
Eleventh International Conference on CFD in the Minerals and Process Industries

CSIRO, Melbourne, Australia

7-9 December 2015

Copyright © 2015 CSIRO Australia 1

GPU PROGRESS AND DIRECTIONS IN APPLIED CFD

Stan POSEY1*, Simon SEE2, and Michael WANG2

1 NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050, USA

2 NVIDIA Singapore Pte Ltd, Robinson 112 #05-0, 068902, SINGAPORE

*Corresponding author, E-mail address: sposey@nvidia.com

ABSTRACT

Current trends in high performance computing include the

use of graphics processing units (GPUs) as massively-

parallel co-processors to CPUs in order to accelerate

numerical operations common to computational fluid

dynamics (CFD) solvers. This paper examines GPU

characteristics for various CFD methods and provides

examples of current implementations for commercial CFD

software. In order to increase adoption of GPUs for

commercial CFD, a linear solver library called AmgX was

developed by NVIDIA that offers an algebraic multigrid

(AMG) solver and other features, with parallelization of

all phases of AMG including hierarchy construction and

ILU factorization and solve. Examples relevant to CFD

practice are investigated in order to demonstrate the use of

AmgX in ANSYS Fluent for industry-scale applications.

Hardware system configuration is also discussed that

examines directions on CFD solver development.

INTRODUCTION

The efficient use of hardware system resources and CFD

simulation turn-around times continue to be important

factors behind engineering decisions to expand CFD as a

technology to support product design. While the progress

in recent years of CFD simulation verses physical

experimentation has been remarkable, the availability of

inexpensive workstations and clusters with conventional

multi-core CPU parallel solvers has not been enough to

motivate broad industry deployment of high fidelity

modelling and use of design optimization procedures.

Recent developments by commercial vendors of CFD

software aim to achieve GPU speedups from fine-grain

and second-level parallelism under an existing distributed

memory, first-level CPU parallelism. For most vendors

their GPU implementations have included implicit sparse

iterative solvers that utilize a hybrid CPU-GPU computing

scheme. In this way, matrix operations which are usually

only sent to CPU cores for processing, are characterized

before processing and appropriately overlapped across

both CPU cores and GPU resulting in overall job

acceleration. Figure 1 illustrates a schematic of such a

hybrid scheme where a proper measure of speedup is made

by comparison of the same simulation on multiple CPU

cores both with and without GPU acceleration.

The continual increase in processor speeds is limited due

to power and thermal constraints, and in order to achieve

gains in performance without increasing clock speeds,

application software parallelism must be implemented.

This parallelism can come in the form of task parallelism,

data parallelism, or a combination of both. Although

parallel applications that use multiple cores are a well

established practice in CFD, a recent trend towards the use

of GPUs to accelerate multi-core CPU computations is

increasingly common.

In this heterogeneous computing model the GPU serves as

a co-processing accelerator to the CPU. The need for high

performance and the parallel nature of CFD algorithms has

led GPU developers to create designs with hundreds of

cores. Today GPUs and software development tools are

available for implementing more general algorithms that

use the GPU for applications in a range of scientific and

engineering domains where numerical computations are

expected to complete as fast as possible.

Figure 1: Schematic of GPU acceleration for implicit

sparse solvers typical of commercial CFD software.

During recent years, CFD has become increasingly reliant

on clusters of multi-core CPUs to enable more detailed

simulations within the limits of engineering project times.

For this reason, the scalability of a solver across multiple

servers has become equally important as single-processor

performance. Most CFD developments during that period

relied strictly on compilers to achieve a nominal level of

single process performance optimization, and development

investments went towards distributed memory parallel.

GPU parallelism has brought back the focus on single-

processor performance beyond what is possible with

conventional CPU compilers, and with emphasis on multi-

GPU scalability in an HPC cluster environment.

Another important processor trend is relative performance

of floating point operations vs. memory bandwidth. Over

the past few decades the gap has extended to more than

three orders of magnitude. CPU designs have gone to

Copyright © 2015 CSIRO Australia 2

great lengths to bridge the gap between processor and

memory performance by introducing instruction and data

caches, instruction level parallelism, and other technical

advances. And although GPUs offer a different approach

in terms of hiding memory latency because of their

specialization to inherently parallel problems, the fact

remains that processor performance will continue to

advance at a much greater rate than memory performance.

