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ABSTRACT 

Current trends in high performance computing include the 

use of graphics processing units (GPUs) as massively-

parallel co-processors to CPUs in order to accelerate 

numerical operations common to computational fluid 

dynamics (CFD) solvers. This paper examines GPU 

characteristics for various CFD methods and provides 

examples of current implementations for commercial CFD 

software. In order to increase adoption of GPUs for 

commercial CFD, a linear solver library called AmgX was 

developed by NVIDIA that offers an algebraic multigrid 

(AMG) solver and other features, with parallelization of 

all phases of AMG including hierarchy construction and 

ILU factorization and solve. Examples relevant to CFD 

practice are investigated in order to demonstrate the use of 

AmgX in ANSYS Fluent for industry-scale applications. 

Hardware system configuration is also discussed that 

examines directions on CFD solver development. 

INTRODUCTION 

The efficient use of hardware system resources and CFD 

simulation turn-around times continue to be important 

factors behind engineering decisions to expand CFD as a 

technology to support product design. While the progress 

in recent years of CFD simulation verses physical 

experimentation has been remarkable, the availability of 

inexpensive workstations and clusters with conventional 

multi-core CPU parallel solvers has not been enough to 

motivate broad industry deployment of high fidelity 

modelling and use of design optimization procedures. 

 

Recent developments by commercial vendors of CFD 

software aim to achieve GPU speedups from fine-grain 

and second-level parallelism under an existing distributed 

memory, first-level CPU parallelism. For most vendors 

their GPU implementations have included implicit sparse 

iterative solvers that utilize a hybrid CPU-GPU computing 

scheme. In this way, matrix operations which are usually 

only sent to CPU cores for processing, are characterized 

before processing and appropriately overlapped across 

both CPU cores and GPU resulting in overall job 

acceleration. Figure 1 illustrates a schematic of such a 

hybrid scheme where a proper measure of speedup is made 

by comparison of the same simulation on multiple CPU 

cores both with and without GPU acceleration. 

 

The continual increase in processor speeds is limited due 

to power and thermal constraints, and in order to achieve 

gains in performance without increasing clock speeds, 

 

 

application software parallelism must be implemented. 

This parallelism can come in the form of task parallelism, 

data parallelism, or a combination of both. Although 

parallel applications that use multiple cores are a well 

established practice in CFD, a recent trend towards the use 

of GPUs to accelerate multi-core CPU computations is 

increasingly common.  

 

In this heterogeneous computing model the GPU serves as 

a co-processing accelerator to the CPU. The need for high 

performance and the parallel nature of CFD algorithms has 

led GPU developers to create designs with hundreds of 

cores. Today GPUs and software development tools are 

available for implementing more general algorithms that 

use the GPU for applications in a range of scientific and 

engineering domains where numerical computations are 

expected to complete as fast as possible.  

 

 

Figure 1: Schematic of GPU acceleration for implicit 

sparse solvers typical of commercial CFD software. 

 

During recent years, CFD has become increasingly reliant 

on clusters of multi-core CPUs to enable more detailed 

simulations within the limits of engineering project times. 

For this reason, the scalability of a solver across multiple 

servers has become equally important as single-processor 

performance. Most CFD developments during that period 

relied strictly on compilers to achieve a nominal level of 

single process performance optimization, and development 

investments went towards distributed memory parallel. 

GPU parallelism has brought back the focus on single-

processor performance beyond what is possible with 

conventional CPU compilers, and with emphasis on multi-

GPU scalability in an HPC cluster environment. 

 

Another important processor trend is relative performance 

of floating point operations vs. memory bandwidth. Over 

the past few decades the gap has extended to more than 

three orders of magnitude. CPU designs have gone to 
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great lengths to bridge the gap between processor and 

memory performance by introducing instruction and data 

caches, instruction level parallelism, and other technical 

advances. And although GPUs offer a different approach 

in terms of hiding memory latency because of their 

specialization to inherently parallel problems, the fact 

remains that processor performance will continue to 

advance at a much greater rate than memory performance. 

An extrapolation without any fundamental changes in 

memory designs, processors will become infinitely fast 

relative to memory, and performance optimization will 

become solely an exercise in optimizing data movement.  

