i.e. B = 0 in (8) for 

DPD-b) are applied for both type particles; DPD fluid is 

thus simply Newtonian. When the attractive components in 

conservative forces of DPD-b are turned on, a structure is 

formed result in high DPD fluid's resistance to shear stress. 

In next section, numerical results are reported to support the 

proposed model. 

NUMERICAL RESULTS 

    The parameters of the proposed model will be obtained 

in Couette flows and then verified in Poiseuille flows. The 

simulation is carried out on a 3D cubic domain having side 

length of 10 unit with the following DPD parameters:  𝑚𝑖 =
1, 𝑎𝑖𝑗 = 18.75, 𝛾 = 4.5, 𝑟𝑐𝑟 = 0.8, 𝑟𝑐𝑎 = 1.0. 

 
Figure 2: Conservative forces with repulsion only (-x, 

DPD-a), 𝑟𝑐 = 1.2 (2) and 𝑟𝑐 = 1.0 (1) and with short range 

repulsion and long range attraction (-o, DPD-b), 𝑟𝑐 = 1.2 

(2a) and 𝑟𝑐 = 1.0 (1a). 

 

For conservative force of DPD-b, we consider the strength 

of repulsive part and attractive part (Figure 2 - function 2a) 

in the range of A = {3, 4, 5} and B = {1.5, 2, 2.5}, 

respectively. For dissipative force, in a modified version of 

DPD systems introduced by [Fan et al. (2006)], two 

parameters are set as 1.0 ≤ 𝑟𝑐 ≤ 1.5 and 𝑠 =
1

2
, in order to 

enhance the dynamic response. Similar to [Fan et al. 

(2006)], we use 𝑠 =
1

2
, and fix the cut-off radius value at 1.0 

for both DPD-a and DPD-b.  Number density of DPD-a, 

𝑁𝐷𝑃𝐷−𝑎, is 6 and that of DPD-b, 𝑁𝐷𝑃𝐷−𝑏 , is 4. The 

simulation is run with 100,000 time steps and a unique time 

step 10−2 is chosen for all simulations. Periodic boundary 

conditions are applied in x- and y-direction, i.e. particles 

that have passed the interested domain at one face reappear 

in the domain at the opposite face and therefore one can 

effectively deals with a large (infinite) DPD system. In z-

direction, solid walls are represented by three layers of 

frozen particles. It is known that conventional solid 

boundary models for DPD lead to slip boundary even at 

moderate Reynolds flow. To reduce this, wall wetting 

model [Arienti et al. (2011)] are employed in the Couette 

and Poiseuille flows to mimic hydrophilic behaviours.  In 

all the following simulations, the Verlet integration 

algorithm is employed to solve equation (2).  

Prepare the fluid: premix vs non premix 

A pre-processing program is used to generate a system 

which consists of N particles with masses m characterised 

by the positions 𝒙𝑖 , 𝑖 = {1, 𝑁}. The particle list is 

constituted from three segment including wall particle, 

matrix particle and suspended particle zones. For initial 

configuration, the simulation box is filled with DPD-b 

particles in the bottom and with DPD-a particles on top 

(Figure 3a). In addition, the initial distribution of these 

particles do not satisfy a thermodynamic equilibrium state.  

In pre-processing program a mixing procedure is thus 

applied. At the beginning of the mixing procedure, the 

particles are allowed to move freely until a thermodynamic 

equilibrium state is reached and then a body force 𝐅e =
(0.2,0,0) is applied around hundred thousand time steps to 

mix DPD-a and DPD-b. Figure 3b shows that after mixing 

conservative interactions produced a uniform DPD-b 

dispersion. The particle configuration are written in a data 

file which is then read by the DPD solver program. 

 

   
 

Figure 3: (a) Initial configuration of DPD-a (red sphere) 

and DPD-b (blue sphere) – (b) Uniform distribution of two 

species of DPD, which are obtained over the period of 

100000 time steps.  

Couette flow 

The shear rate in the range of 0.01 to 1.64 is considered. 

The viscosity as a function of shear rate is plotted in Figure 

4. DPD results show that viscosity is decreased 

dramatically from 238 at shear rate 0.01 to 17.68 at shear 

rate 1.64. We choose to compare the DPD prediction with 

the modified Bingham model (1) ([Papanastasiou (1987)]). 

Figure 5 shows the plot of average shear stress with 

different values of shear rates. It can be seen that the data 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1

0

1

2

3

4

5

r
c

F
ijc
/a

ij

 

 

1

1a

2

2a



 

 

Copyright © 2015 CSIRO Australia 4 

obtained by DPD model with volume fraction of  DPD-b 
𝑁𝐷𝑃𝐷−𝑏

(𝑁𝐷𝑃𝐷−𝑎+𝑁𝐷𝑃𝐷−𝑏)
= 0.4 match to Papanastasiou’s model, 

with a low-shear viscosity of 238, a high-shear viscosity of 

17.68, and a yield stress of 8 (all dimensionless).  