An extrapolation without any fundamental changes in

memory designs, processors will become infinitely fast

relative to memory, and performance optimization will

become solely an exercise in optimizing data movement.

Algorithm Suitability for GPUs

At the highest level there are two considerations that can

determine optimum suitability of a CFD algorithm for

GPUs: the selected time integration method and spatial

discretization scheme. CFD time integration methods are

either explicit or implicit, and discretization schemes

either structured or unstructured mesh. Successful GPU

implementations exist for these high level algorithm

characteristics, but the combination of some are more

favourable for CFD software vs. others. For example

structured grids offer uniform memory reference access

during computations which can be a better fit for GPUs vs.

unstructured, although breakthroughs in recent years with

renumbering techniques have greatly improved the

situation for unstructured grids which are more popular

because of flexibility with meshing complex geometries.

The schematic in Figure 2 provides a profile description of

select algorithm combinations, and both CFD and

computational structural mechanics (CSM) are shown

because of their close relationship in development and

deployment. Explicit methods are used in CFD mostly for

compressible flows and in CSM for high frequency impact

loads where very small time steps may be necessary for

proper resolution of a given simulation. Implicit methods

are used for incompressible CFD but can also be used for

compressible, and in CSM for low frequency loads such as

structural vibration and static stress. The choice of

discretization scheme is usually dependent upon the

geometric complexity of the given simulation objectives.

Practically speaking, nearly all commercial CFD uses

finite volume unstructured or finite element, all CSM uses

finite element, and CFD for structured grids is typically

limited to non-commercial, compressible aerodynamics.

Figure 2: Profile description of suitability for CFD

algorithm selections in a GPU computing environment.

Industry deployment of CFD and CSM for application use

usually means legacy software that undergoes several

years of verification and validation, and which comprises a

large software code base with diverse teams of developers.

These conditions significantly impact algorithm suitability

and more importantly influence a given strategy for GPU

development. For example, CFD and CSM explicit

methods on structured and unstructured grids with ordered

stencils are very well suited to GPUs, but only those based

on recent GPU-architected developments have been

successful. Meanwhile legacy explicit methods are

typically order 1M lines of code (LoC) and exhibit very

flat execution profiles, meaning that the entire code base

would need to run on the GPU for any benefit to an

industry-scale simulation. This situation is impractical

from a developer view point and can only be successful

with a GPU-based compiler approach such as OpenACC.

Implicit sparse solvers are the current GPU focus of most

commercial CFD and CSM implementations owing to

their favourable execution profile of a ‘hotspot’ and the

simpler requirement that a small % of LoC must run on

the GPU for potentially significant gains. Unlike explicit

methods based on nearest neighbour computations of I,J,K

stencils where each stencil computation might be a single

thread on a GPU, implicit methods use matrix linear

algebra computations and usually provide higher

computation intensity, or more work for the GPU per

memory movement of data. The solver hotspot of implicit

methods are typically very good candidates for moving

onto the GPU. Specifically these are the linear equation

solvers which either use a direct or iterative method.

Because they are usually a very small % of LoC, they are

ported with CUDA and often make use of libraries such as

CUBLAS and others, which provide tuned computational

kernels.

Direct solvers which are used only by CSM software rely

on double precision matrix-matrix (DGEMM) operations

and might consume an average of 75% of the total profile

time (depending on the model), which is a very good

candidate for GPU acceleration. Effective acceleration of

75% of the total job time can mean a 3x speed-up for an

overall simulation. These are the solvers found in implicit

finite element CSM codes (Abaqus, ANSYS, etc.) and

which were the first to demonstrate the best speed-ups on

GPUs. These methods require extremely large system

memory and are not used in CFD. Iterative methods rely

on sparse matrix-vector operations (SpMV) and usually

exhibit an average of 50% of the total profile time. These

methods require much smaller memory capacity and are

used by all CFD and some CSM software, and have

become a recent focus for GPUs by commercial software

vendors because of breakthroughs in matrix

preconditioning, the ease in GPU deployment of parallel

conjugate-gradient solvers, and the introduction of

multigrid solvers on GPUs.