Algorithm Suitability for GPUs 

At the highest level there are two considerations that can 

determine optimum suitability of a CFD algorithm for 

GPUs: the selected time integration method and spatial 

discretization scheme. CFD time integration methods are 

either explicit or implicit, and discretization schemes 

either structured or unstructured mesh. Successful GPU 

implementations exist for these high level algorithm 

characteristics, but the combination of some are more 

favourable for CFD software vs. others. For example 

structured grids offer uniform memory reference access 

during computations which can be a better fit for GPUs vs. 

unstructured, although breakthroughs in recent years with 

renumbering techniques have greatly improved the 

situation for unstructured grids which are more popular 

because of flexibility with meshing complex geometries. 

 

The schematic in Figure 2 provides a profile description of 

select algorithm combinations, and both CFD and 

computational structural mechanics (CSM) are shown 

because of their close relationship in development and 

deployment. Explicit methods are used in CFD mostly for 

compressible flows and in CSM for high frequency impact 

loads where very small time steps may be necessary for 

proper resolution of a given simulation. Implicit methods 

are used for incompressible CFD but can also be used for 

compressible, and in CSM for low frequency loads such as 

structural vibration and static stress. The choice of 

discretization scheme is usually dependent upon the 

geometric complexity of the given simulation objectives. 

Practically speaking, nearly all commercial CFD uses 

finite volume unstructured or finite element, all CSM uses 

finite element, and CFD for structured grids is typically 

limited to non-commercial, compressible aerodynamics. 

 

 

Figure 2: Profile description of suitability for CFD 

algorithm selections in a GPU computing environment. 

 

Industry deployment of CFD and CSM for application use 

usually means legacy software that undergoes several 

years of verification and validation, and which comprises a 

large software code base with diverse teams of developers. 

These conditions significantly impact algorithm suitability 

and more importantly influence a given strategy for GPU 

development. For example, CFD and CSM explicit 

methods on structured and unstructured grids with ordered 

stencils are very well suited to GPUs, but only those based 

on recent GPU-architected developments have been 

successful. Meanwhile legacy explicit methods are 

typically order 1M lines of code (LoC) and exhibit very 

flat execution profiles, meaning that the entire code base 

would need to run on the GPU for any benefit to an 

industry-scale simulation. This situation is impractical 

from a developer view point and can only be successful 

with a GPU-based compiler approach such as OpenACC. 

 

Implicit sparse solvers are the current GPU focus of most 

commercial CFD and CSM implementations owing to 

their favourable execution profile of a ‘hotspot’ and the 

simpler requirement that a small % of LoC must run on 

the GPU for potentially significant gains. Unlike explicit 

methods based on nearest neighbour computations of I,J,K 

stencils where each stencil computation might be a single 

thread on a GPU, implicit methods use matrix linear 

algebra computations and usually provide higher 

computation intensity, or more work for the GPU per 

memory movement of data. The solver hotspot of implicit 

methods are typically very good candidates for moving 

onto the GPU. Specifically these are the linear equation 

solvers which either use a direct or iterative method. 

Because they are usually a very small % of LoC, they are 

ported with CUDA and often make use of libraries such as 

CUBLAS and others, which provide tuned computational 

kernels. 

 

Direct solvers which are used only by CSM software rely 

on double precision matrix-matrix (DGEMM) operations 

and might consume an average of 75% of the total profile 

time (depending on the model), which is a very good 

candidate for GPU acceleration. Effective acceleration of 

75% of the total job time can mean a 3x speed-up for an 

overall simulation. These are the solvers found in implicit 

finite element CSM codes (Abaqus, ANSYS, etc.) and 

which were the first to demonstrate the best speed-ups on 

GPUs. These methods require extremely large system 

memory and are not used in CFD. Iterative methods rely 

on sparse matrix-vector operations (SpMV) and usually 

exhibit an average of 50% of the total profile time. These 

methods require much smaller memory capacity and are 

used by all CFD and some CSM software, and have 

become a recent focus for GPUs by commercial software 

vendors because of breakthroughs in matrix 

preconditioning, the ease in GPU deployment of parallel 

conjugate-gradient solvers, and the introduction of 

multigrid solvers on GPUs.      