 
Figure 4: Viscosity plotted as a function of shear rate. 

  

 
Figure 5: The obtained DPD data can be fitted well to 

Papanastasiou’s model (1), with a low-shear viscosity of 

𝜇 + 𝑛𝜏𝑦 = 238 (slope of the rheogram when shear rate 

smaller than 0.1), a high-shear viscosity of   𝜇 =
17.68 (slope of the rheogram when shear rate larger than 

0.1), and a yield stress of 𝜏𝑦 = 8 (all dimensionless). 

 

Non-linear shear stress – shear rate as a function of 𝑘𝐵𝑇 and 

the repulsive force (A) are plotted in Figure 6 and in Figure 

7. For first cases, a non-linear shear stress – shear rate 

relation is observed and low shear rate viscosity increases 

as  𝑘𝐵𝑇 is reduced. For second case, the whole curve is 

shifted up (increasing yield stress) when the strength of 

repulsive forces 𝐴 are increased.  

Couette flow results concerning the velocity field are 

presented in Figure 8, where DPD-b particle fraction is 

40%. It can be seen that profiles of linear velocity are 

obtained even at low shear rate. The linear velocity profile 

can be explained by the distributions of two species of DPD 

over the domain. There is no phase separation in this 

solvent-sediment mixture under applied shear rates over the 

period of 100000 time steps.  

Poiseuille flow 

For verification, the same DPD fluid which match to 

Papanastasiou’s model, (high-shear viscosity 𝜇 + 𝑛𝜏𝑦 =

238, a high-shear viscosity 𝜇 = 17.68, and a yield 

stress 𝜏𝑦 = 8) is placed between two parallel plates to 

simulate Poiseuille flow. A body force is applied to each 

fluid particle in x-direction, and this drives the flow. The 

periodic boundary conditions are applied to fluid 

boundaries in the x- and y- directions. Figure 9 compares 

the curve of shear stress versus shear rate calculated from 

shear flow and Poiseuille flow. Good agreement is 

achieved. The development of velocity profiles is shown in 

Figure 10. It can be seen that the DPD velocity profile is no 

longer parabolic. It flattens in the region around the centre 

and steepens in the region near the wall. The DPD model 

results are comparable to those of analytical solutions of the 

continuum model. 

 

 

Figure 6: Non-linear shear stress – shear rate behaviour at 

different values of  𝑘𝐵𝑇 =  {0.7, 0.8, 0.9, 1.0} from top to 

bottom.   

 
Figure 7: Non-linear shear stress – shear rate behaviour at 

different values of repulsive term coefficient in equation 

(8), 𝐴 =  {3, 4, 5}, from bottom to top. 

    
(a)               (b) 

Figure 8: Shear flow, linear velocity profiles at shear 

rate {0.01 (a), 0.05 (b)}. 

CONCLUSION 

In this article, a numerical model based on Dissipative 

Particle Dynamics method for yield stress fluids have been 

developed. The constitutive framework is fully specified 

with the microstructure that goes into the description of the 

DPD model. In spite of its simplicity, the present model is 
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able to produce some predictions of the nonlinear relation 

between shear stress and shear rate in viscometric flows. 

The normalised velocity profile of DPD fluid in the 

Poiseuille flow is similar to that obtained by 

Papanastasiou’s model. Non-viscometric problems (e.g. 

contraction expansion flows or elongational flows) and 

particle interaction studies (e.g. pairwise radial distribution 

function of the different types of particles (DPD-a, DPD-

b)) will be carried out and reported in future works. With 

the conservation of mass and momentum properties, the 

proposed DPD model may be regarded as a particle-based 

method for solving complex-structure fluids. However, that 

is still difficult to identify the direct relation to material 

properties (e.g. yield stress, viscosity) in physical unit and 

DPD unit. In Smoothed DPD method [Español and 

Revenga (2003)], one of DPD variants, this issue can be 

solved by choosing interaction forces with a specific form 

which comprised from the Smooth Particle Hydrodynamics 

discretisation.  A similar technique will be needed in further 

studies to implement the proposed yield stress model. 

 

 
Figure 9: Shear stress versus shear rate calculated from 

shear flow (red−𝑜) and Poiseuille flow (blue−𝑥). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Comparing normalised velocity profile in a 

Poiseuille flow (red−x) with the analytical steady state 

solution for the Poiseuille flow of Bingham fluids (blue−o). 
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