GPU-PARALLEL CFD

Parallel iterative sparse solvers are widely used in CFD for

simulations that deploy implicit schemes. Iterative solvers

are the standard for commercial CFD software, owing to

their efficiency in computation and storage, and the need

to mostly resolve incompressible flow fields. A GPU-

parallel implementation of an iterative solver such as a

Copyright © 2015 CSIRO Australia 3

Krylov-based preconditioned conjugate gradient or

multigrid method would rely, among other features, on

kernel performance of sparse-matrix-vector-multiply

(SpMV) and a few additional BLAS-1 kernels.

Because of the low arithmetic intensity of the SpMV

kernel, it is highly memory-bound, and therefore

optimization of the memory access pattern to achieve peak

GPU memory-bandwidth is a primary consideration. Even

though the data access pattern is irregular for general

SpMV, with careful re-design of data structures for the

sparse matrices, it is possible for the SpMV kernel to run

very close to the peak of the GPU memory bandwidth.

With an efficient SpMV kernel, an iterative method can be

implemented fully on a GPU, however preconditioners are

usually required. All contemporary CFD iterative solvers

use a preconditioner to speed-up the solution convergence

rate, and this would also need to be implemented on the

GPU for overall performance. The difficulty of this

implementation varies significantly depending on the

specific preconditioner used. For example, a GPU-

efficient Jacobi preconditioner would be very simple to

implement, however a highly sequential preconditioner

such as an incomplete Cholesky scheme, would be

difficult for good parallel efficiency. This trade-off may

motivate a redesign of a particular preconditoner in order

to run massively parallel on a GPU.

Linear equation solvers that use a Krylov method such as a

preconditioned conjugate gradient (PCG) or generalized

minimal residual method (GMRES) have been

successfully implemented for GPUs. The use of multigrid

methods, and in particular algebraic multigrid (AMG) for

linear solvers has been a relatively new area of exploration

for GPUs, and has become an emerging development for

commercial CFD software.

In order to assist in the CFD community’s range of GPU

development interests, NVIDIA continues to invest in

high performance iterative solvers in several areas:

 cuBLAS library of basic linear algebra subroutines

(BLAS) for dense matrices

 cuSPARSE library of BLAS, kernels, and solver

components for sparse matrices with variety of formats

 Contributions toThrust, and open source C++ template

library of high performance parallel primitives

 AmgX: development of a complete linear solver library

with emphasis on multigrid methods

The remainder of this paper will describe the

implementations of AmgX for solving linear scalar and

coupled systems of equations on GPUs. AMG is optimal

for elliptic-type or coupled elliptic-dominant partial

differential equations (PDEs) discretized over irregular

grids. During the past decade AMG has evolved as the

linear solver standard in the commercial CFD software

community, and now benefits from GPU acceleration.

NVIDIA AMGX LIBRARY

The AmgX solver library developed by NVIDIA provides

two kinds of AMG: aggregation-based and selection-

based, also called classical aggregation. Each approach is

superior for different types of problems, allowing an

application to use the method that best matches its needs.

These AMG developments were also optimized for overall

time-to-solution, including both “setup” and “solve”

phases, making it suitable for use inside an iterative non-

linear solver such as Newton or Picard. In cases where the

matrix structure is unchanged from one call to the next,

the setup phase can run even faster by reusing this

information.

The implementation of algebraic multigrid on GPUs has

already been considered by several authors. Early attempts

focused on the simple off-loading of sparse matrix-vector

multiplications to the GPU during the solve phase of the

algorithm. Later, others have shown how to expose fine-

grained parallelism within a single node in the setup and

solve phases of the aggregation-based algorithm using

libraray primatives from Thrust.

The AmgX library can be seen as a super set of the listed

algorithms. It implements both classical and aggregation

based algebraic multigrid methods with different selector

and interpolation strategies. It also contains many of the

standard preconditioned Krylov subspace iterative

methods with a variety of smoothers and preconditioners,

including block-Jacobi, Gauss-Seidel, and incomplete-LU

(ILU). A highlight of the library is the full congurability of

a solver hierarchy with arbitrary depth, in which the outer

solver uses inner solvers as preconditioners, which

themselves can also be preconditioned by other methods.

This allows the user to quickly experiment with variety of

inner-outer schemes often discussed in the literature. Any

of these methods can be used in combination with AMG

to create a rich set of numerically powerful solvers.