GPU-PARALLEL CFD 

Parallel iterative sparse solvers are widely used in CFD for 

simulations that deploy implicit schemes. Iterative solvers 

are the standard for commercial CFD software, owing to 

their efficiency in computation and storage, and the need 

to mostly resolve incompressible flow fields. A GPU-

parallel implementation of an iterative solver such as a 
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Krylov-based preconditioned conjugate gradient or 

multigrid method would rely, among other features, on 

kernel performance of sparse-matrix-vector-multiply 

(SpMV) and a few additional BLAS-1 kernels.  

 

Because of the low arithmetic intensity of the SpMV 

kernel, it is highly memory-bound, and therefore 

optimization of the memory access pattern to achieve peak 

GPU memory-bandwidth is a primary consideration. Even 

though the data access pattern is irregular for general 

SpMV, with careful re-design of data structures for the 

sparse matrices, it is possible for the SpMV kernel to run 

very close to the peak of the GPU memory bandwidth.  

 

With an efficient SpMV kernel, an iterative method can be 

implemented fully on a GPU, however preconditioners are 

usually required. All contemporary CFD iterative solvers 

use a preconditioner to speed-up the solution convergence 

rate, and this would also need to be implemented on the 

GPU for overall performance. The difficulty of this 

implementation varies significantly depending on the 

specific preconditioner used. For example, a GPU-

efficient Jacobi preconditioner would be very simple to 

implement, however a highly sequential preconditioner 

such as an incomplete Cholesky scheme, would be 

difficult for good parallel efficiency. This trade-off may 

motivate a redesign of a particular preconditoner in order 

to run massively parallel on a GPU. 

 

Linear equation solvers that use a Krylov method such as a 

preconditioned conjugate gradient (PCG) or generalized 

minimal residual method (GMRES) have been 

successfully implemented for GPUs. The use of multigrid 

methods, and in particular algebraic multigrid (AMG) for 

linear solvers has been a relatively new area of exploration 

for GPUs, and has become an emerging development for 

commercial CFD software. 

 

In order to assist in the CFD community’s range of GPU 

development interests, NVIDIA continues to invest in 

high performance iterative solvers in several areas:  

 cuBLAS library of basic linear algebra subroutines 

(BLAS) for dense matrices 

 cuSPARSE library of BLAS, kernels, and solver 

components for sparse matrices with variety of formats 

 Contributions toThrust, and open source C++ template 

library of high performance parallel primitives 

 AmgX: development of a complete linear solver library 

with emphasis on multigrid methods 

 

The remainder of this paper will describe the 

implementations of AmgX for solving linear scalar and 

coupled systems of equations on GPUs. AMG is optimal 

for elliptic-type or coupled elliptic-dominant partial 

differential equations (PDEs) discretized over irregular 

grids. During the past decade AMG has evolved as the 

linear solver standard in the commercial CFD software 

community, and now benefits from GPU acceleration. 

NVIDIA AMGX LIBRARY 

The AmgX solver library developed by NVIDIA provides 

two kinds of AMG: aggregation-based and selection-

based, also called classical aggregation. Each approach is 

superior for different types of problems, allowing an 

application to use the method that best matches its needs. 

These AMG developments were also optimized for overall 

time-to-solution, including both “setup” and “solve” 

phases, making it suitable for use inside an iterative non-

linear solver such as Newton or Picard. In cases where the 

matrix structure is unchanged from one call to the next, 

the setup phase can run even faster by reusing this 

information. 

 

The implementation of algebraic multigrid on GPUs has 

already been considered by several authors. Early attempts 

focused on the simple off-loading of sparse matrix-vector 

multiplications to the GPU during the solve phase of the 

algorithm. Later, others have shown how to expose fine-

grained parallelism within a single node in the setup and 

solve phases of the aggregation-based algorithm using 

libraray primatives from Thrust.  

 

The AmgX library can be seen as a super set of the listed 

algorithms. It implements both classical and aggregation 

based algebraic multigrid methods with different selector 

and interpolation strategies. It also contains many of the 

standard preconditioned Krylov subspace iterative 

methods with a variety of smoothers and preconditioners, 

including block-Jacobi, Gauss-Seidel, and incomplete-LU 

(ILU). A highlight of the library is the full congurability of 

a solver hierarchy with arbitrary depth, in which the outer 

solver uses inner solvers as preconditioners, which 

themselves can also be preconditioned by other methods. 

This allows the user to quickly experiment with variety of 

inner-outer schemes often discussed in the literature. Any 

of these methods can be used in combination with AMG 

to create a rich set of numerically powerful solvers. 

 

In contrast to earlier approaches, the AmgX library also 

takes advantage of multiple-GPUs and allows handling of 

very large sparse linear systems that fit into the aggregate 

memory of all GPUs present in the system. Within a single 

node, in the setup phase we rely on existing parallel graph 

matching techniques such as Metis and Scotch, while the 

smoothers and preconditioners take advantage of parallel 

graph coloring algorithms. In a distributed environment, 

the AmgX library relies on graph partitioning algorithms 

and uses techniques based on rings of nearest neighbors to 

keep track of communication. In this setting, only the 

required halo elements are communicated across different 

nodes. The latency of these transfers is hidden by 

overlapping communication and computation. Moreover, 

if the global problem becomes too small to fill all active 

GPUs with work, consolidation onto fewer GPUs is 

performed, which again allows the library to minimize 

communication costs while fully taking advantage of 

computational resources at hand.  

 

We will discuss this in the following section that describes 

the ANSYS Fluent implementation, where it is shown that 

the aggregation based algebraic multigrid algorithm 

implemented in AmgX achieves a greater than 5x speedup 

on a single GPU vs. the commercial proprietary ANSYS 

implementation on a single CPU scocket. The approach 

also scales well across multiple nodes sustaining this 

performance advantage.  

 

The ability to mix and match different algorithms from the 

AmgX library to create a variety of solvers is possible 

because of the flexible plug-in architecture. For example, 
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any smoother can be paired with any AmgX solution 

algorithm, and it is possible to implement these custom 

algorithms and solvers through a plug-in interface. This 

and other product-quality features were motivated by the 

requirements from commercial CFD software vendors for 

ease in linear solver integration. 

ANSYS Fluent Implementation 

An example of the GPU-accelerated AMG solver for 

commercial CFD software is ANSYS Fluent, provided by 

ANSYS Inc. with headquarters in Canonsburg, PA, USA. 

ANSYS Fluent is based on the finite volume method and 

is a multi-purpose fluids and thermal analysis software for 

a range of flow conditions and simulations. It is widely 

deployed by research organizations, and commercial 

industry that develop products for automotive, aerospace, 

power-generation, consumer products, and defense 

applications, among others.  

 

At the core of ANSYS Fluent lies the solution of large 

sparse linear systems, which often take the largest percent 

of the total simulation time. For example, we are usually 

interested in solving a set of linear systems where these 

systems are often constructed as part of the non-linear 

process for a number of steps, where either the coefficient 

matrix changes at every iteration, or the matrix does not 

change, but the right-hand-side and the solution do change 

from one step to the next. 

 

In realistic cases, these systems are often so large that they 

do not fit into memory of a single node and large clusters 

must be used to find the solution. In this setting direct 

solution of these linear systems becomes prohibitively 

expensive from the memory stand point and also does not 

scale well with the increased number of nodes. Therefore, 

multigrid and iterative methods that can attain a lower 

accuracy solution much faster are often preferred by 

commercial CFD software vendors including ANSYS.  

 

Development of a GPU-accelerated ANSYS Fluent was 

implemented through a technical collaboration between 

NVIDIA and ANSYS. Engineers from each organization 

first sought to characterize the execution profile of 

ANSYS Fluent on a conventional CPU before deciding 

which tasks in a simulation would be best suited for GPU-

acceleration. A study was conducted for different models 

with a range of cell types and flow conditions, and for 

either the segregated or coupled solution scheme for the 

pressure-based Navier-Stokes (PBNS) equations.  

 

Both the segregated and coupled schemes require a 

substantial amount of time to assemble the linear system 

of equations before a solution of that system, and these 

procedures are required at each iteration, often requiring 

1000’s for a fully converged solution. On average the 

models using the coupled scheme exhibited a profile that 

led to about 65% of time spent in the PBNS solution as 

shown in Figure 3 whereas the models using the 

segregated scheme only averaged about 30% for the same 

solution. The coupled approach is recommended by 

ANSYS over segregated owing to its superior convergence 

behavior, and therefore became the initial focus for the 

NVIDIA and ANSYS GPU-acceleration project. 