In contrast to earlier approaches, the AmgX library also

takes advantage of multiple-GPUs and allows handling of

very large sparse linear systems that fit into the aggregate

memory of all GPUs present in the system. Within a single

node, in the setup phase we rely on existing parallel graph

matching techniques such as Metis and Scotch, while the

smoothers and preconditioners take advantage of parallel

graph coloring algorithms. In a distributed environment,

the AmgX library relies on graph partitioning algorithms

and uses techniques based on rings of nearest neighbors to

keep track of communication. In this setting, only the

required halo elements are communicated across different

nodes. The latency of these transfers is hidden by

overlapping communication and computation. Moreover,

if the global problem becomes too small to fill all active

GPUs with work, consolidation onto fewer GPUs is

performed, which again allows the library to minimize

communication costs while fully taking advantage of

computational resources at hand.

We will discuss this in the following section that describes

the ANSYS Fluent implementation, where it is shown that

the aggregation based algebraic multigrid algorithm

implemented in AmgX achieves a greater than 5x speedup

on a single GPU vs. the commercial proprietary ANSYS

implementation on a single CPU scocket. The approach

also scales well across multiple nodes sustaining this

performance advantage.

The ability to mix and match different algorithms from the

AmgX library to create a variety of solvers is possible

because of the flexible plug-in architecture. For example,

Copyright © 2015 CSIRO Australia 4

any smoother can be paired with any AmgX solution

algorithm, and it is possible to implement these custom

algorithms and solvers through a plug-in interface. This

and other product-quality features were motivated by the

requirements from commercial CFD software vendors for

ease in linear solver integration.

ANSYS Fluent Implementation

An example of the GPU-accelerated AMG solver for

commercial CFD software is ANSYS Fluent, provided by

ANSYS Inc. with headquarters in Canonsburg, PA, USA.

ANSYS Fluent is based on the finite volume method and

is a multi-purpose fluids and thermal analysis software for

a range of flow conditions and simulations. It is widely

deployed by research organizations, and commercial

industry that develop products for automotive, aerospace,

power-generation, consumer products, and defense

applications, among others.

At the core of ANSYS Fluent lies the solution of large

sparse linear systems, which often take the largest percent

of the total simulation time. For example, we are usually

interested in solving a set of linear systems where these

systems are often constructed as part of the non-linear

process for a number of steps, where either the coefficient

matrix changes at every iteration, or the matrix does not

change, but the right-hand-side and the solution do change

from one step to the next.

In realistic cases, these systems are often so large that they

do not fit into memory of a single node and large clusters

must be used to find the solution. In this setting direct

solution of these linear systems becomes prohibitively

expensive from the memory stand point and also does not

scale well with the increased number of nodes. Therefore,

multigrid and iterative methods that can attain a lower

accuracy solution much faster are often preferred by

commercial CFD software vendors including ANSYS.

Development of a GPU-accelerated ANSYS Fluent was

implemented through a technical collaboration between

NVIDIA and ANSYS. Engineers from each organization

first sought to characterize the execution profile of

ANSYS Fluent on a conventional CPU before deciding

which tasks in a simulation would be best suited for GPU-

acceleration. A study was conducted for different models

with a range of cell types and flow conditions, and for

either the segregated or coupled solution scheme for the

pressure-based Navier-Stokes (PBNS) equations.

Both the segregated and coupled schemes require a

substantial amount of time to assemble the linear system

of equations before a solution of that system, and these

procedures are required at each iteration, often requiring

1000’s for a fully converged solution. On average the

models using the coupled scheme exhibited a profile that

led to about 65% of time spent in the PBNS solution as

shown in Figure 3 whereas the models using the

segregated scheme only averaged about 30% for the same

solution. The coupled approach is recommended by

ANSYS over segregated owing to its superior convergence

behavior, and therefore became the initial focus for the

NVIDIA and ANSYS GPU-acceleration project.

As a result of the technical collaboration, the GPU-based

AMG solver was developed as a plug-in library, and

ANSYS developed additional custom functionality in the

linear solution process. These ANSYS custom functions

can override a NVIDIA-developed feature such as a

smoother, an aggregation scheme, or even an inter-node

communication protocol. This “override” approach allows

NVIDIA to provide plug-in updates to their contributions

of the AMG solver, while preserving the ANSYS

customer functionality in a seamless way.

Figure 3: Execution profile of ANSYS Fluent for a single

iteration of coupled pressure-based Navier-Stokes solver.