 

As a result of the technical collaboration, the GPU-based 

AMG solver was developed as a plug-in library, and 

ANSYS developed additional custom functionality in the 

linear solution process. These ANSYS custom functions 

can override a NVIDIA-developed feature such as a 

smoother, an aggregation scheme, or even an inter-node 

communication protocol. This “override” approach allows 

NVIDIA to provide plug-in updates to their contributions 

of the AMG solver, while preserving the ANSYS 

customer functionality in a seamless way. 

 

 

Figure 3: Execution profile of ANSYS Fluent for a single 

iteration of coupled pressure-based Navier-Stokes solver. 

 

Performance and parallel efficiency for ANSYS Fluent is 

dependent upon many factors including hardware system 

architecture, and model geometry and flow and boundary 

conditions of a simulation. Fluid simulations in ANSYS 

Fluent often contain a mix of finite volume cell types and 

fluid properties that can exhibit substantial variations in 

computational expense, but ANSYS Fluent has a proven 

and well documented ability to efficiently scale to a very 

large number of CPU cores.  

 

The two models used for the GPU performance studies 

were based on the same geometry and case for external 

aerodynamics of a truck body. This model is a standard 

benchmark case provided by ANSYS that is considered 

relevant to industry-scale practice. The model consists of 

steady RANS conditions using a detached-eddy (DES) 

turbulence model, and the coupled PBNS solver is 

applied. The model has mixed cell types but is tetrahedral 

cell dominant, and was configured with (i) a case of 14M 

cells, and (ii) a case of 111M cells. The first study of 14M 

cells was conducted with the latest ANSYS Fluent 16.0 on 

a small cluster system consisting of 2 server nodes, each 

configured with:  

 

 2 x Intel Xeon E5-2697v2 @2.7GHz with 12 cores 

each, for a total 24 cores (48 cores total system) 

 

 2 x NVIDIA Tesla K80 GPUs (4 GPUs total system) 

 

The current ANSYS Fluent 16.0 release supports GPU 

acceleration for the coupled PBNS solver, and similar to 

the CPU-only AMG solver, there are solver settings that 

can be custom configured in order to achieve the optimal 

performance for a particular model and/or flow condition. 

For these studies the optimal solver settings were used for 

each, and it should be noted for this case that such settings 

for CPU-only and CPU+GPU are most often different. 

 

The 14M cell results shown in Figure 4 give performance 

comparisons of the CPU time both stand-alone and with 

GPU acceleration. The metric used in the performance is 

number of seconds for a fully converged solution for both 

the AMG solver only, and total solution time. The timings 
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show more than a 5x speedup for the AMG solver on a 

cluster of 2 nodes with 4 CPUs + 4 GPUs vs. 4 CPUs 

alone, and with a 3x speedup for the total solution time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Speedups for ANSYS Fluent 16.0 on 2 nodes 

with a total of 4 x NVIDIA Tesla K80 GPUs. 

 

The second study of 111M cells investigates performance 

of ANSYS Fluent on a much larger and scalable GPU 

cluster. The motivation for ANSYS Fluent deployment on 

clusters of GPUs is identical to that for CPU clusters – 

larger problems can be solved with overall performance 

increases. By distributing a model over a cluster with 

multiple GPUs in each node, single GPU memory size 

limitations can be overcome such that inexpensive GPUs 

become practical for solving large CFD simulations. There 

are several OEM manufacturers who can accommodate as 

many as 8 GPUs in a single node, enabling large-scale 

compute power in even small to medium size clusters. 

However, the resulting heterogeneous architecture poses 

an extended memory hierarchy that creates challenges in 

developing scalable and efficient application software. 

 

Multiple programming APIs along with a domain 

decomposition strategy for geometry and data-parallelism 

is required to achieve high throughput and scalable results 

from a CFD application on a multi-GPU platform. When 

more than one GPU is used, cells at the edges of each 

GPU’s computational domain must be communicated to 

the GPUs that share the domain boundary so that each 

GPU can have the current data necessary for their 

computations. Data transfers across neighboring GPUs 

adds latency into an implementation, which is a source 

that limits scalability if not properly managed.  

 

Parallel simulations in ANSYS Fluent usually begin with 

a geometry domain decomposition step. This partitions the 

model geometry and distributes the partitions among the 

number cores on each available CPU – one partition per 

CPU core. ANSYS uses the Message Passing Interface 

(MPI) API for parallel programming on clusters and to 

manage communication between partitions – one MPI 

rank per partition per CPU core. 

 

Typically, having one MPI process managing one GPU 

was the most straightforward approach for a distributed 

memory application on a multi-GPU cluster. In the case of 

ANSYS Fluent and most CFD, this would impose a 

configuration of one GPU per one CPU core, which is 

impractical owing to limits on the number of GPUs 

available for a single node, in addition to the overkill of 

available GPU memory capacity. For this reason, a 

‘consolidation’ capability was developed for AmgX that 

efficiently manages multiple CPU-core MPI processes per 

GPU and is used in ANSYS Fluent. The number of CPU-

core MPI processes that can be mapped to a single GPU is 

arbitrary, which allows flexibility in the configuration of 

multi-GPU clusters. 

 

The second study of 111M cells was conducted with 

ANSYS Fluent 15.0 on a moderate-sized cluster system 

consisting of 12 nodes, each configured with:  

 

 2 x Intel Xeon E5-2667 @2.9GHz with 6 cores each, 

for a total of 12 total cores (144 cores total system) 

 

 4 x NVIDIA Tesla K40 GPUs (48 GPUs total system) 

 

The 111M cell results shown in Figure 5 give performance 

comparisons of the CPU time both stand-alone and with 

GPU acceleration. The metric used in the performance is 

number of seconds per iteration for both the AMG solver 

only, and total solution time. The timings show a 2.7x 

speedup for the AMG solver on a cluster of 12 nodes with 

144 CPUs + 48 GPUs vs. 144 CPUs alone, and with a 2x 

speedup for the total solution. These 12 node results were 

possible with the same solver settings as the 2 node case 

which simplifies use from a practitioner’s perspective. 

 
Figure 5: Speedups for ANSYS Fluent 15.0 on 12 nodes 

with a total of 48 x NVIDIA Tesla K40 GPUs. 

 
Increased levels of parallel processing by utilizing GPUs 

for industry-relevant CFD applications in an HPC 

environment can enable much larger and complex 

simulations to be addressed with shorter turnaround times. 

As CFD simulation requirements continue to grow, such 

as the need for transients, high-resolution, and multi-scale 

simulations, heterogeneous parallel application software 

and systems of CPUs and GPUs will become an essential 

HPC technology. 

 

For industry-leading commercial CFD software ANSYS 

Fluent, it was demonstrated that substantial performance 

gains can be achieved by using the latest NVIDIA GPU 

technology based on the Kepler architecture, in a GPU 

acceleration deployment of x86-based CPUs. Results from 

GPU acceleration achieved substantial factors of speedup, 

and results from a multi-GPU cluster demonstrate the 

potential for GPU parallel scalability. Based on these 

trends, we can expect that GPU acceleration will be a 

meaningful HPC trend in the future of commercial CFD 

software and in engineering modeling and simulation. 
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CONCLUSION 

Computational challenges associated with high fidelity 

and advanced CFD simulations that impact requirements 

of HPC systems can now deploy hybrid parallel models of 

distributed and shared memory utilizing GPU acceleration 

for overall performance gains. This development also 

means deployment of heterogeneous clusters of CPU-GPU 

configured server nodes. Industry-leading commercial and 

non-commercial CFD software is undergoing development 

on such platforms that will provide a practical HPC 

environment for growing requirements of advanced CFD 

including, high-resolution and multidiscipline simulations. 

 

As CFD simulation requirements grow and motivate the 

need for more transients, multi-scale simulations, and 

improved turbulence treatment, hybrid parallel application 

software and systems of CPUs + GPUs have become a 

relevant HPC technology. For ANSYS Fluent, it has been 

demonstrated that gains are achieved with each new GPU 

release. In addition, alternatives to x86 will be available 

for GPUs during 2015 including the Power and ARM64 

CPU architectures, and with a new interconnect between 

CPU and GPU that is 4x faster than the current PCI-

express interface. Based on current trends, GPU-based 

parallel CFD will be grow as a meaningful HPC benefit in 

the practice of engineering simulation for industry. 
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