Performance and parallel efficiency for ANSYS Fluent is

dependent upon many factors including hardware system

architecture, and model geometry and flow and boundary

conditions of a simulation. Fluid simulations in ANSYS

Fluent often contain a mix of finite volume cell types and

fluid properties that can exhibit substantial variations in

computational expense, but ANSYS Fluent has a proven

and well documented ability to efficiently scale to a very

large number of CPU cores.

The two models used for the GPU performance studies

were based on the same geometry and case for external

aerodynamics of a truck body. This model is a standard

benchmark case provided by ANSYS that is considered

relevant to industry-scale practice. The model consists of

steady RANS conditions using a detached-eddy (DES)

turbulence model, and the coupled PBNS solver is

applied. The model has mixed cell types but is tetrahedral

cell dominant, and was configured with (i) a case of 14M

cells, and (ii) a case of 111M cells. The first study of 14M

cells was conducted with the latest ANSYS Fluent 16.0 on

a small cluster system consisting of 2 server nodes, each

configured with:

 2 x Intel Xeon E5-2697v2 @2.7GHz with 12 cores

each, for a total 24 cores (48 cores total system)

 2 x NVIDIA Tesla K80 GPUs (4 GPUs total system)

The current ANSYS Fluent 16.0 release supports GPU

acceleration for the coupled PBNS solver, and similar to

the CPU-only AMG solver, there are solver settings that

can be custom configured in order to achieve the optimal

performance for a particular model and/or flow condition.

For these studies the optimal solver settings were used for

each, and it should be noted for this case that such settings

for CPU-only and CPU+GPU are most often different.

The 14M cell results shown in Figure 4 give performance

comparisons of the CPU time both stand-alone and with

GPU acceleration. The metric used in the performance is

number of seconds for a fully converged solution for both

the AMG solver only, and total solution time. The timings

Copyright © 2015 CSIRO Australia 5

show more than a 5x speedup for the AMG solver on a

cluster of 2 nodes with 4 CPUs + 4 GPUs vs. 4 CPUs

alone, and with a 3x speedup for the total solution time.

Figure 4: Speedups for ANSYS Fluent 16.0 on 2 nodes

with a total of 4 x NVIDIA Tesla K80 GPUs.

The second study of 111M cells investigates performance

of ANSYS Fluent on a much larger and scalable GPU

cluster. The motivation for ANSYS Fluent deployment on

clusters of GPUs is identical to that for CPU clusters –

larger problems can be solved with overall performance

increases. By distributing a model over a cluster with

multiple GPUs in each node, single GPU memory size

limitations can be overcome such that inexpensive GPUs

become practical for solving large CFD simulations. There

are several OEM manufacturers who can accommodate as

many as 8 GPUs in a single node, enabling large-scale

compute power in even small to medium size clusters.

However, the resulting heterogeneous architecture poses

an extended memory hierarchy that creates challenges in

developing scalable and efficient application software.

Multiple programming APIs along with a domain

decomposition strategy for geometry and data-parallelism

is required to achieve high throughput and scalable results

from a CFD application on a multi-GPU platform. When

more than one GPU is used, cells at the edges of each

GPU’s computational domain must be communicated to

the GPUs that share the domain boundary so that each

GPU can have the current data necessary for their

computations. Data transfers across neighboring GPUs

adds latency into an implementation, which is a source

that limits scalability if not properly managed.

Parallel simulations in ANSYS Fluent usually begin with

a geometry domain decomposition step. This partitions the

model geometry and distributes the partitions among the

number cores on each available CPU – one partition per

CPU core. ANSYS uses the Message Passing Interface

(MPI) API for parallel programming on clusters and to

manage communication between partitions – one MPI

rank per partition per CPU core.

Typically, having one MPI process managing one GPU

was the most straightforward approach for a distributed

memory application on a multi-GPU cluster. In the case of

ANSYS Fluent and most CFD, this would impose a

configuration of one GPU per one CPU core, which is

impractical owing to limits on the number of GPUs

available for a single node, in addition to the overkill of

available GPU memory capacity. For this reason, a

‘consolidation’ capability was developed for AmgX that

efficiently manages multiple CPU-core MPI processes per

GPU and is used in ANSYS Fluent. The number of CPU-

core MPI processes that can be mapped to a single GPU is

arbitrary, which allows flexibility in the configuration of

multi-GPU clusters.

The second study of 111M cells was conducted with

ANSYS Fluent 15.0 on a moderate-sized cluster system

consisting of 12 nodes, each configured with:

 2 x Intel Xeon E5-2667 @2.9GHz with 6 cores each,

for a total of 12 total cores (144 cores total system)

 4 x NVIDIA Tesla K40 GPUs (48 GPUs total system)

The 111M cell results shown in Figure 5 give performance

comparisons of the CPU time both stand-alone and with

GPU acceleration. The metric used in the performance is

number of seconds per iteration for both the AMG solver

only, and total solution time. The timings show a 2.7x

speedup for the AMG solver on a cluster of 12 nodes with

144 CPUs + 48 GPUs vs. 144 CPUs alone, and with a 2x

speedup for the total solution. These 12 node results were

possible with the same solver settings as the 2 node case

which simplifies use from a practitioner’s perspective.

Figure 5: Speedups for ANSYS Fluent 15.0 on 12 nodes

with a total of 48 x NVIDIA Tesla K40 GPUs.

Increased levels of parallel processing by utilizing GPUs

for industry-relevant CFD applications in an HPC

environment can enable much larger and complex

simulations to be addressed with shorter turnaround times.

As CFD simulation requirements continue to grow, such

as the need for transients, high-resolution, and multi-scale

simulations, heterogeneous parallel application software

and systems of CPUs and GPUs will become an essential

HPC technology.

For industry-leading commercial CFD software ANSYS

Fluent, it was demonstrated that substantial performance

gains can be achieved by using the latest NVIDIA GPU

technology based on the Kepler architecture, in a GPU

acceleration deployment of x86-based CPUs. Results from

GPU acceleration achieved substantial factors of speedup,

and results from a multi-GPU cluster demonstrate the

potential for GPU parallel scalability. Based on these

trends, we can expect that GPU acceleration will be a

meaningful HPC trend in the future of commercial CFD

software and in engineering modeling and simulation.

Copyright © 2015 CSIRO Australia 6

CONCLUSION

Computational challenges associated with high fidelity

and advanced CFD simulations that impact requirements

of HPC systems can now deploy hybrid parallel models of

distributed and shared memory utilizing GPU acceleration

for overall performance gains. This development also

means deployment of heterogeneous clusters of CPU-GPU

configured server nodes. Industry-leading commercial and

non-commercial CFD software is undergoing development

on such platforms that will provide a practical HPC

environment for growing requirements of advanced CFD

including, high-resolution and multidiscipline simulations.

As CFD simulation requirements grow and motivate the

need for more transients, multi-scale simulations, and

improved turbulence treatment, hybrid parallel application

software and systems of CPUs + GPUs have become a

relevant HPC technology. For ANSYS Fluent, it has been

demonstrated that gains are achieved with each new GPU

release. In addition, alternatives to x86 will be available

for GPUs during 2015 including the Power and ARM64

CPU architectures, and with a new interconnect between

CPU and GPU that is 4x faster than the current PCI-

express interface. Based on current trends, GPU-based

parallel CFD will be grow as a meaningful HPC benefit in

the practice of engineering simulation for industry.

REFERENCES

CORRIGAN, A., CAMELLI, F., LOHNER R., and

MUT, F, 2010. Porting of an edge-based CFD solver to

GPUs. 48th AIAA Aerospace Sciences Meeting, number

AIAA-2010-522. Orlando, FL, January 2010.

COHEN, J. and CASTONGUAY, P., Efficient Graph

Matching and Coloring on the GPU, GPU Technology

Conference, GTC on-demand S0332 (2012).

NVIDIA Corporation, AmgX REFERENCE MANUAL,

V2.0, 2014.

KRAUS, J. and FORSTER, M., Efficient AMG on

Heterogeneous Systems, LNCS, 7174 (2012), pp.

133- 146.

DEMOUTH, J., Optimization of Sparse Matrix-Matrix

Multiplication on GPU, GPU Technology Conference,

GTC-on-demand S0285 (2012).

KARYPIS, G. and KUMAR, V., A Fast and Highly

Quality Multilevel Scheme for Partitioning Irregular

Graphs, SIAM J. Sci. Comput., 20 (1999), pp. 359-392.

NAUMOV, M., Preconditioned Block-Iterative Methods

on GPUs, Proc. Appl. Math Mech., 12

(2012), pp 11-14.

ANSYS, Fluent, http://www.ansys.com

http://www.ansys.com/

